[go: up one dir, main page]

JPS5924647B2 - Manufacturing method of composite membrane for reverse osmosis - Google Patents

Manufacturing method of composite membrane for reverse osmosis

Info

Publication number
JPS5924647B2
JPS5924647B2 JP54072264A JP7226479A JPS5924647B2 JP S5924647 B2 JPS5924647 B2 JP S5924647B2 JP 54072264 A JP54072264 A JP 54072264A JP 7226479 A JP7226479 A JP 7226479A JP S5924647 B2 JPS5924647 B2 JP S5924647B2
Authority
JP
Japan
Prior art keywords
carbon atoms
polysulfone
membrane
reverse osmosis
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54072264A
Other languages
Japanese (ja)
Other versions
JPS55165103A (en
Inventor
哲男 渡辺
紀穂 春宮
優 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP54072264A priority Critical patent/JPS5924647B2/en
Publication of JPS55165103A publication Critical patent/JPS55165103A/en
Publication of JPS5924647B2 publication Critical patent/JPS5924647B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0095Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】 本発明はポリスルホンからなる多孔性膜を支持体とし、
該ポリスルホンとは異なる重合体からなる障壁層を前記
支持体表面に形成してなる逆浸透用複合膜の製造法に関
する。
Detailed Description of the Invention The present invention uses a porous membrane made of polysulfone as a support,
The present invention relates to a method for producing a composite membrane for reverse osmosis, which comprises forming a barrier layer made of a polymer different from the polysulfone on the surface of the support.

従来、逆浸透の原理を応用した液体分離膜として、各種
の逆浸透膜が提案されているが、それらの中でも同一重
合体からなる非対称構造を有する膜、たとえば酢酸セル
ロース膜などにくらべて多孔性の支持体表面に緻密な障
壁層を形成させた複合膜は支持体および障壁層を構成す
る重合体の種類、組合せあるいは膜構造を各々独立に選
択することによつて膜性能を大巾に改良、向上させるこ
とができ、用途、目的に応じた膜を製造できるなど多く
のメリットがあり、注目されている。
Conventionally, various reverse osmosis membranes have been proposed as liquid separation membranes that apply the principle of reverse osmosis, but among them, they are more porous than membranes with asymmetric structures made of the same polymer, such as cellulose acetate membranes. Composite membranes with a dense barrier layer formed on the surface of the support can greatly improve membrane performance by independently selecting the type, combination, or membrane structure of the polymers constituting the support and barrier layer. It is attracting attention because it has many merits, such as improved performance and the ability to manufacture membranes tailored to specific uses and purposes.

この逆浸透用複合膜の製造法としては、大別して、前記
微多孔性支持体膜上に膜形成性重合体を塗布し、これを
固化せしめて複合膜を製造する方法(以下、ポリマ被覆
型という)と該支持体膜上にモノマ、オリゴマ−もしく
はその初期反応生成物など現場重合型反応成分を塗布し
、重合反応等を行つて膜を形成せしめる方法(以下、モ
ノマ被覆型という)の2種があるが、これらの複合膜の
製造法、特にモノマ被覆型においては、得られる複合膜
の膜性能が変動し易く、品質、性能が安定した膜を再現
性よく得ることが難しいという工業上の問題がある。た
とえば、ピービ一・レポート(P.B.RepOrt)
第234198に記載されているように、米国特許第3
926,798号明細書に開示されているモノマ被覆型
の複合膜の製造においては、逆浸透用膜としての基本的
性能である水透過性能が、それぞれ約2,3倍も変動す
ると云われており、このような膜特性の変動のない安定
した品質、性能を有する膜の製造が強く要望されている
The manufacturing method for this composite membrane for reverse osmosis can be roughly divided into a method in which a membrane-forming polymer is coated on the microporous support membrane and solidified to manufacture a composite membrane (hereinafter referred to as polymer-coated type). (hereinafter referred to as "monomer coating type"), and a method in which an in-situ polymerization type reaction component such as a monomer, oligomer, or an initial reaction product thereof is coated on the support film and a polymerization reaction is performed to form a film (hereinafter referred to as monomer coating type). However, the manufacturing method of these composite membranes, especially the monomer-coated type, has an industrial problem in that the membrane performance of the resulting composite membrane tends to fluctuate, making it difficult to obtain a membrane with stable quality and performance with good reproducibility. There is a problem. For example, P.B.RepOrt
No. 2,34198, as described in U.S. Pat.
In the production of the monomer-coated composite membrane disclosed in No. 926,798, the water permeability, which is the basic performance of a reverse osmosis membrane, is said to vary by about 2 to 3 times. Therefore, there is a strong demand for the production of membranes with stable quality and performance without such fluctuations in membrane properties.

本発明者らはこのような問題点に着目し、鋭意研究を進
めて、本発明を見出したものである。
The inventors of the present invention have focused on these problems and have conducted extensive research to discover the present invention.

すなわち、本発明の目的とするところは、逆浸透用複合
膜としてその固有の膜特性を保持し、かつ膜性能の変動
の著しく少ない工業的に有利な製造法を提供するにある
。このような本発明の目的は前記特許請求の範囲に記載
したように、ポリスルホンからなる支持体膜上に膜形成
性のモノマおよびまたはオリゴマ等の初期反応物など現
場重合型反応成分を含有する溶液を塗布し、約140℃
以下の温度で乾燥した後、該温度より少なくとも10℃
高温の温度条件下で熱処理することによつて達成するこ
とができる〜 本発明に用いられるポリスルホンからなる支持体膜とし
ては公知の微多孔性を有するポリスルホン膜、たとえば
、ポリスルホンのジメチルホルムアミド溶液などをフイ
ルム状に流延し、該ポリスルホンの非溶剤であつてジメ
チルホルムアミドに対して混和性の媒体、たとえば水中
に導いてポリスルホンをゲル化(凝固)せしめる。
That is, an object of the present invention is to provide an industrially advantageous manufacturing method that maintains the inherent membrane properties of a composite membrane for reverse osmosis and significantly reduces fluctuations in membrane performance. The object of the present invention is to provide a solution containing in-situ polymerizable reaction components such as initial reactants such as film-forming monomers and/or oligomers on a support film made of polysulfone. applied and heated to about 140℃
After drying at a temperature of at least 10°C above that temperature
This can be achieved by heat treatment under high temperature conditions ~ As the support membrane made of polysulfone used in the present invention, a known microporous polysulfone membrane such as a dimethylformamide solution of polysulfone can be used. The polysulfone is cast into a film and introduced into a medium that is a non-solvent for the polysulfone and is miscible with dimethylformamide, such as water, to gel (solidify) the polysulfone.

湿式製膜法によつて得られる微多孔性膜を例示すること
ができる。該ポリスルホン支持体膜は乾燥、特に100
℃以上の加熱下で乾燥する際、膜自体の熱収縮などに起
因して、膜表面および内部の孔径が変化し、水透過性な
ど膜特性が変動することがあるので、好ましくは、未乾
燥あるいは含水状態に保つのがよい。該ポリスルホン支
持体膜上に塗布されるモノマオリゴマもしくは初期反応
生成物など現場重合型反応成分としては該ポリスルホン
の非溶剤であつて、次のA.B.C.D及び/又はEを
主成分とするものを用いる。
A microporous membrane obtained by a wet membrane forming method can be exemplified. The polysulfone support membrane is dried, especially at 100%
When drying under heating above ℃, the membrane surface and internal pore size may change due to thermal contraction of the membrane itself, which may change membrane properties such as water permeability. Alternatively, it is better to keep it in a hydrated state. The in-situ polymerization type reaction components such as monomer oligomers or initial reaction products coated on the polysulfone support film are non-solvents for the polysulfone and include the following A. B. C. A material containing D and/or E as a main component is used.

A.フルフリルアルコール B.次の一般式で示される化合物 (Rl,R2,R3は水素又は炭素数2〜5の有機基で
あり、その少なくとも2つは水酸基又はグリシジル基を
有する炭素数2〜5の有機基である)、C.前記Bの化
合物の分子間縮合物、D.前記Bの化合物と炭素数2〜
3のエポキシ化合物、炭素数2〜8の多価アルコール、
ポリエチレンオキサイド又はホルムアルデヒドから選ば
れる少なくとも1種との混合物、E.前記Bの分子間縮
合物と炭素数2〜8の多価アルコール、炭素数2〜17
の多価カルボン酸、フルフリルアルコールおよびテトラ
ヒドロフルフリルアルコールから選ばれる少なくとも1
種との混合物前記Bの化合物の具体例としては、1,3
,5−トリス(2/−ヒドロキシエチル)イソシアヌル
酸(以下、THEICと略す)、ビス(2−ヒドロキシ
プロピル)イソシアヌル酸、1,3,5−トリス(グリ
シジル)イソシアヌル酸などがあげられ、この中特にT
HEICが好ましく用いられる。
A. Furfuryl alcohol B. A compound represented by the following general formula (Rl, R2, R3 are hydrogen or an organic group having 2 to 5 carbon atoms, and at least two of them are organic groups having 2 to 5 carbon atoms having a hydroxyl group or a glycidyl group) ,C. D. an intermolecular condensate of the compound of B. Compound B and carbon number 2-
3 epoxy compound, polyhydric alcohol having 2 to 8 carbon atoms,
A mixture with at least one selected from polyethylene oxide or formaldehyde; E. Intermolecular condensate of B, polyhydric alcohol having 2 to 8 carbon atoms, and 2 to 17 carbon atoms
at least one selected from polycarboxylic acids, furfuryl alcohol, and tetrahydrofurfuryl alcohol
Specific examples of the compound B above as a mixture with seeds include 1,3
, 5-tris(2/-hydroxyethyl)isocyanuric acid (hereinafter abbreviated as THEIC), bis(2-hydroxypropyl)isocyanuric acid, 1,3,5-tris(glycidyl)isocyanuric acid, etc. Especially T
HEIC is preferably used.

前記Bの分子間縮合物は、前記Bの化合物から公知の方
法により容易に得られるが、例えばTHEICを用いた
場合には、THEICに少量の水を加え加熱してペース
ト状にし、酸触媒として硫酸を加え、140℃で10分
間加熱後減圧下で生成水を含む系内の水を除去すること
により、THEICの分子間縮合物が得られる。出発原
料の1つであるエポキシ化合物の具体例としては、エチ
レンオキサイド、プロピレンオキサイドなどがあげられ
、また多価アルコールの具体例としてはエチレングリコ
ール、グリセリン、ソルビトール、イノシトールなどが
あげられる。
The intermolecular condensate of B can be easily obtained from the compound of B by a known method. For example, when THEIC is used, a small amount of water is added to THEIC and heated to form a paste, and as an acid catalyst. An intermolecular condensate of THEIC is obtained by adding sulfuric acid, heating at 140° C. for 10 minutes, and then removing water in the system, including produced water, under reduced pressure. Specific examples of the epoxy compound, which is one of the starting materials, include ethylene oxide and propylene oxide, and specific examples of the polyhydric alcohol include ethylene glycol, glycerin, sorbitol, and inositol.

また多価カルボン酸としては、シユウ酸、マレイン酸、
1,2,3,4−ベンゼンテトラカルボン酸、ブタンテ
トラカルボン酸などの水溶性のものが用いられる。酸触
媒としては、硫酸が最も好ましいが、その他にメタンス
ルホン酸、ベンゼンスルホン酸、トルエンスルホン酸、
リン酸、塩酸等も使用できる。
In addition, polycarboxylic acids include oxalic acid, maleic acid,
Water-soluble ones such as 1,2,3,4-benzenetetracarboxylic acid and butanetetracarboxylic acid are used. As the acid catalyst, sulfuric acid is most preferred, but other examples include methanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid,
Phosphoric acid, hydrochloric acid, etc. can also be used.

反応成分と酸触媒との重量比は、その組合せにより最適
化することが好ましいが、前記Bの化合物のみを用いた
場合には20:1、他の反応成分を用いた場合には1:
0.5〜1:1程度とするのが良い。塗液には前記の反
応成分、酸触媒、水もしくは水溶性有機溶剤の他に、支
持体を劣化させない溶媒(ポリスルホン支持体の場合に
は、メタノール、工汐ノール、プロパノール、イソプロ
パノール等)が加えられてもよく、また支持体表面のぬ
れ性を向上させて塗液を均一に付着させるために界面活
性剤(たとえばアニオン界面活性剤、ノニオン界面活性
剤)などが加えられてもよい。
The weight ratio of the reaction component and the acid catalyst is preferably optimized depending on the combination, but it is 20:1 when only the compound B is used, and 1:1 when other reaction components are used.
The ratio is preferably about 0.5 to 1:1. In addition to the above-mentioned reaction components, acid catalyst, water or water-soluble organic solvent, the coating solution contains a solvent that does not deteriorate the support (for polysulfone support, methanol, Koshool, propanol, isopropanol, etc.). In addition, a surfactant (for example, an anionic surfactant or a nonionic surfactant) may be added to improve the wettability of the support surface so that the coating solution can be applied uniformly.

該障壁層形成用溶液の濃度は溶液中に含有されるモノマ
、オリゴマ及び/又は初期反応生成物等の反応成分の種
類によつて異なるが、好ましくは1.0〜10.0重量
%の範囲に調製したものがよい。
The concentration of the barrier layer forming solution varies depending on the type of reaction components such as monomers, oligomers and/or initial reaction products contained in the solution, but is preferably in the range of 1.0 to 10.0% by weight. It is best to use one prepared in the following manner.

また、支持体膜上に塗布する厚さもモノマ、オリゴマ及
び/又は初期反応生成物など反応成分の種類、得られる
複合膜に要求される膜性能によつて異なるが、通常は支
持体表面上の障壁層の厚さが0.01〜0.10μにな
るようにするのがよい。本発明に於て前記ポリスルホン
支持体膜への障壁層形成用塗液の被覆法も公知の手段を
採用すればよく、特に限定されない。たとえば該塗液を
コーテイング又はスプレーする方法、ポリスルホン支持
体膜を塗液中に浸漬する方法などがいずれも適用可能で
ある。前述したようにポリスルホン支持体膜として含水
状態のものを用い、塗液としてポリスルホンに対しては
非溶剤であるが水とは混和性の溶剤、すなわち水やイソ
プロピルアルコールなどを溶媒とするものを用いると支
持体膜中の水分と塗液の溶媒とが置換され、支持体膜表
面への塗液の付着がよくなる。
In addition, the thickness of coating on the support membrane varies depending on the type of reaction components such as monomers, oligomers and/or initial reaction products, and the membrane performance required of the resulting composite membrane, but it is usually applied on the surface of the support. The thickness of the barrier layer is preferably 0.01 to 0.10 microns. In the present invention, the method of coating the polysulfone support membrane with the coating liquid for forming a barrier layer may be any known method and is not particularly limited. For example, a method of coating or spraying the coating liquid, a method of immersing the polysulfone support film in the coating liquid, etc. can be applied. As mentioned above, a water-containing polysulfone support membrane is used, and a coating liquid that is a non-solvent for polysulfone but miscible with water, that is, a solvent such as water or isopropyl alcohol, is used. This replaces the water in the support film with the solvent of the coating solution, improving the adhesion of the coating solution to the surface of the support film.

特にこの膜中の含有水分と溶媒との置換はコーテイング
又はスプレーにくらべて浸漬法による方が効果が大きく
、塗液の付着むらがなく、膜厚が一定で膜性能の良好な
複合膜が得られ易い。かくして、障壁層形成用塗布液で
被覆された支持体膜は所望により、支持体膜を垂直に保
つか又は傾斜させて液切りを行つた後、塗液層を重合さ
せる。尚、液切り時の温湿度雰囲気、角度、時間などを
一定に保つことにより膜性能の変動を少なくすることが
できる。次に、本発明に於ては上述の如くして支持体膜
上に被覆した塗液、すなわち、反応成分である前記モノ
マ、オリゴマ及び/又は初期反応生成物を反応せしめて
支持体膜上に一体化した障壁層を形成させる必要がある
が、本発明は先ず140℃以下の温度で乾燥したのち、
次いで該乾燥温度よりも約10℃以上高温の温度条件下
で熱処理する点に特徴がある。
In particular, the immersion method is more effective in replacing the water contained in the film with the solvent than coating or spraying, resulting in a composite film with uniform coating thickness, uniform film thickness, and good film performance. It's easy to get caught. Thus, the support film coated with the coating solution for forming a barrier layer is, if desired, kept vertical or tilted to drain the liquid, and then the coating solution layer is polymerized. Incidentally, fluctuations in membrane performance can be reduced by keeping the temperature, humidity, atmosphere, angle, time, etc. during draining constant. Next, in the present invention, the coating solution coated on the support film as described above, that is, the monomer, oligomer, and/or initial reaction product as reaction components, is reacted to coat the support film on the support film. Although it is necessary to form an integrated barrier layer, in the present invention, after drying at a temperature of 140° C. or less,
It is characterized in that it is then heat-treated at a temperature that is about 10° C. or more higher than the drying temperature.

すなわち、前述したように、前記モノマ、オリゴマ及び
/又は初期反応生成物を含有する塗液から障壁層を形成
させるためには、塗液中の溶媒を除去し、該モノマ、オ
リゴマ及び/又は初期反応生成物を重合させ、かつ支持
体膜中の水分を除去する必要があり、この障壁層形成工
程においては僅かな条件の変動が膜特性の大巾な変動を
もたらすのである。たとえば、ポリスルホン支持体膜の
膜厚及び含水量の変動に伴つて塗液の付着量も変動し、
これに伴つて水分、溶媒の乾燥速度、反応成分の反応速
度も変化すると考えられる。しかるに、本発明のように
、先ず約140℃以下で乾燥した後、この乾燥温度より
約10℃以上の温度で熱処理するときは、膜性能の変動
が著しく少ない一定性能及び品質を有する複合膜を再現
性よく製造することができる。
That is, as described above, in order to form a barrier layer from a coating solution containing the monomer, oligomer and/or initial reaction product, the solvent in the coating solution is removed and the monomer, oligomer and/or initial reaction product is removed. It is necessary to polymerize the reaction product and remove water in the support membrane, and in this barrier layer forming step, slight variations in conditions can lead to wide variations in membrane properties. For example, as the film thickness and water content of the polysulfone support film change, the amount of coating fluid applied also changes.
Along with this, it is thought that the drying rate of moisture, the solvent, and the reaction rate of the reaction components also change. However, as in the present invention, when first drying at a temperature of about 140°C or lower and then heat-treating at a temperature of about 10°C or higher than this drying temperature, a composite membrane having constant performance and quality with significantly less fluctuation in membrane performance can be obtained. It can be manufactured with good reproducibility.

この理由は十分明らかではないが、おそらく第1段の乾
燥工程においては支持体膜中の含有水分及び塗液の溶媒
の除去が優先し、特に前述したようにポリスルホン支持
体膜の熱収縮は得られる複合膜の性能変動の大きな原因
になると考えられるが、本発明においては乾燥工程でポ
リスルホン支持体膜表面層に存在する孔隙に浸入した塗
液中の反応成分が一部重合し、生成したポリマが熱変形
を受けにくいため、これによつて支持体膜の収縮が抑制
されるものと思われる。また、乾燥工程で用〜・る乾燥
器としては、乾燥効率及び有機溶媒蒸気の爆発、人体へ
の影響を考慮すると、スチームヒーターによる熱風型が
好ましいが、熱処理工程で用いる装置としては実質的に
溶媒が除去されているので各種の熱処理装置、好ましく
は熱風型を用いることができる。
The reason for this is not fully clear, but perhaps in the first drying step, priority is given to removing the moisture contained in the support film and the solvent of the coating solution, and in particular, as mentioned above, heat shrinkage of the polysulfone support film is avoided. However, in the present invention, during the drying process, the reactive components in the coating liquid that entered the pores existing in the surface layer of the polysulfone support membrane partially polymerized, and the resulting polymer This is thought to suppress shrinkage of the support membrane because it is less susceptible to thermal deformation. In addition, as a dryer used in the drying process, a hot air type using a steam heater is preferable in consideration of drying efficiency, explosion of organic solvent vapor, and impact on the human body. However, as a dryer used in the heat treatment process, it is practically Since the solvent has been removed, various heat treatment equipment, preferably a hot air type, can be used.

本発明によれば (1)逆浸透用複合膜の性能、特に水透過性、溶質排除
率など脱塩性能の変動が著しく小さく、たとえばそれぞ
れの性能の変動係数が0.10および0.0010以下
の脱塩性能を有する複合膜を再現性よく製造することが
できる。
According to the present invention, (1) the performance of the composite membrane for reverse osmosis, especially the fluctuation in desalination performance such as water permeability and solute exclusion rate, is extremely small, for example, the coefficient of variation of each performance is 0.10 and 0.0010 or less; It is possible to produce a composite membrane with good desalination performance with good reproducibility.

(2)複合膜性能が向上し、たとえば圧力56Kq曜温
度25℃の条件で海水の脱塩を行つた場合、水透過量が
0.30w1/イ・上塩排除率が99。
(2) Composite membrane performance is improved; for example, when desalinating seawater at a pressure of 56 Kq and a temperature of 25° C., the water permeation rate is 0.30 w1/i and the supernatant rejection rate is 99.

7%である複合膜を容易に得ることができる。7% can be easily obtained.

以下、実施例により本発明をさらに具体的に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例 1 20?X3O?の大きさの長方形のポリエステル繊維か
らなる汐プタ(メテ糸、ヨコ糸とも150デニールのマ
ルチフイラメント、織密度メテ90本/インチ、ヨコ6
7本/インチ、厚さ160μ)をガラス板上に固定し、
その上にポリスルホン(ユニオン・カーバイト社製のU
delP−3,500)の15重量%ジメチルホルムア
ミド(DMF)溶液を200μの厚みで室温(15〜3
0℃)でキヤストし、直ちに室温のドデシルベンゼンス
ルホン酸ナトリウム0.5重量%を含む水溶液中に浸漬
して5分間放置後純水で1時間洗浄することによつて繊
維補強ポリスルホン子持体(以下FR−PS支持体と略
す。
Example 1 20? X3O? Shioputa is made of rectangular polyester fibers with a size of
7 pieces/inch, thickness 160μ) were fixed on a glass plate,
On top of that, polysulfone (U made by Union Carbide)
delP-3,500) in dimethylformamide (DMF) to a thickness of 200μ at room temperature (15~3
The fiber-reinforced polysulfone carrier (hereinafter referred to as It is abbreviated as FR-PS support.

)を作成する。このFR−PS支ジ※持体(厚さ200
μ)の純水透過係数は圧力1KgA址温度25℃で測定
して0.01〜0.0209/CwL−Sec.atm
である。THEICl重量%、フルフリルアルコール2
重量%、硫酸2重量%、ドデシル硫酸ナトリウム1重量
%およびイソプロピルアルコール20重量%を含む水溶
液からなる塗液を調整し、この塗液に水で濡れたFR−
PS支持体を室温で5分間浸漬する。
). This FR-PS support *holder (thickness 200
The pure water permeability coefficient of μ) is 0.01 to 0.0209/CwL-Sec when measured at a pressure of 1 Kg and a starting temperature of 25°C. atm
It is. THEICl wt%, furfuryl alcohol 2
% by weight, 2% by weight of sulfuric acid, 1% by weight of sodium dodecyl sulfate, and 20% by weight of isopropyl alcohol.
Soak the PS support for 5 minutes at room temperature.

次いで、FR−PS支持体を取り出して長辺の両端を2
儂幅の鉄板(150g/枚)にはさんで室温で1分間つ
るして垂直に保持した後、そのままの状態で熱風乾燥器
中で140℃で3分間乾燥を行なつた後、150℃で5
分間熱処理を行なう。以上の方法および条件で4回製膜
し、各製膜について各3点逆浸透性能を測定した。測定
条件および測定結果を表−1に示す。比較例 1 実施例1において乾燥および熱処理を150℃で8分間
の条件で1回行なう以外は同様に実施した。
Next, take out the FR-PS support and tie both ends of the long side by 2
After hanging between iron plates (150g/sheet) of my width and hanging them vertically at room temperature for 1 minute, drying them in a hot air dryer for 3 minutes at 140℃, and then drying them at 150℃ for 5 minutes.
Perform heat treatment for a minute. Films were formed four times using the above method and conditions, and the three-point reverse osmosis performance of each film was measured. The measurement conditions and measurement results are shown in Table-1. Comparative Example 1 The same procedure as in Example 1 was carried out except that drying and heat treatment were performed once at 150° C. for 8 minutes.

測定結果を表−1に示す。実施例 2,3 実施例1において乾燥温度を変更する以外は同様に製膜
を行ない、各製膜について各1点(合計4点)逆浸透性
能を測定した。
The measurement results are shown in Table-1. Examples 2 and 3 Films were formed in the same manner as in Example 1 except that the drying temperature was changed, and the reverse osmosis performance was measured at one point each (4 points in total) for each film formed.

測定結果を表−2に示す。比較例 2〜5 実施例2,3において温度を変更して乾燥および熱処理
を1回で実施した場合および同一温度で2回実施した場
合を表−2に示す。
The measurement results are shown in Table-2. Comparative Examples 2 to 5 Table 2 shows the cases in which drying and heat treatment were performed once at different temperatures in Examples 2 and 3, and the cases where drying and heat treatment were performed twice at the same temperature.

実施例 4,5 実施例1において塗液としてフルフリルアルコール2重
量%、硫酸2重量%、ドデシル硫酸ナトリウム0.7重
量%およびイソプロピルアルコール20重量%からなる
水溶液を使用し、乾燥温度を変更する以外は同様に製膜
を行ない、各製膜について各1点(合計4点)逆浸透性
能を測定した。
Examples 4 and 5 In Example 1, an aqueous solution consisting of 2% by weight of furfuryl alcohol, 2% by weight of sulfuric acid, 0.7% by weight of sodium dodecyl sulfate and 20% by weight of isopropyl alcohol is used as the coating liquid, and the drying temperature is changed. The membranes were formed in the same manner except for the above, and the reverse osmosis performance was measured at one point each (4 points in total) for each membrane formed.

測定結果を表−3に示す。比較例 6〜9 実施例4,5において温度を変更して乾燥および熱処理
を1回で実施した場合および同一温度で2回で実施した
場合を表−3に示す。
The measurement results are shown in Table-3. Comparative Examples 6 to 9 Table 3 shows the cases in which drying and heat treatment were performed once at different temperatures in Examples 4 and 5, and the cases where drying and heat treatment were performed twice at the same temperature.

測定条件;表−1と同様 上欄は範囲,下欄は平均値 実施例 6,7 実施例1においてTHEICの代わりにソルビトールを
使用し、乾燥温度を変更する以外は同様に製膜を行ない
、各製膜について各1点(合計4点)逆浸透性能を測定
した。
Measurement conditions: Same as Table 1, upper column is range, lower column is average value Examples 6, 7 Film formation was performed in the same manner as in Example 1 except that sorbitol was used instead of THEIC and the drying temperature was changed. Reverse osmosis performance was measured for each film formed at one point each (4 points in total).

測定結果を表−4に示す。比較例 10〜13 実施例6,7において温度を変更して乾燥および熱処理
を1回で実施した場合および同一温度で2回で実施した
場合を表−4に示す。
The measurement results are shown in Table-4. Comparative Examples 10 to 13 Table 4 shows the cases in which drying and heat treatment were performed once at different temperatures in Examples 6 and 7, and the cases where drying and heat treatment were performed twice at the same temperature.

Claims (1)

【特許請求の範囲】 1 ポリスルホンからなる多孔性支持体膜上に該ポリス
ルホンの非溶剤であつて、下記A、B、C、D及び/又
はEを主成分とする膜形成性現場重合型反応成分を含有
する溶液を塗布し、約140℃以下の温度で乾燥した後
、前記乾燥温度より少なくとも10℃高温の温度条件下
で熱処理することを特徴とする逆浸透用複合膜の製造法
。 A、フルフリルアルコール B、次の一般式で示される化合物 ▲数式、化学式、表等があります▼ (R_1、R_2、R_3は水素又は炭素数2〜5の有
機基であり、その少なくとも2つは水酸基又はグリシジ
ル基を有する炭素数2〜5の有機基である。 )C、前記Bの化合物の分子間縮合物D、前記Bの化合
物と炭素数2〜3のエポキシ化合物、炭素数2〜8の多
価アルコール、ポリエチレンオキサイド又はホルムアル
デヒドから選ばれる少なくとも1種との混合物。 F、前記Bの分子間縮合物と炭素数2〜8の多価アルコ
ール、炭素数2〜17の多価カルボン酸、フルフリルア
ルコールおよびテトラヒドロフルフリルアルコールから
選ばれる少なくとも1種との混合物。 2 特許請求の範囲第1項において、ポリスルホンから
なる多孔性支持体膜を含水状態に保持することを特徴と
する逆浸透用複合膜の製造法。
[Scope of Claims] 1. A film-forming in-situ polymerization reaction containing the following A, B, C, D and/or E as a main component, which is a non-solvent for the polysulfone, on a porous support membrane made of polysulfone. A method for producing a composite membrane for reverse osmosis, comprising applying a solution containing the components, drying at a temperature of about 140° C. or lower, and then heat-treating at a temperature at least 10° C. higher than the drying temperature. A, furfuryl alcohol B, a compound represented by the following general formula ▲ Numerical formula, chemical formula, table, etc. ▼ (R_1, R_2, R_3 are hydrogen or an organic group having 2 to 5 carbon atoms, and at least two of them are It is an organic group having 2 to 5 carbon atoms and having a hydroxyl group or a glycidyl group.) C, an intermolecular condensate D of the compound B above, an epoxy compound having 2 to 3 carbon atoms and the compound B above, and 2 to 8 carbon atoms. and at least one selected from polyhydric alcohol, polyethylene oxide, and formaldehyde. F, a mixture of the intermolecular condensate of B and at least one selected from polyhydric alcohols having 2 to 8 carbon atoms, polycarboxylic acids having 2 to 17 carbon atoms, furfuryl alcohol, and tetrahydrofurfuryl alcohol; 2. A method for producing a composite membrane for reverse osmosis according to claim 1, characterized in that a porous support membrane made of polysulfone is maintained in a water-containing state.
JP54072264A 1979-06-11 1979-06-11 Manufacturing method of composite membrane for reverse osmosis Expired JPS5924647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54072264A JPS5924647B2 (en) 1979-06-11 1979-06-11 Manufacturing method of composite membrane for reverse osmosis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54072264A JPS5924647B2 (en) 1979-06-11 1979-06-11 Manufacturing method of composite membrane for reverse osmosis

Publications (2)

Publication Number Publication Date
JPS55165103A JPS55165103A (en) 1980-12-23
JPS5924647B2 true JPS5924647B2 (en) 1984-06-11

Family

ID=13484245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54072264A Expired JPS5924647B2 (en) 1979-06-11 1979-06-11 Manufacturing method of composite membrane for reverse osmosis

Country Status (1)

Country Link
JP (1) JPS5924647B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH049049Y2 (en) * 1985-03-08 1992-03-06

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892402A (en) * 1981-11-27 1983-06-01 Teijin Ltd Preparation of composite membrane having selective permeability of organic substance
CN111054220B (en) * 2019-12-30 2021-11-09 安徽普朗膜技术有限公司 Drying method of organic tubular membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH049049Y2 (en) * 1985-03-08 1992-03-06

Also Published As

Publication number Publication date
JPS55165103A (en) 1980-12-23

Similar Documents

Publication Publication Date Title
US4915834A (en) Multi-layer membrane and the use thereof for the separation of liquid mixtures according to the pervaporation process
US5334314A (en) Composition membrane for separating water from fluids containing organic components by means of pervaporation
US4557949A (en) Method of making a reverse osmosis semipermeable membrane
US5156740A (en) Multi-layer membrane and the use thereof for the separation of liquid mixtures according to the pervaporation process
CA1333462C (en) Polyamide reverse osmosis membranes
KR102168152B1 (en) Composite membrane, preparation method thereof and carbon dioxide separation membrane comprising the same
JPH03196822A (en) Semipermeable membrane made from homogeneously mixable polymer mixture
US4505985A (en) Membranes based on silicic acid heteropolycondensates and a process for their production
JPS5824447B2 (en) Manufacturing method of reverse osmosis membrane
EP0044872B1 (en) Process for selectively separating water-soluble valuable materials from an aqueous solution containing same
JPS5924647B2 (en) Manufacturing method of composite membrane for reverse osmosis
JPH024429A (en) Asymmetric hydrophilic membrane of macropore substance, method for its manufacture and method for improving retention ability of the membrane
JPS6211881B2 (en)
US5217701A (en) Process for producing carbon materials
US5863610A (en) Process for depositing a fluorocarbonsulfonic ionomer on a support and articles prepared therewith
JPH05507233A (en) Semipermeable composite membrane
JPH10309449A (en) Organic material separating polymer film and its manufacture
US5646205A (en) Ion complex membrane and a method for producing same
JPS62140608A (en) Composite semipermeable membrane, its production, and treatment of aqueous solution
EP0304010B1 (en) Process for producing carbon materials
JPS6259613B2 (en)
JP2900184B2 (en) Aromatic copolymer separation membrane
EP3621997B1 (en) Copolymers and terpolymers based on chlorotrifluoroethylene and vinyl chloride and uses thereof
JPH0114801B2 (en)
JPH0232009B2 (en)