JPS59227872A - Preparation of epoxy compound - Google Patents
Preparation of epoxy compoundInfo
- Publication number
- JPS59227872A JPS59227872A JP10304183A JP10304183A JPS59227872A JP S59227872 A JPS59227872 A JP S59227872A JP 10304183 A JP10304183 A JP 10304183A JP 10304183 A JP10304183 A JP 10304183A JP S59227872 A JPS59227872 A JP S59227872A
- Authority
- JP
- Japan
- Prior art keywords
- epoxy
- hydrogen peroxide
- allyl
- epoxy compound
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Epoxy Compounds (AREA)
Abstract
Description
【発明の詳細な説明】 本発明はエポキシ化合物の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for producing an epoxy compound.
エポキシ化合物は、1.2−エポキシドのオ専シト環の
開裂を利用して種々の用途に応用されており、特にノボ
ラック型エポキシ樹脂は電気、電子部品材料として、特
に半導体封止材料として量産性、コスト面から、更には
耐熱性、耐水性の優秀性からその需要が増加している。Epoxy compounds are used in a variety of applications by utilizing the cleavage of the oxycyto ring of 1,2-epoxide, and novolak-type epoxy resins in particular are used as materials for electrical and electronic components, especially as semiconductor encapsulation materials. The demand for it is increasing not only from a cost perspective but also because of its excellent heat resistance and water resistance.
しかし、近年、これからの樹脂の電気特性に対する要求
は一周高まり、特に高集積用の樹脂との樹脂が強く望ま
れている。However, in recent years, the demands on the electrical properties of resins have increased all the time, and resins for high integration are particularly desired.
従来知られているノボラーIり型エポキシ樹脂は、フェ
ノール類ノボラック樹脂とエビハロヒドリンを反応させ
て得られるものであるが、無機性ハロゲンは殆んど含有
しないものの、高温・高湿下で分解する有機性ハロゲン
を11000pp前後含有しているため、高集積用には
使用不可という問題があった。The conventionally known novola type epoxy resin is obtained by reacting a phenolic novolak resin with shrimp halohydrin, but although it contains almost no inorganic halogen, it contains organic halogens that decompose under high temperature and high humidity. Since it contains about 11,000 pp of sexual halogen, there was a problem that it could not be used for high-density applications.
本発明者らは、上述したノボラ・ツク型エポキシ樹脂の
他に種々のエポキシ化合物について品質の向上を目的に
、エビハロヒドリンを使用しないエポキシ化方法として
オレフィンの酸化によるエポキシ化に着目して種々検討
した結果、アリルエーテル化合物を特定の条件下に過酸
化水素で酸化することにより目的が達成されることを見
出し本発明を完成した。The present inventors have conducted various studies focusing on epoxidation by oxidation of olefins as an epoxidation method that does not use ebihalohydrin, with the aim of improving the quality of various epoxy compounds in addition to the above-mentioned novola-tsuk type epoxy resin. As a result, they discovered that the object could be achieved by oxidizing an allyl ether compound with hydrogen peroxide under specific conditions, and completed the present invention.
即ち、本発明は、モノ、ジまたはポリアリルエーテル化
合物を、アセトニトリルの存在下、反応系のpHを7.
5以上に調節しながら過酸化水素と反応させることを特
徴とするエポ専シ化合物の製造方法を提供する。That is, in the present invention, a mono-, di-, or polyallyl ether compound is mixed in the presence of acetonitrile, and the pH of the reaction system is adjusted to 7.
Provided is a method for producing an epoxy compound, which is characterized by reacting with hydrogen peroxide while adjusting the hydrogen peroxide concentration to 5 or more.
本発明の方法は、従来オレフィンのエポキシ化方法とし
て熟知されている過酸による方法等に比し、安全性に秀
れ、またエポキシ化が選択的に進行するため、アリール
核の酸化副生物が極めて少なく、又エポキシ化反応の常
識である酸性条件とは異なり特定のアルカリ条件下で反
応することによって、エポ専シ環の開環副生物が極めて
少ないという点が特徴である。The method of the present invention is superior in safety to methods using peracids, which are well known as conventional methods for epoxidizing olefins, and since epoxidation proceeds selectively, oxidation by-products of aryl nuclei are eliminated. Furthermore, unlike the acidic conditions that are common in epoxidation reactions, the reaction is carried out under specific alkaline conditions, so that the ring-opening by-products of the epoxy ring are extremely small.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明で用いるモノアリルエーテル化合物は、例えば下
記一般式
(式中、Rは水素またはメチルを、nは1〜8を示す。The monoallyl ether compound used in the present invention can be expressed, for example, by the following general formula (wherein R represents hydrogen or methyl, and n represents 1 to 8).
)
で表ワされ、アリルフェニルエーテル、アリル−メチル
フェニルエーテル、アリル−ジメチルフェニルエーテル
、アリル−トリメチルフェニルエーテルなどが例示され
る。) Examples include allyl phenyl ether, allyl-methyl phenyl ether, allyl-dimethyl phenyl ether, allyl-trimethyl phenyl ether, and the like.
また、ジメチルアリルエーテル化合物は、例えば下記一
般式
(式中、■およびR2は夫々独立に水素またはメチルを
示す。)で表わされ、ビスフェノールFジアリルエーテ
ル、ビスフェノールAジアリルエーテルなどが例示され
る。Further, the dimethylallyl ether compound is represented by, for example, the following general formula (in the formula, ■ and R2 each independently represent hydrogen or methyl), and examples include bisphenol F diallyl ether and bisphenol A diallyl ether.
更に、本発明方法で用いられるポリアリルエーテル化合
物としては、ノボラ・ツク型フェノール系樹脂のアリル
エーテル化物が例示されるうこ\でノボラ・ツク型フェ
ノール系樹脂としては、フェノールまたはクレゾール(
o、m、p−各異性体)トホルムアルデヒド、フルフラ
ール、アクロレイン等のアルデヒド類を酸またはアルカ
リ触媒の存在下公知の方法で縮合反応させて得られる通
常3〜15の平均核体数を有する樹脂が好ましく、これ
らノボラック型フェノール系樹脂を製造する際、他のフ
ェノール類を全フェノールに対し50モル%以下で加え
た共縮合ノボラ・ツク型樹脂を使用することもできる。Further, as the polyallyl ether compound used in the method of the present invention, an allyl ether compound of a novola-tsuk type phenolic resin is exemplified.
o, m, p-isomers) Resin having an average number of nuclei of usually 3 to 15 obtained by condensing aldehydes such as toformaldehyde, furfural, and acrolein in the presence of an acid or alkali catalyst by a known method. is preferred, and when producing these novolac type phenolic resins, it is also possible to use co-condensed novolac type resins in which other phenols are added in an amount of 50 mol% or less based on the total phenol.
ここで、他のフェノール類とは、エチルフェノール、イ
ソプロピルフェノール、ブチルフェノール、オクチルフ
ェノール、キシレノール等の1価フェノール類、レゾル
シノール、ハイドロキノン、カテコール等の2価フェノ
ール類が例示される。Examples of other phenols include monohydric phenols such as ethylphenol, isopropylphenol, butylphenol, octylphenol, and xylenol, and dihydric phenols such as resorcinol, hydroquinone, and catechol.
これらのノボラック型フェノール系樹脂のアリルエーテ
ル化物は、ノボラック型フェノール系樹脂とハロゲン化
アリルをアルカリ性化合物の存在下に、例えば特願昭5
7−147159号に記載の方法に従って製造すること
ができる。Allyl etherified products of these novolac type phenolic resins are produced by combining novolac type phenolic resins and allyl halides in the presence of an alkaline compound, for example, as disclosed in the patent application filed in 1973.
It can be produced according to the method described in No. 7-147159.
これらのポリアリルエーテル化合物の中、アリルエーテ
ル化フェノールノボラ・ツク樹[1!、アリルエーテル
化りレゾールノボラ、ツク樹脂、アリルエーテル化クレ
ゾール・キシレノール共縮合ノボラ・ツク樹脂が好まし
く用いられる。Among these polyallyl ether compounds, allyl etherified phenol Novola Tsukugi [1! , allyl etherified resol novola, tsuk resin, and allyl etherified cresol/xylenol cocondensation novola tsuk resin are preferably used.
本発明で使用される過酸化水素は、過酸化水素含景30
〜80%の水溶液として使用される。The hydrogen peroxide used in the present invention includes hydrogen peroxide containing 30
Used as a ~80% aqueous solution.
本発明で使用されるアセトニトリルの量は、少なくとも
過酸化水素と等モル又は等モル以上を使用することが好
ましい。The amount of acetonitrile used in the present invention is preferably at least equimolar or more than the same mole as hydrogen peroxide.
本発明で使用されるpH調節用のアルカリとしては、水
酸化ナトリウム、水酸化カリウム、水酸化カルシウム等
のアルカリ水酸化物、炭酸カリウム、炭酸ソーダ等のア
ル、反応系(7) pHを常に7.5〜10を保つよう
に供給することが好ましく、特にpH8〜9.5に保つ
ことが好ましい。ここでアルカリの供給が停止するとp
Hカ低下シ、PH7,5以下になるとエポキシ化反応が
著しく遅くなろっ又、アルカリが過剰に供給されpEI
10以上になると過酸化水素の分解が激しくなり、工
業的には過酸化水素の使用量が増加して不利である。Examples of the alkali for pH adjustment used in the present invention include alkali hydroxides such as sodium hydroxide, potassium hydroxide, and calcium hydroxide, alkali such as potassium carbonate and soda carbonate, and reaction system (7) that always maintains a pH of 7. It is preferable to supply the water so as to keep the pH between .5 and 10, and particularly preferably between 8 and 9.5. If the alkali supply stops here, p
If the pH drops below 7.5, the epoxidation reaction will slow down significantly, and too much alkali will be supplied, resulting in a decrease in pEI.
If it exceeds 10, the decomposition of hydrogen peroxide becomes intense, which is industrially disadvantageous because the amount of hydrogen peroxide used increases.
反応系の粘度を調整する目的で、反応に不活性な溶媒、
例えばメタノール、エタノール、エチレングリコールモ
ノメチルエーテル、エチレングリコールモノエチルエー
テル等を使用スることが出来る。又、アセトニトリルを
溶媒とすることも出来る。For the purpose of adjusting the viscosity of the reaction system, a solvent inert to the reaction,
For example, methanol, ethanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, etc. can be used. Moreover, acetonitrile can also be used as a solvent.
本発明のエポキシ化反応は、通常30〜80°C1好ま
しくは40〜70°Cの温度で行オ)れ、30°C以下
では反応速度が著しく遅くなる。The epoxidation reaction of the present invention is usually carried out at a temperature of 30 to 80°C, preferably 40 to 70°C, and the reaction rate becomes significantly slow below 30°C.
また、80℃以上では過酸化水素の分解が激しくなり好
ましくない。Further, if the temperature is 80° C. or higher, hydrogen peroxide decomposes rapidly, which is not preferable.
次に本発明の詳細な説明するため実施例を示すが、本発
明はこれに限定されるものではない。Next, examples will be shown to explain the present invention in detail, but the present invention is not limited thereto.
なお、例中部とあるのは重量単位を示す。Note that "Example Middle" indicates the weight unit.
実施例1
温度計、攪拌器、滴下r斗、還流冷却器およびpH計を
つけた反応器に、2−メチルフェニルアリルエーテル8
.4 部、アセトニトリル8.8部、メタノール20部
、リン酸水素すl−IJウム0.1部、85%過酸化水
素水6.5部を仕込み、攪拌しながら60°Cに昇温し
同温度で8時間保った。この間、5%水酸化ナトリウム
水溶液を滴下して系内のpHを8〜9.5に保った。反
応液をガスクロマトグラフで分析したところ、2−メチ
ルフェニルグリシジルエーテル2.4部と2−メチルフ
ェニルアリルエーテル1.1部が含まれていた。原料(
7) 転化率は67.6%で、2−メチルフェニルグリ
シジルエーテルへの選択率は95.0%であった。Example 1 In a reactor equipped with a thermometer, a stirrer, a dropping funnel, a reflux condenser and a pH meter, 2-methylphenyl allyl ether 8
.. 4 parts of acetonitrile, 8.8 parts of methanol, 0.1 part of sodium hydrogen phosphate, and 6.5 parts of 85% hydrogen peroxide solution, and heated to 60°C with stirring. It was kept at temperature for 8 hours. During this time, a 5% aqueous sodium hydroxide solution was added dropwise to maintain the pH in the system at 8 to 9.5. When the reaction solution was analyzed by gas chromatography, it was found that it contained 2.4 parts of 2-methylphenylglycidyl ether and 1.1 parts of 2-methylphenyl allyl ether. material(
7) The conversion rate was 67.6%, and the selectivity to 2-methylphenylglycidyl ether was 95.0%.
また、過酸化水素の分析より、過酸化水素の工、tlシ
化選択率は62,5%であったり実施例2
実施例1と同様の反応器に、参考例に示すような方法で
得たアリルエーテル化0−クレゾールノボラ、ツク型樹
脂3.7部、アセトニトリル45部、メゆノ、−ル20
m、リン酸二水素すI−IJウム0.1部、70%過酸
化水素水2.4部を仕込み、攪拌しなから60’Cに昇
温し同温度で16時間保った。この間、5%水酸化ナト
リウム水溶液を滴下して反応系のpHを8〜9.5に保
った。また、反応開始後4時間目、8時間目、122時
間目各々70%過酸化水素水2.4部を反応系に加えた
。反応終了後、水50dを加え、$ルエン100m1で
樹脂を抽出分離した。得たトルエン層を100??!t
の水で水洗し、分液した。つづいてトルエン層を減圧下
に濃縮し、濃縮物3.8部を得たう
この濃縮物を分析したところ、エポキシ当量274で核
磁気共鳴スペクトルのオレフィン二重結合の定量より、
アリル基の転化率は65%であることを確認した。これ
は、エポキシ基への選択率は94.5%であった。また
、過酸化水素のエポキシ化選択率は8%であった。さら
に、塩素含有量は80 ppmであった。Furthermore, from the analysis of hydrogen peroxide, the selectivity of hydrogen peroxide for oxidation was 62.5%. Allyl etherified 0-cresol novola, 3.7 parts of Tsuku type resin, 45 parts of acetonitrile, 20
0.1 part of dihydrogen phosphate, 2.4 parts of 70% hydrogen peroxide solution were added, and the temperature was raised to 60'C without stirring and maintained at the same temperature for 16 hours. During this time, a 5% aqueous sodium hydroxide solution was added dropwise to maintain the pH of the reaction system at 8 to 9.5. Further, 2.4 parts of 70% hydrogen peroxide solution was added to the reaction system at each of the 4th hour, 8th hour, and 122nd hour after the start of the reaction. After the reaction was completed, 50 d of water was added, and the resin was extracted and separated with 100 ml of $ toluene. The obtained toluene layer is 100? ? ! t
The mixture was washed with water and separated. Subsequently, the toluene layer was concentrated under reduced pressure, and 3.8 parts of the concentrate was analyzed. From the quantitative determination of olefin double bonds in the nuclear magnetic resonance spectrum, the epoxy equivalent was 274.
It was confirmed that the conversion rate of allyl groups was 65%. The selectivity to epoxy groups was 94.5%. Further, the epoxidation selectivity of hydrogen peroxide was 8%. Furthermore, the chlorine content was 80 ppm.
参考例
温度計、攪拌器、滴下枦斗および還流冷却器をつけた反
応器に軟化点t o o ’cの0−クレゾールノボラ
ック樹脂118部(1当量)及び反応溶媒としてアセト
ン2oofrLLを仕込み、樹脂を完全に溶解させてか
ら20%水酸化ナトリウム水溶液806部(1,58モ
ル)を加え、よく攪拌する。反応系の温度を40℃に保
ちながら臭化アリル181部(1,5モル)を滴下し、
40°Cで2時間保持した後60℃まで昇温し、同温度
で2時間保持する。Reference Example: Into a reactor equipped with a thermometer, a stirrer, a dropping funnel, and a reflux condenser, 118 parts (1 equivalent) of an 0-cresol novolak resin with a softening point of t o 'c and 2 ooofrLL of acetone as a reaction solvent were charged. After completely dissolving 806 parts (1.58 mol) of a 20% aqueous sodium hydroxide solution, the mixture was stirred well. While maintaining the temperature of the reaction system at 40°C, 181 parts (1.5 mol) of allyl bromide was added dropwise.
After holding at 40°C for 2 hours, the temperature was raised to 60°C and held at the same temperature for 2 hours.
次いで水層を分液により除去し、油層にジエチルエーテ
ルを加え生成樹11fVを抽出した後、濃縮することに
より淡黄色粘稠液状樹g1160部を得た。Next, the aqueous layer was removed by liquid separation, and diethyl ether was added to the oil layer to extract 11 fV of produced wood, which was then concentrated to obtain 1160 parts of pale yellow viscous liquid wood.
得られた樹脂について分析した結果、OH含量0,1%
、ブロム含量20 ppm以下で赤外吸収スペクトルよ
りフェノール水酸基に基〈8400 cm 1の吸収が
ないこと、更に核磁気共鳴スペクトルのオレフィン二重
結合の定量よりアリル化率112%を有するアリルエー
テル化o−クレゾールノボラック樹脂であることを確認
した。As a result of analyzing the obtained resin, the OH content was 0.1%.
, when the bromine content was 20 ppm or less, the infrared absorption spectrum showed that there was no absorption of the phenol hydroxyl group <8400 cm 1, and furthermore, the quantitative analysis of the olefin double bond in the nuclear magnetic resonance spectrum showed that the allyl etherification rate was 112%. - It was confirmed that it was a cresol novolak resin.
Claims (1)
トリルの存在下、反応系のpHを7.5以上に調節しな
がら過酸化水素と反応させることを特徴とするエポキシ
化合物の製造方法。A method for producing an epoxy compound, which comprises reacting a mono-, di-, or polyallyl ether compound with hydrogen peroxide in the presence of acetonitrile while controlling the pH of the reaction system to 7.5 or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10304183A JPS59227872A (en) | 1983-06-08 | 1983-06-08 | Preparation of epoxy compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10304183A JPS59227872A (en) | 1983-06-08 | 1983-06-08 | Preparation of epoxy compound |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59227872A true JPS59227872A (en) | 1984-12-21 |
Family
ID=14343579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10304183A Pending JPS59227872A (en) | 1983-06-08 | 1983-06-08 | Preparation of epoxy compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59227872A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999062894A3 (en) * | 1998-05-29 | 2000-04-06 | Dow Chemical Co | Process for epoxidation of aryl allyl ethers |
WO2010110151A1 (en) * | 2009-03-25 | 2010-09-30 | 昭和電工株式会社 | Method for producing epoxy compound |
WO2011078091A1 (en) | 2009-12-24 | 2011-06-30 | 昭和電工株式会社 | Process for production of epoxy compound |
WO2014065239A1 (en) * | 2012-10-25 | 2014-05-01 | 日産化学工業株式会社 | Method for producing epoxy compound |
KR20190034610A (en) | 2016-11-07 | 2019-04-02 | 쇼와 덴코 가부시키가이샤 | Process for producing polyglycidyl compounds |
-
1983
- 1983-06-08 JP JP10304183A patent/JPS59227872A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999062894A3 (en) * | 1998-05-29 | 2000-04-06 | Dow Chemical Co | Process for epoxidation of aryl allyl ethers |
TWI461414B (en) * | 2009-03-25 | 2014-11-21 | Showa Denko Kk | Process for producing epoxy compound |
WO2010110151A1 (en) * | 2009-03-25 | 2010-09-30 | 昭和電工株式会社 | Method for producing epoxy compound |
JP5800709B2 (en) * | 2009-03-25 | 2015-10-28 | 昭和電工株式会社 | Method for producing epoxy compound |
CN102361861A (en) * | 2009-03-25 | 2012-02-22 | 昭和电工株式会社 | Method for producing epoxy compound |
US8664414B2 (en) | 2009-03-25 | 2014-03-04 | Showa Denko K.K. | Process for producing epoxy compound |
US8993791B2 (en) | 2009-12-24 | 2015-03-31 | Showa Denko K.K. | Process for producing epoxy compounds |
KR101433066B1 (en) * | 2009-12-24 | 2014-08-22 | 쇼와 덴코 가부시키가이샤 | Process for production of epoxy compound |
CN102666519A (en) * | 2009-12-24 | 2012-09-12 | 昭和电工株式会社 | Process for production of epoxy compound |
JP5787770B2 (en) * | 2009-12-24 | 2015-09-30 | 昭和電工株式会社 | Method for producing epoxy compound |
WO2011078091A1 (en) | 2009-12-24 | 2011-06-30 | 昭和電工株式会社 | Process for production of epoxy compound |
WO2014065239A1 (en) * | 2012-10-25 | 2014-05-01 | 日産化学工業株式会社 | Method for producing epoxy compound |
CN104797576A (en) * | 2012-10-25 | 2015-07-22 | 日产化学工业株式会社 | Method for producing epoxy compound |
US9464074B2 (en) | 2012-10-25 | 2016-10-11 | Nissan Chemical Industries, Ltd. | Method for producing epoxy compound |
KR20190034610A (en) | 2016-11-07 | 2019-04-02 | 쇼와 덴코 가부시키가이샤 | Process for producing polyglycidyl compounds |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0799262B1 (en) | Process for preparation of epoxy compounds | |
RU2276158C2 (en) | Method for preparing intermediate compound - derivative of hydroxyester and epoxy resins prepared from it | |
AU2011212724B2 (en) | Manufacture of epoxyethyl ethers or glycidyl ethers | |
JPS61500024A (en) | Polyglycidyl ether of branched novolak | |
US4837293A (en) | Linear bisphenol epoxy polymers containing cyano groups | |
JPS59227872A (en) | Preparation of epoxy compound | |
JPH0420008B2 (en) | ||
JPS60130580A (en) | Novel glycidyl compound and its production | |
KR910004902B1 (en) | Phenolic ethers containing epoxide groups | |
JPS62218411A (en) | Manufacture of low fatty halide content advanced epoxy or phenoxy resin | |
JPS5936121A (en) | Allyl etherified cresol-novolak resin and manufacture of the same | |
JPS6226647B2 (en) | ||
US3023225A (en) | Xchxch | |
JPH11255868A (en) | Preparation of phenol aralkyl resin | |
JPS5883640A (en) | Method for producing alkylphenols | |
JPH10130189A (en) | Polyhydric phenol compound and resin composition using the same | |
JPH06135872A (en) | Production of bisphenol | |
JPS59227918A (en) | Production of allyl-etherified novolak resin | |
JPH0748425A (en) | Production of novolak resin glycidyl ether | |
JPS58134112A (en) | Method for reducing saponifiable chlorine content of polyglycidyl ether | |
JPS629128B2 (en) | ||
JPS58109530A (en) | Novel epoxy resin and its production | |
JPH11116561A (en) | Production of epoxy compound | |
JPH11279265A (en) | Method for producing phenolic resin | |
JPS59155377A (en) | Preparation of epoxy resin |