[go: up one dir, main page]

JPS59231412A - Detecting system of position - Google Patents

Detecting system of position

Info

Publication number
JPS59231412A
JPS59231412A JP10728983A JP10728983A JPS59231412A JP S59231412 A JPS59231412 A JP S59231412A JP 10728983 A JP10728983 A JP 10728983A JP 10728983 A JP10728983 A JP 10728983A JP S59231412 A JPS59231412 A JP S59231412A
Authority
JP
Japan
Prior art keywords
optical fibers
magnet
parts
optical fiber
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10728983A
Other languages
Japanese (ja)
Inventor
Takashi Yokohara
横原 恭士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10728983A priority Critical patent/JPS59231412A/en
Publication of JPS59231412A publication Critical patent/JPS59231412A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/344Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using polarisation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To enable the detection of a position of a moving body whose track is determined beforehand, without requiring a visual connection between an observation point and the moving body, by detecting the Faraday rotation of a plane of polarization of a linear polarized light transmitted through optical fibers, and by detecting the position of the body based thereon. CONSTITUTION:A position of a body is detected by utilizing the Faraday effect of optical fibers. Concretely, a magnet 2 is fitted to the body 1, and a number of optical fibers F1-Fn are provided in parallel so that they can be parallel with the NS direction of the magnet 2. Each of the optical fibers F1-Fn is provided with parts sensitive to magnetism (high sensitive parts) and parts not sensitive to the magnetism (low sensitive parts), which are distributed alternately. The optical fibers are made different from one another in the distribution of said parts. Since the magnet 2 is positioned close to the group of the optical fibers, the Faraday effect occurs in the optical fibers whose parts sensitive to the magnetism are in the vicinity of the magnet 2. With polarizers P1-Pn and photodetectors D1-Dn set at both ends of each optical fiber, a linear polarized light is made to fall on said optical fiber from one side, and the rotation of the plane of polarization of the light passing through the fiber is measured. The position of the body is determined when the group of optical fibers from which the Faraday rotation is detected is known.

Description

【発明の詳細な説明】 (ア) 技術分野 この発明は光ファイバを利用した位置検出方式に係る。[Detailed description of the invention] (a) Technical field The present invention relates to a position detection method using an optical fiber.

複数本の光ファイバに、磁気シールドなどを施し、磁気
を感じる部分と、感じない部分を作り、光フアイバ中を
伝搬する光の偏波面の回転を検出することにより、物体
の位置検出をする。
The position of an object is detected by applying magnetic shielding to multiple optical fibers, creating parts that are sensitive to magnetism and parts that are not, and detecting the rotation of the plane of polarization of light propagating through the optical fibers.

(イ) 従来技術とその問題点 移動体の位置検出方式として、従来、誘導無線が有効な
手段のひとつであった。これは、高周波電界の変化を利
用するので、外的なノイズの影響を受けやすく、精度も
高くなかった。
(b) Conventional technology and its problems Guided radio has traditionally been one of the effective methods for detecting the position of a moving object. Since this method uses changes in high-frequency electric fields, it is easily affected by external noise and is not very accurate.

光を利用した位置検出方式もある。これは、対象物にバ
ーコード、マークなどを伺しておき、光をこれに照射し
て、反射光をセンサで検出する。
There is also a position detection method that uses light. This involves placing a bar code, mark, etc. on an object, shining light onto it, and detecting the reflected light with a sensor.

光学的に、位置(番地)を特定するわけである。The position (address) is identified optically.

非接触で、読み収り速度も速い。光を変調しておけば、
直流外乱光の影響をカットすることができる。しかし、
これは光の反射を利用するから、汚れに弱い、という欠
点があった。
It is non-contact and has a fast reading speed. If you modulate the light,
The influence of DC disturbance light can be cut. but,
Since this method uses the reflection of light, it has the disadvantage of being susceptible to dirt.

レーザ光の波を利用する位置検出方法も既に知られてい
る。レーザ光を対象物に当て反射光が帰つてくるまでの
時間を測定し、距離を計算する。
Position detection methods that utilize laser light waves are also already known. The distance is calculated by shining a laser beam on an object and measuring the time it takes for the reflected light to return.

レーザ光はビーム径が一定しており、直進性があるので
、遠方の物体捷での距離を測定することができる。しか
し、レーザ光を利用する方法は、観測点と、対象物の間
が障害物によって遮られてはならない。対象物が外部に
露出していて、観測点から直接見えるものでなければな
らない。
Since the laser beam has a constant beam diameter and propagates in a straight line, it is possible to measure the distance to a distant object. However, in the method using laser light, the distance between the observation point and the object must not be blocked by obstacles. The object must be exposed to the outside and directly visible from the observation point.

(り) 本発明の「]的 本発明の[」的は次のような位置検出方式を与えること
である。
(ri) The objective of the present invention is to provide the following position detection method.

(1)外部に必ずしも露出しておらず、移動する範囲は
十分長く、しかも移動する軌跡が予め決っている物体の
位置を検出すること。
(1) Detecting the position of an object that is not necessarily exposed to the outside, has a sufficiently long range of movement, and has a predetermined trajectory.

(2)  電磁誘導などによるノイズの影響を受けない
こと。
(2) Must not be affected by noise caused by electromagnetic induction, etc.

(3)物体表面が汚れていたりしていても、正しく検出
できること。物体の表面状態によらない事。
(3) Even if the object surface is dirty, it can be detected correctly. It does not depend on the surface condition of the object.

(4)  温度変化によって影響を受けない事。(4) Not affected by temperature changes.

(fil  煙や腐蝕性ガスに強い事。(fil) Strong against smoke and corrosive gases.

などである。etc.

(1) ファラデー効果 本発明者(はこのような目的に沿う検出力式として、フ
ァラデー効果を利用することに想い至った。
(1) Faraday Effect The inventor of the present invention came up with the idea of using the Faraday effect as a detection power formula that meets this purpose.

ファラデー効果は、素子に直線偏光の光を入射させた時
、光の進行方向に磁界Hを素子に加えると、磁界の強さ
に比例して偏波面が回転することである。回転角ψば ψ−VeHβ       (1) で与えられる。Hに磁界、lは素子の長さ、Veはベル
デ定数である。
The Faraday effect is that when linearly polarized light is incident on an element and a magnetic field H is applied to the element in the direction in which the light travels, the plane of polarization rotates in proportion to the strength of the magnetic field. The rotation angle ψ is given by ψ−VeHβ (1). H is the magnetic field, l is the length of the element, and Ve is the Verdet constant.

ファラデー効果は、鉛ガラスやBS○(Bi+z Si
 020)単結晶などに顕著にあられれる。
The Faraday effect can be applied to lead glass and BS○ (Bi+z Si).
020) It is noticeable in single crystals.

例えば、波長が633 nmの光に対し、室温でのベル
デ定数(d、0.2mi n / Oe amである。
For example, for light with a wavelength of 633 nm, the Verdet constant (d, 0.2 min/Oe am) at room temperature.

石英にも僅かであるがファラデー効果がある。Quartz also has a slight Faraday effect.

石英のベルデ定数は、波長が589 nmの光に対し、
室温で0.2 m f n / Q6 cm  である
。従って石英をコアに使った光ファイバにもファラデー
効果が起りうる。
The Verdet constant of quartz is for light with a wavelength of 589 nm,
It is 0.2 m f n /Q6 cm at room temperature. Therefore, the Faraday effect can occur even in optical fibers using quartz as a core.

又、コア材にFR−5(ベルデ定数−〇、25 ] m
 i n10e o)を使ったファイバー型ファラデー
素子の研究例もアリ、ベルデ定数の大きいファイバは今
後たくさんでてくるものと思われ、それを使えばより効
果的である。
In addition, the core material is FR-5 (Verdet constant -〇, 25] m
There are also research examples of fiber-type Faraday elements using i in10 e o), and it is thought that many fibers with large Verdet constants will appear in the future, and their use will be more effective.

光ファイバのファラデー効果を使った測定器として、光
CT (変流計)が既に提案されている。
An optical CT (current meter) has already been proposed as a measuring instrument that uses the Faraday effect of optical fiber.

単一モード光ファイバを送電線に数十回巻きつけ、両端
を地」二へ降す。光ファイバの両端にはレンズ、偏光子
、検光子を置き、レーザ光を光ファイバに入射させる。
A single mode optical fiber is wrapped around a power transmission line several dozen times and both ends are lowered to the ground. Lenses, polarizers, and analyzers are placed at both ends of the optical fiber, and laser light is made to enter the optical fiber.

レーザ光は直線偏光になった後、光ファイバに入る。送
電線の捷わりに生ずる磁界によって偏波面が回転する。
After the laser light becomes linearly polarized, it enters the optical fiber. The plane of polarization rotates due to the magnetic field generated at the switch of the power transmission line.

偏波面の回転は、検出子を通しだ出力の大きさから求め
ることができる。このようにして、送電線の電流の大き
さを測定しようというものである。送電線と地表を結ぶ
もの仁1光ファイバなどの絶縁物だけであるから、安全
である。
The rotation of the plane of polarization can be determined from the magnitude of the output through the detector. In this way, the magnitude of the current in the power transmission line can be measured. It is safe because the only thing that connects the power lines to the ground is an insulating material such as optical fiber.

しかし、これは未だ実用化されていない。However, this has not yet been put into practical use.

ql−モード光ファイバは、長手方向に対して直交する
2軸に偏光する光の伝搬定数βX、βyが必ずしも等し
くできない、とい、う欠点がある。伝搬定数の差Δβが
あると、偏波面がこれによって回転してし捷う。Δβに
よる回転とファラデー効果による回転は、較正すること
により分離できるはずである。しかし、伝搬定数の差Δ
βば、局所的な桐質のゆらきや曲げによっても生ずるの
で常に一定ではない。
The ql-mode optical fiber has a drawback in that the propagation constants βX and βy of light polarized in two axes orthogonal to the longitudinal direction cannot necessarily be equal. When there is a difference Δβ in the propagation constant, the plane of polarization rotates and shifts. The rotation due to Δβ and the rotation due to the Faraday effect should be able to be separated by calibration. However, the difference in propagation constant Δ
β is also caused by local fluctuations and bending of the paulownia wood, so it is not always constant.

光度流計は、電流の値をアナログ的に測定するものであ
るから、Δβの変動により、信号/ノイズ比が著しく低
下し、信頼性に乏しい。
Since the photometric current meter measures the current value in an analog manner, the signal/noise ratio decreases significantly due to fluctuations in Δβ, resulting in poor reliability.

(オ) 本発明の構成 本発明は、光ファイバのファラデー効果を利用して物体
の位置検出を行う。
(e) Configuration of the present invention The present invention detects the position of an object by utilizing the Faraday effect of an optical fiber.

光ファイバの偏波面保存性能が良くないということを補
償するため、ファラデー効果をアナログ的に使うことを
あきらめ、デジタル的に使用する。
To compensate for the poor polarization preservation performance of optical fibers, we give up on using the Faraday effect in an analog way and use it digitally.

物体には磁石を取付け、磁石のNS方向に平行になるよ
う、多数の光ファイバを平行に設ける。
A magnet is attached to the object, and a large number of optical fibers are provided in parallel so that they are parallel to the NS direction of the magnet.

光ファイバには磁気を感じる部分と、磁気を感じない部
分を交互に分布させて設けておく。各光ファイバに於て
、この分布が述うようにしておく。
The optical fiber is provided with parts that are sensitive to magnetism and parts that are not sensitive to magnetism, which are distributed alternately. This distribution is made as described in each optical fiber.

光フアイバ群に磁石が接近しているので、磁石の近傍に
磁気を1みしる部分がある光ファイ/くにはファラデー
効果が生じる。各光ファイバの両端に偏光子、検光子を
置いて、一方から直線偏光を入射し、ファイバを通過し
た光の偏波面の回転を測定する。ファラデー回1賦が検
出された光ファイバ君゛1が分れば、物体の位置が確定
される。
Since the magnet is close to the group of optical fibers, the Faraday effect occurs, especially when the optical fiber has a magnetic part near the magnet. A polarizer and an analyzer are placed at both ends of each optical fiber, linearly polarized light is input from one end, and the rotation of the plane of polarization of the light that has passed through the fiber is measured. If the optical fiber 1 in which the Faraday cycle was detected is known, the position of the object can be determined.

以下、簡単のだめ、光ファイバの磁気を曳く感(〜る部
分全高感磁部、磁気を感じないか殆ど11&しない部分
を低感磁部と呼ぶ。
Hereinafter, for the sake of simplicity, the part that feels the magnetism of the optical fiber (~) is referred to as the full-height magnetically sensitive part, and the part that does not or hardly feels magnetism is called the low magnetically sensitive part.

本発明の物体の位置検出方式は、 +11  高感磁部Hと低感磁部りが異なる分布で交互
に設けられている複数本の単一モード光ファイバF1、
F21、FnをLLに平行に設け、(2)  各光ファ
イバF1、F2、・、Fnの両端に偏光子P1、F2、
・、Pnと検光子Ql 、Q2、・・、Qnを設け、(
3)  偏光子P11、Pnを通じ光ファイバF1、F
2、・−1Fnへ光を入射する光源L1、L2、・・L
nを光ファ(4)検光子Q、1、onからの出射光の強
度を検出器D1、D21、Dnによって検出し、(5)
位置を検出すべき移動体には光フアイバ群に近接するよ
う磁石を設置し、 (]j)検出器出力から、ファラデー効果にょる偏波面
の回転が検出された光フアイバ群(Fk)を求め、 (7)  偏波面回転光ファイバ群(Fk)から、物体
の位置を検出する、 ようになっている。
The object position detection method of the present invention includes +11 a plurality of single mode optical fibers F1 in which high magnetic sensitivity parts H and low magnetic sensitivity parts are alternately provided with different distributions;
F21, Fn are provided parallel to LL, (2) polarizers P1, F2,
・, Pn and analyzers Ql , Q2, . . . , Qn are provided, (
3) Optical fibers F1, F through polarizers P11, Pn
2,...Light sources L1, L2,...L that input light to -1Fn
(4) The intensity of the emitted light from the analyzer Q, 1, on is detected by the detectors D1, D21, Dn, (5)
A magnet is installed on the moving object whose position is to be detected close to the group of optical fibers, and (]j) From the detector output, determine the group of optical fibers (Fk) in which rotation of the plane of polarization due to the Faraday effect has been detected. , (7) The position of an object is detected from a group of polarization plane rotating optical fibers (Fk).

(力) 実施例1 第11YI &ま本発明の実施例を示す。(Force) Example 1 11th YI & Embodiment of the present invention is shown.

光ファイバFl 1、Fn i’j: Jl−モード光
ファイバで、多数本、平行に、移動体1の軌跡に沿って
設けられている。移動体1には、光ファイバF+、・八
Fnに対向し、ファイバ軸とNS方向が平行になるよう
取付けである。
Optical fibers Fl 1, Fn i'j: A large number of Jl-mode optical fibers are provided in parallel along the locus of the moving body 1. The movable body 1 is mounted so that the optical fibers F+ and 8Fn are opposed to each other, and the fiber axes and the NS direction are parallel to each other.

各光ファイバF1、−1Fnには、異るモードで、磁気
シールド3が設けられる。磁気シールド3は鉄などの強
磁性体で構成できる。磁気シールド3のない部分は、磁
石2が近接した時、磁気を感じる。つ−まり高感磁部H
となる。磁気シールド3のある部分は磁石2が近接して
も磁気を感じない。
Each optical fiber F1, -1Fn is provided with a magnetic shield 3 in a different mode. The magnetic shield 3 can be made of a ferromagnetic material such as iron. The part without the magnetic shield 3 feels magnetic when the magnet 2 approaches. In other words, the highly magnetically sensitive part H
becomes. A portion of the magnetic shield 3 does not feel magnetism even if the magnet 2 approaches it.

低感磁部りとなっている。It has a low magnetic sensitivity part.

図でに、磁石2に近い方から、光ファイバF1、F21
、Fnが並ぶように書いであるが、実[際は、磁石2か
ら等間隔(でなるよう、磁石2の運動軌跡を囲んで円筒
状に光ファイバF1、F2、・・・、Fnが並ぶのが望
捷しい。
In the figure, from the one closest to magnet 2, optical fibers F1 and F21
, Fn are written as being lined up, but in reality, the optical fibers F1, F2,..., Fn are lined up in a cylindrical shape surrounding the locus of motion of magnet 2, at equal intervals from magnet 2. That's promising.

光ファイバF1、F2、・・の一端には、偏光子P11
、Pn、他端には検光子Ql、Q2、・・・、Qnが設
けである。偏光子のより外側にけ、光源L1、・、Ln
が設置しである。光源idレーザ光が望ましい。n個の
レーザを設けるがわりに、より少いレーザを使い、ビー
ムスプリッタで分割して、各ファイバへ入射するように
してもよい。偏光子を通り、レンズ(図示せず)で絞ら
れて光ファイバF1、−・・、Fnに入射する。
A polarizer P11 is attached to one end of the optical fibers F1, F2,...
, Pn, and analyzers Ql, Q2, . . . , Qn are provided at the other end. On the outer side of the polarizer, light sources L1, . . ., Ln
is installed. The light source is preferably an ID laser beam. Instead of providing n lasers, fewer lasers may be used and split by a beam splitter to be incident on each fiber. The light passes through a polarizer, is focused by a lens (not shown), and enters the optical fibers F1, . . . , Fn.

光ファイバの他端には検光子。1、・・、Qnと検出器
D11、Dnが設けである。
At the other end of the optical fiber is an analyzer. 1, . . . Qn and detectors D11 and Dn are provided.

ファラデー回転がない時の検出器の出力と、ファラデー
回転がある時の検出器の出力とは区別できる。
It is possible to distinguish between the detector output when there is no Faraday rotation and the detector output when there is Faraday rotation.

たとえ、ファイバ軸に直角な二軸x、y方向の偏波につ
いて伝搬定数が異なるとしても、Δβによる偏波面の回
転は各ファイバについて一定であるから、検光子の方向
を予め調節して、ファラデー回転がない時の検出器出力
を、最大又は最小になるようにしておく。ファラデー回
転があれば、検出器出力がシフトする。シフト量が問題
なのではなく、シフ1−シたか、又はしないかの二値論
理であるから、エラーが少い。
Even if the propagation constants differ for polarized waves in the two axes x and y directions perpendicular to the fiber axis, the rotation of the plane of polarization by Δβ is constant for each fiber, so by adjusting the direction of the analyzer in advance, Set the detector output to the maximum or minimum when there is no rotation. If there is Faraday rotation, the detector output will shift. The problem is not the amount of shift, but rather a binary logic of 1-shift or no shift, so there are fewer errors.

そして、磁気シールド3の分布(ri各ファイバF1、
・、Fnについて全て異なるものとしている。
Then, the distribution of the magnetic shield 3 (ri each fiber F1,
・, Fn are all different.

移動体1の存在位置に、磁石2による光ファイバ軸と平
行な磁界が生ずる。この部分に於て磁気シールド3がな
い光フアイバ群(「k)のみが、磁界を感じる。その光
ファイバ(Fk )の中を伝搬する光の偏波面がファラ
デー回転する。ファラデー回転すると検出器(Dk)の
出力が変化する。
A magnetic field parallel to the optical fiber axis is generated by the magnet 2 at the location where the moving body 1 is present. In this part, only the optical fiber group ('k) without the magnetic shield 3 senses the magnetic field.The plane of polarization of the light propagating in the optical fiber (Fk) undergoes Faraday rotation.Faraday rotation causes the detector ( Dk) output changes.

ファラデー回転の検出されゾこ光フアイバ群(Fk )
が分ると、これらが共通に高1惑磯部H(磁気シールド
がない)を伯する部分が分る。これが移動体1の現在位
置である。
Faraday rotation detected Zoko optical fiber group (Fk)
If you know, you can find out the part that these have in common with the high 1-magnetic iso part H (no magnetic shield). This is the current position of the moving body 1.

光ファイバF1、・・、Fnの宣感綴部H,低感磁部り
の分布の士−1:は互にメ1っていれば良いのであるが
、最も中純’L (ri 2 JR1法によってH1L
分布を′j−えるとよい。
It is sufficient that the distributions of the magnetically sensitive parts H and low magnetically sensitive parts of the optical fibers F1, . . . , Fn are equal to each other. H1L by law
It is better to calculate the distribution by ′j−.

ファイノ(の・故がnであるから、nビットの2進数で
、位;1〈イを向えることができる。
Since phino ('s) is n, it is possible to use an n-bit binary number for the digit 1.

ファイバの全15!:lを、Flについて(は211に
分割し、F2に分割し、F2については211−lに分
割する。一般にFjKついてU丁2°−jl+に分書I
Jすることとする、。
All 15 fibers! :l is divided into 211 for Fl (is divided into F2, and for F2 is divided into 211-l. Generally, for FjK, the division I is divided into
I will do J.

り〕割したものの笥数番を低を心綴部し、偶数番をIf
iIhlj’<綴部Hとする(全く逆でも差支えない)
ri] The number of the divided pieces is the lowest, and the even number is If.
iIhlj'< spelling part H (the complete opposite is also acceptable)
.

このようにすると、全長でを2n等分l〜だ尺度で、磁
石2の存在する位置Xを簡単に表わすことができる4゜ 各ファ・fバF11、Fnの検出器出力を観察し、ファ
ラデー回転が起きていれば1″°を対応させ、ファラデ
ー回転がなければ°゛0゛を対応させるものとする。こ
うして二値化された名ファイバF1、・、Fnの出力を
bl、b2・−1bnとすると、磁石の位置Xは x −= bn bo−4−b2b+     fl)
(でより2進数表示される。
In this way, the position If rotation occurs, 1″° corresponds to it, and if there is no Faraday rotation, it corresponds to °゛0゛.The thus binarized outputs of the famous fibers F1, . . . , Fn are bl, b2, − If 1bn, the position of the magnet is x - = bn bo - 4 - b2b + fl)
(It is displayed as a binary number.

これ(は、単なる一例である。This is just an example.

各ファイバのH,Lの分布が全て異なっていれば良いの
で、必ずしも」二記のようにしなくても良い1.ある部
分だけを精度良く位置検出したい場合は、その部分たけ
、H,1分布を細くすればよい。
As long as the H and L distributions of each fiber are all different, it is not necessary to do as described in 1. If it is desired to accurately detect the position of only a certain part, the H,1 distribution may be made narrower by that part.

特ニ、H,Lのパターンをグレイコードにすれはより誤
りが少なく効果的である。
In particular, it is more effective to use gray codes for the H and L patterns, since there are fewer errors.

磁石2の磁力線が、最小のH,Lの繰返しパターンの2
つのHにまたがって感じられるようではいけないので、
磁石の長さも制限される。
The lines of magnetic force of magnet 2 are the smallest repeating pattern of H and L.
I don't want it to feel like I'm straddling two H's, so
The length of the magnet is also limited.

(ギ) 実施例2 光ファイバに高感綴部H1低感綴部りを設けるため、前
例では、磁気シールドを分布させへ。
(G) Embodiment 2 In order to provide a high-sensitivity binding part H1 and a low-sensitivity binding part in an optical fiber, in the previous example, magnetic shields were distributed.

H,Lを区別するだめに、光フーrイ・(を蛇行させて
もよい。第2図11そのような実施例を示す。
In order to distinguish between H and L, the light beam may be made to meander. FIG. 2 shows such an embodiment.

磁石はファイバの長手方向に平行であるから、磁力線も
ファイバの長手方向に平行になるよう生ずる。蛇行した
ファイバの長手方向に平行な部分は、磁場を強<FE=
しる。これに対し、傾斜する部分は、ファイバの方向と
磁場の方向が平行でないから磁場を殆どに&し安い。
Since the magnet is parallel to the longitudinal direction of the fiber, the lines of magnetic force also occur parallel to the longitudinal direction of the fiber. The part parallel to the longitudinal direction of the meandering fiber has a strong magnetic field <FE=
Sign. On the other hand, in the inclined part, since the direction of the fiber and the direction of the magnetic field are not parallel, it is easier to reduce the magnetic field to most of the part.

このように、平行部分と傾斜部分とを設けることにより
、高Iみ綴部H1低感綴部りを作ることができる。
In this manner, by providing the parallel portion and the inclined portion, a high-I binding portion H1 and a low-sensitivity binding portion can be created.

(り) 実施例3 高11シ磁部Hと、低感磁部りとを区別するため、距1
i1tiのi’L <C’(史うこともできる。
(ri) Example 3 In order to distinguish between the high magnetic part H and the low magnetic part H, a distance of 1
i'L <C' of i1ti (it is also possible to write.

第3 il f−1そのような例を示す。中心棒4に光
)“j′イバFをらすん状(C巻きつけである。中心棒
の直径t〕だけ、磁石とフ゛j゛イバの距離が変動する
The third il f-1 shows such an example. The distance between the magnet and the fiber F is changed by the diameter t of the center rod.

磁石に近い部分が高感磁部Hとなり、遠い部分が低ll
ん綴部りとなる。
The part close to the magnet is the high magnetic sensitivity part H, and the part far away is the low part.
This will be the Tsuzuri section.

中心棒4が非磁性体である場合は、距離の差たけによっ
て、H,Lを区別できる。中心棒4を強磁性体にすると
、磁力線は中心棒4に引きこ捷れるので、磁石から遠い
部分は全く磁場が存在しないようになる。
If the center rod 4 is made of a non-magnetic material, H and L can be distinguished by the difference in distance. When the center rod 4 is made of a ferromagnetic material, the lines of magnetic force are twisted around the center rod 4, so that there is no magnetic field at all in the part far from the magnet.

(グ)  効  果 光フアイバ内を伝わる直線偏光の偏波面のファラデー回
転を検出して、物体の位置検出をするので、l欠の効果
がある。
(G) Effect: The position of an object is detected by detecting the Faraday rotation of the plane of polarization of linearly polarized light transmitted within an optical fiber, so there is a lack of effect.

+1)  観測点と移動体の間が視覚的につながってい
る必要がない。
+1) There is no need for a visual connection between the observation point and the moving object.

(2)移動体の軌跡が予め決っているものの位置検出を
行うことができる。
(2) The position of a moving object whose trajectory is determined in advance can be detected.

(3)電磁誘導、ノイズに強い。(3) Strong against electromagnetic induction and noise.

(4)物体の汚れがあっても差支えない。(4) There is no problem even if the object is dirty.

(5)腐蝕性雰囲気に強い。(5) Strong against corrosive atmosphere.

(6)温度変化によって影響を受けない。(6) Not affected by temperature changes.

(7)  アナログ信号ではなく、ファラデー回転をテ
ジタル信号としてとらえるので、誤差が少い。
(7) Faraday rotation is treated as a digital signal rather than an analog signal, so there are fewer errors.

(コ)  用  途 (1)  移動体の絶対位置検出、 +2+  rllポットの絶対位置検出、に))産業用
機械の二色対位置検出、 などに用いられる。
(J) Applications (1) Used for absolute position detection of moving objects, absolute position detection of +2+ rll pots, and) two-color pair position detection of industrial machines.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(・」、本発明の′’N 7i眞例(τ係る位置
演出力式の光学系略構成図。 第2図はファイバを蛇行させて高hン綴部H1低感磁部
りを作つブc実施例のファイバ平面図。 第3図は中心棒にノーi′イバを巻きつけて、高感綴部
H1低感綴部りを作った実施例のファイバ正面図。 1   移動体 2 ・     磁   石 3 −    磁気シールド 4  ・中心棒 「1〜Fn    光ノア1′バ P + 〜 Pn  −−1im   ソ(、子QI−
Qn〜・検光子 L1〜Ln  ・  光   源 D+”=j)n・・ 検出器 H−高感磁部 L・・・・・  低感磁部
Figure 1 (・'' is a schematic diagram of the optical system configuration of the position producing force type according to the present invention) Fig. 3 is a fiber front view of an embodiment in which a high-sensitivity binding part H1 and a low-sensitivity binding part are created by winding a noi fiber around the center rod. 1 Movement Body 2 ・ Magnet 3 − Magnetic shield 4 ・ Center rod ``1 ~ Fn Light Noah 1' bar P + ~ Pn −-1im So(, Child QI-
Qn~・Analyzer L1~Ln・Light source D+”=j)n・・Detector H−High magnetic sensitive part L・・・・Low magnetic sensitive part

Claims (1)

【特許請求の範囲】[Claims] 高感磁部Hと低感磁部りが異なる分布で交互に設けられ
ている複数本の単一モード光ファイバF1、F2、・、
Fnを互に平行に設け、各光ファイバF1、・・・、F
nの両端に偏光子P1・・・、Pnと検光子Q+、・Q
nとを、役け、偏光子P1、・、Pnを通じ各光ファイ
バF1.・・、Fnへ光を入射する光源L1、−・、L
nを光ファイバの一端に設け、検光子Ql、・・・、Q
nからの出射光強度を検出器D11、Dnによって検出
し、位置を検出すべき移動体1には光フアイバ群に近接
するよう磁石2をN5Jffiが光ファイバに平行にな
るよう取付け、検出器出力からファラデー効果による偏
波面の回転が検出された光フアイバ群(Fk)を求め、
これから移動体1の位置を検出することを特徴とする位
置検出方式。
A plurality of single mode optical fibers F1, F2, .
Fn are provided in parallel to each other, and each optical fiber F1,...,F
Polarizer P1..., Pn and analyzer Q+, ・Q on both ends of n
n, and connect each optical fiber F1 . ..., light source L1, -..., L that inputs light to Fn
n is provided at one end of the optical fiber, and analyzers Ql,...,Q
The intensity of the emitted light from N5 is detected by detectors D11 and Dn, and a magnet 2 is attached to the moving body 1 whose position is to be detected so that it is close to the group of optical fibers so that N5Jffi is parallel to the optical fibers, and the detector output Find the group of optical fibers (Fk) in which the rotation of the plane of polarization due to the Faraday effect is detected,
A position detection method characterized by detecting the position of the moving body 1 from now on.
JP10728983A 1983-06-15 1983-06-15 Detecting system of position Pending JPS59231412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10728983A JPS59231412A (en) 1983-06-15 1983-06-15 Detecting system of position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10728983A JPS59231412A (en) 1983-06-15 1983-06-15 Detecting system of position

Publications (1)

Publication Number Publication Date
JPS59231412A true JPS59231412A (en) 1984-12-26

Family

ID=14455316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10728983A Pending JPS59231412A (en) 1983-06-15 1983-06-15 Detecting system of position

Country Status (1)

Country Link
JP (1) JPS59231412A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2619909A1 (en) * 1987-08-27 1989-03-03 Comp Generale Electricite Device for incremental measurement of a linear displacement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2619909A1 (en) * 1987-08-27 1989-03-03 Comp Generale Electricite Device for incremental measurement of a linear displacement

Similar Documents

Publication Publication Date Title
US5719497A (en) Lensless Magneto-optic speed sensor
US5038103A (en) Optical fiber magnetometer
US4947035A (en) Fiber optic transducer using faraday effect
US5635830A (en) Optical magnetic field sensor employing differently sized transmission lines
US4563639A (en) Temperature and/or electrical intensity measuring apparatus based on the Faraday effect
US6223066B1 (en) Optical position sensors
US4450406A (en) Triaxial optical fiber system for measuring magnetic fields
US20170199093A1 (en) Multi-parameter Sensing based on Few-mode Fiber Bragg Gratings using Femtosecond IR Laser
CN102209888A (en) Detection system and optical fiber for use in such system
JPS59231412A (en) Detecting system of position
Logozinskii Magnetically induced non-Faraday nonreciprocity in a fiber-optic gyroscope
US20040246467A1 (en) Production method for a sensor head for optical current sensors
JP2008256366A (en) Optical fiber current sensor and current measuring method
Chen et al. An intrinsic optical-fiber position sensor with schemes for temperature compensation and resolution enhancement
US4918303A (en) Detecting disturbance with cross polarized fiber optic sensing
ATE32954T1 (en) MEASURING TRANSFORMER BASED ON THE ELECTRICAL OR. MAGNETOPTIC EFFECT.
Urakseev et al. Differential Fiber Optic Sensor Based on Bragg Gratings
Saxena et al. Compact optical fiber Faraday ring ammeter
CN2319815Y (en) Double incident optical path reverse type optical current sensor head
Tomov et al. Optical Fiber Magnetic Field Detector
Veeser et al. Lensless magneto-optic speed sensor
ATE525627T1 (en) ONLINE VOLTAGE MEASUREMENT IN AN OPTICAL FIBER
Veeser et al. Measurement of megampere currents with optical fibers
SU1128206A1 (en) Device for measuring magnetic field strength
RU2161316C1 (en) Magnetic field transducer