JPS5922783B2 - Alloy for hydrogen storage - Google Patents
Alloy for hydrogen storageInfo
- Publication number
- JPS5922783B2 JPS5922783B2 JP55051305A JP5130580A JPS5922783B2 JP S5922783 B2 JPS5922783 B2 JP S5922783B2 JP 55051305 A JP55051305 A JP 55051305A JP 5130580 A JP5130580 A JP 5130580A JP S5922783 B2 JPS5922783 B2 JP S5922783B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- alloy
- hydrogen storage
- phase
- tife
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000001257 hydrogen Substances 0.000 title claims description 67
- 229910052739 hydrogen Inorganic materials 0.000 title claims description 67
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims description 57
- 229910045601 alloy Inorganic materials 0.000 title claims description 54
- 239000000956 alloy Substances 0.000 title claims description 54
- 238000003860 storage Methods 0.000 title claims description 13
- 239000000203 mixture Substances 0.000 claims description 13
- 150000004678 hydrides Chemical class 0.000 description 15
- 229910010340 TiFe Inorganic materials 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 239000010936 titanium Substances 0.000 description 12
- 150000002431 hydrogen Chemical class 0.000 description 10
- 238000010494 dissociation reaction Methods 0.000 description 9
- 230000005593 dissociations Effects 0.000 description 9
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 229910000905 alloy phase Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000003795 desorption Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910010336 TiFe2 Inorganic materials 0.000 description 2
- 229910008651 TiZr Inorganic materials 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005272 metallurgy Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910019758 Mg2Ni Inorganic materials 0.000 description 1
- 229910008061 ZrFe2 Inorganic materials 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Landscapes
- Hydrogen, Water And Hydrids (AREA)
Description
【発明の詳細な説明】
本発明は比較的低温で水素を吸蔵及び放出し、かつ、こ
の吸蔵及び放出を繰り返し行うことができる工業的水素
貯蔵用合金に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an industrial hydrogen storage alloy that can store and release hydrogen at relatively low temperatures and can repeatedly perform this storage and release.
従来、水素貯蔵用合金としては、水素に対して良吸収体
と貧吸収体との合金、例えばJ、aNi5、Mg2Ni
、TiFe などが知られている。Conventionally, hydrogen storage alloys include alloys of good and poor hydrogen absorbers, such as J, aNi5, Mg2Ni.
, TiFe, etc. are known.
これらの合金は水素をよ(吸蔵するのみならず、これら
の水素化物はLa、 Mg、 T iなどの単体金属の
水素化物に比して低温で水素を放出するという利点があ
る。These alloys not only absorb hydrogen, but these hydrides have the advantage of releasing hydrogen at lower temperatures than hydrides of simple metals such as La, Mg, and Ti.
また、これらの合金の水素化物の水素の解離圧は、合金
中の水素の含量がある範囲に在る時には、一定の温度で
は一定であり、いわゆるプラトーが存在する。Further, the dissociation pressure of hydrogen in the hydrides of these alloys is constant at a certain temperature when the hydrogen content in the alloy is within a certain range, and a so-called plateau exists.
TiFe合金について述べれば、TiFeに少量の水素
が固溶したα相と、TiFeHなる水素化物相のβ相が
共存する領域の第1段のプラトー、及びβ相とTiFe
H2なる水素化物のr相が共存する領域の第2段のプラ
トーが存在し、第2段プラトーは第1段プラトーより高
い圧力である。Regarding the TiFe alloy, there is a first stage plateau in the region where the α phase, in which a small amount of hydrogen is solidly dissolved in TiFe, and the β phase, which is a hydride phase called TiFeH, coexist, and the β phase and TiFe
There is a second plateau in the region where the r-phase of hydride H2 coexists, and the second plateau is at a higher pressure than the first plateau.
そして、TiFeの最高の水素含有量はTiFeH2に
相当し、1.89重量%、216m1/グ合金である。And the highest hydrogen content of TiFe corresponds to TiFeH2, which is 1.89 wt%, 216 m1/g alloy.
このTiFe合金の水素化物は平衡解離圧が高いこと、
水素含有量が大きいこと、安価なことで実用化に有望な
合金と言われ、いろいろ検討されている。This TiFe alloy hydride has a high equilibrium dissociation pressure;
It is said to be a promising alloy for practical use due to its high hydrogen content and low price, and is being studied in various ways.
しかしながら、TiFeという合金相は包晶反応により
生成するため、この相の金属間化合物を純相として製造
することは困難であり、TiFe2、βTi などの
相が混在する場合が多い。However, since the TiFe alloy phase is generated by a peritectic reaction, it is difficult to produce an intermetallic compound of this phase as a pure phase, and phases such as TiFe2 and βTi are often mixed.
また、TiFeは繰り返し使用によるr相の消失、Fe
の分離、微量酸素の影響、活性化の困難などの問題が指
摘され、実用化に当って解決すべき問題も多い。In addition, TiFe may lose its r phase due to repeated use, and Fe
Problems have been pointed out, such as the separation of oxygen, the influence of trace amounts of oxygen, and the difficulty of activation, and there are many problems that need to be resolved for practical use.
本発明によれば、ジルコニウム、チタニウム及び鉄から
成り、ジルコニウム及びチタニウムの合計の原子モル数
と鉄の原子モル数とが等しく、かつ、ジルコニウムがチ
タニウムと同程度又はそれ以上の原子モル数を含むこと
を特徴とする水素貯蔵用合金が提供される。According to the present invention, it is made of zirconium, titanium, and iron, and the total number of atomic moles of zirconium and titanium is equal to the number of atomic moles of iron, and zirconium contains the same number of atomic moles as titanium or more. A hydrogen storage alloy is provided.
この合金はアルゴンの如き不活性ガスの雰囲気中で常用
の合金製造法、例えば高周波炉を用いる方法やアークメ
ルト法により製造される。This alloy is manufactured in an atmosphere of an inert gas such as argon by a conventional alloy manufacturing method, such as a method using a high frequency furnace or an arc melt method.
本発明による水素貯蔵用合金の組成は次の式で表わされ
る。The composition of the hydrogen storage alloy according to the present invention is expressed by the following formula.
TilZrmFe。TilZrmFe.
式中、1.m及びnは実数を表わし、lとmの合計は実
質的にnに等しく (1+m=n )、また、mは実質
的に1に等しいかlより犬である(m≧l)。In the formula, 1. m and n represent real numbers, the sum of l and m is substantially equal to n (1+m=n), and m is substantially equal to 1 or more than l (m≧l).
mが1より小さくなると、金属1グ原子あたりの飽和水
素量が減少するなどの問題が生じ、また、l+mがnよ
りも小さくなったり、大きくなったりすると、水素を吸
蔵しない金属相が出現したり水素を吸っても適当な温度
で放出しない相が出現するなどの問題が生じる。When m is smaller than 1, problems such as a decrease in the amount of saturated hydrogen per metal atom occur, and when l+m becomes smaller or larger than n, a metal phase that does not absorb hydrogen appears. Problems arise, such as the appearance of a phase that absorbs hydrogen but does not release it at an appropriate temperature.
本発明において、lとmの関係は、好ましくは、l≦m
/1≦9である。In the present invention, the relationship between l and m is preferably l≦m
/1≦9.
この範囲内の合金は、1グあたり230m1以上の水素
を吸蔵し、繰返し使用安定性も高い。Alloys within this range can store 230 ml or more of hydrogen per gram and have high stability in repeated use.
m/1が9を超えてZr過剰になると、試料の水素吸蔵
性能が合金製造ロットごとにばらつきを見せるようにな
り、mが1より著しく大きくなり、実質的にnに等しく
なり、ZrFeの組成に達すると、吸蔵水素量は、前記
吸蔵量の1/3以下に激減する。When m/1 exceeds 9 and there is an excess of Zr, the hydrogen storage performance of the sample starts to show variations depending on the alloy production lot, and m becomes significantly larger than 1 and substantially equal to n, and the composition of ZrFe When the amount of absorbed hydrogen is reached, the amount of absorbed hydrogen sharply decreases to one-third or less of the amount of absorbed hydrogen.
水素貯蔵用合金として最も好ましい組成は原子比で実質
的にTi:Zr:Fe=1 : 1 : 2である。The most preferable composition for a hydrogen storage alloy is substantially an atomic ratio of Ti:Zr:Fe=1:1:2.
このような組成の合金は、必ずしも高純度でない水素(
例えば水素ライン中に数日間滞留した水素)中で繰返し
使用しても異相を生じさせないという利点を有する。Alloys with such compositions contain hydrogen (
For example, it has the advantage that it does not generate foreign phases even if it is repeatedly used in hydrogen that has remained in a hydrogen line for several days.
この合金の結晶構造はまだはっきり解明されていないが
、TiFe、TiFe2、ZrFe2などの合金相及び
Ti、 Zr、 Fe の金属相とは異なるX線回折
図を示し、単−相の金属間化合物と考えられる。Although the crystal structure of this alloy has not yet been clearly elucidated, it shows an X-ray diffraction pattern different from alloy phases such as TiFe, TiFe2, and ZrFe2 and metallic phases such as Ti, Zr, and Fe, and is similar to a single-phase intermetallic compound. Conceivable.
組成的にはTiFeのTiの1/2原子をZrで置換し
た組成と考えられるが、X線回折図はTiFeのそれと
異なっている。In terms of composition, it is thought that 1/2 atoms of Ti in TiFe are replaced with Zr, but the X-ray diffraction pattern is different from that of TiFe.
この合金は室温においてすぐれた水素吸蔵、放出特性を
示す。This alloy exhibits excellent hydrogen storage and desorption properties at room temperature.
次に、本発明を実施例により更に詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.
実施例 1
純度99.8%のスポンジTi、99.6%のスポンジ
Zr、99.9%の電解Feを原子モル比1:1:2に
配合し、アークメルトを6回繰り返して均一はTiZr
Fe2 なる組成の合金を製造した。Example 1 Sponge Ti with a purity of 99.8%, sponge Zr with a purity of 99.6%, and electrolytic Fe with a purity of 99.9% were mixed in an atomic molar ratio of 1:1:2, and arc melting was repeated 6 times to obtain a uniform TiZr.
An alloy having a composition of Fe2 was produced.
この合金は粉砕しやすい。This alloy is easy to crush.
大豆大に粗砕したこの合金を耐圧容器に入れて、室温で
真空排気した後、室温で5〜40 kg/crrtの水
素を導入すると、直ちに、しかも急速に水素を吸蔵し、
合金は微粉砕された。This alloy, roughly crushed into soybean-sized pieces, is placed in a pressure-resistant container, evacuated at room temperature, and then hydrogen is introduced at a rate of 5 to 40 kg/crrt at room temperature, which absorbs hydrogen immediately and rapidly.
The alloy was finely ground.
すなわち、本発明の合金の場合、T iFeのごとく高
温排気、水素導入を繰り返して活性化するというような
面倒な操作を必要とせずに水素を吸蔵させることができ
る。That is, in the case of the alloy of the present invention, hydrogen can be occluded without requiring troublesome operations such as activation by repeating high-temperature exhaust and hydrogen introduction, as is the case with TiFe.
水素吸蔵をして生成したこの合金の水素化物は室温にお
いても水素放出が認められる。The hydride of this alloy produced by absorbing hydrogen releases hydrogen even at room temperature.
水素吸蔵量はH/合金の原子モル比で5.2以上である
。The hydrogen storage capacity is 5.2 or more in atomic molar ratio of H/alloy.
この値を合金11当りに結合した標準状態の水素量に換
算すると232m1以上となる。When this value is converted into the standard amount of hydrogen bound per alloy 11, it becomes 232 ml or more.
数回の水素吸蔵、放出を繰り返した後、測定したこの合
金の水素化物の水素の解離圧等温線を図面に示す。The figure shows the hydrogen dissociation pressure isotherm of the hydride of this alloy measured after hydrogen absorption and desorption was repeated several times.
この図において、縦軸は水素解離圧(atm)を示し、
横軸はTiZrFe2 水素化物の組成(H/TiZr
Fe2 )を示す。In this figure, the vertical axis indicates hydrogen dissociation pressure (atm),
The horizontal axis is the composition of TiZrFe2 hydride (H/TiZr
Fe2).
曲線1は77℃、曲線2は137℃、曲線3は270℃
、及び曲線4は340℃における水素解離圧と組成との
関係を示す。Curve 1 is 77℃, curve 2 is 137℃, curve 3 is 270℃
, and curve 4 show the relationship between hydrogen dissociation pressure and composition at 340°C.
図から判るように、この合金の水素化物の水素解離圧は
合金中の水素量の少しの変化により大きく変化し、いわ
ゆるプラトーがない。As can be seen from the figure, the hydrogen dissociation pressure of the hydride in this alloy changes greatly with small changes in the amount of hydrogen in the alloy, and there is no so-called plateau.
本発明の合金は、その水素の解離圧等温線にプラトーを
示さないことから、例えば、本発明の合金の水素化物の
入った容器に減圧非番つけて、常に1気圧の水素を放出
させるとすると、容器の温度を上昇させることにより常
に1気圧の水素を放出させることができる。Since the alloy of the present invention does not show a plateau in its hydrogen dissociation pressure isotherm, for example, if a container containing the hydride of the alloy of the present invention is placed under reduced pressure and hydrogen is constantly released at 1 atm. Then, by increasing the temperature of the container, 1 atm of hydrogen can be constantly released.
図から判るように77℃から340℃に温度を上昇させ
た場合にH/TiZrFe2 の比が4.6から1.
2までの水素を利用できることになり、この値は152
m1/?合金に相当する。As can be seen from the figure, when the temperature is increased from 77°C to 340°C, the H/TiZrFe2 ratio changes from 4.6 to 1.
Up to 2 hydrogen can be used, and this value is 152
m1/? Corresponds to an alloy.
プラトーがある水素化物の場合には水素放出があっても
圧力の変化がないので、残存水素量を的確に知ることが
困難であるが、本発明の合金の水素化物の場合にはプラ
トーがないので温度と圧力を知れば残存水素量を知るこ
とができる利点がある。In the case of a hydride with a plateau, there is no change in pressure even if hydrogen is released, so it is difficult to accurately know the amount of residual hydrogen, but in the case of the hydride of the alloy of the present invention, there is no plateau. Therefore, if you know the temperature and pressure, you can know the amount of remaining hydrogen.
X線回折によれば本発明による合金東水素吸蔵により結
晶格子の膨張が認められるが、水素吸蔵により合金相の
回折線が消失したり、新しい回折線が出現したりするこ
とはない。According to X-ray diffraction, expansion of the crystal lattice is observed due to hydrogen absorption in the alloy according to the present invention, but the diffraction lines of the alloy phase do not disappear or new diffraction lines appear due to hydrogen absorption.
また、T i −H系、Zr−H系の回折線も認められ
ない。Furthermore, no Ti-H system or Zr-H system diffraction lines are observed.
完全に水素を放出させた後の合金のX線回折図は元の合
金の回折図と同じである。The X-ray diffraction pattern of the alloy after complete hydrogen release is the same as that of the original alloy.
すなわち、この合金の水素吸蔵、放出を繰り返しても構
造変化を起さず繰り返し使用に耐えることが認められた
。In other words, it was confirmed that this alloy could withstand repeated use without causing structural changes even after repeated hydrogen absorption and release.
実施例 2
実施例1記載の金属原料を使用して、下記の原子モル比
(a) Zr (0,5)Ti (0,5)Fe(1
)(b) Zr (0,6) Ti (0,4) F
e(1)(c) Zr (0,7) Ti (0,3
) Fe(1)(d) Zr (0,8) Ti (
0,2)Fe(1)(e) Zr (0,9)Ti
(0,1)Fe(1)の金属粒混合物を製造し、これを
アルゴン気流中で各々6回のアークメルトを行なって合
金塊を製ぐ造した。Example 2 Using the metal raw material described in Example 1, the following atomic molar ratio (a) Zr (0,5) Ti (0,5) Fe (1
)(b) Zr (0,6) Ti (0,4) F
e (1) (c) Zr (0,7) Ti (0,3
) Fe(1)(d) Zr(0,8) Ti(
0,2)Fe(1)(e)Zr(0,9)Ti
A metal particle mixture of (0,1)Fe(1) was produced and arc melted six times each in an argon stream to produce an alloy ingot.
大豆大に粗砕したこれらの合金を耐圧容器に入れて、室
温で真空排気した後、室温で5〜40kg/crAの水
素を導入すると、直ちに水素吸蔵が起った。These alloys crushed into soybean-sized pieces were placed in a pressure-resistant container and evacuated at room temperature. When 5 to 40 kg/crA of hydrogen was introduced at room temperature, hydrogen absorption occurred immediately.
耐圧容器を300℃まで加熱しながら真空排気を行なう
ことによってこれらの合金水素化物を分解させ、室温ま
で放冷後、40kg/crAの水素を導入して再び水素
化させた。These alloy hydrides were decomposed by evacuation while heating the pressure container to 300° C., and after cooling to room temperature, hydrogen was introduced again at 40 kg/crA.
この操作を5回繰返した後の各合金試料に吸蔵されてい
る水素の量を第1表に示す。Table 1 shows the amount of hydrogen occluded in each alloy sample after repeating this operation five times.
本発明の範囲の合金の単位重量あたりの吸蔵水素量は合
金組成に対して大きくは変動せず、ZrO量の増加とと
もに微増するのみであることがわかる。It can be seen that the amount of absorbed hydrogen per unit weight of the alloys within the scope of the present invention does not vary greatly depending on the alloy composition, and only increases slightly as the amount of ZrO increases.
(a)〜(e冶金は何れも水素の解離圧等温線にプラト
ーを有さない。None of the metallurgies (a) to (e) has a plateau in the hydrogen dissociation pressure isotherm.
平衡圧はZrの量の増加とともに低下する傾向を示した
。The equilibrium pressure showed a tendency to decrease with increasing amount of Zr.
X線回折によれば、(a)〜(e冶金とも、水素吸蔵に
より結晶格子の膨張を示した。According to X-ray diffraction, both (a) to (e metallurgy) showed expansion of the crystal lattice due to hydrogen absorption.
もとの合金相の回折線が消失したり、新しい回折線が出
現したりすることはない。The diffraction lines of the original alloy phase do not disappear and new diffraction lines do not appear.
また、Ti−H系、Zr −H系の回折線も認められな
い。Furthermore, no Ti-H system or Zr-H system diffraction lines are observed.
また、完全に水素な放出させた後の合金のX線回折図は
、もとの合金の回折図と同じであった。Moreover, the X-ray diffraction pattern of the alloy after complete hydrogen release was the same as that of the original alloy.
但し、ボンベ水素を直ちに使用せず、水素ラインに数日
滞留した水素を使用して本実施例の手順を進めた場合は
1.数回の水素の吸蔵放出後に帰属不明の回折線が出現
し、この傾向はZr含量の大きい合金はど顕著であった
。However, if you proceed with the procedure of this example using hydrogen that has been stagnant in the hydrogen line for several days without using cylinder hydrogen immediately, 1. Diffraction lines of unknown origin appeared after several hydrogen occlusions and desorptions, and this tendency was more pronounced in alloys with a high Zr content.
比較のため、ZrFeなる組成の合金を同様の手順で製
造し、同様に水素化した所、水素吸蔵量は76m1/f
と極めて少なく、また、350℃までの加熱では水素が
可逆的に放出されなかった。For comparison, when an alloy with the composition ZrFe was manufactured using the same procedure and hydrogenated in the same manner, the hydrogen storage capacity was 76 m1/f.
Furthermore, hydrogen was not reversibly released upon heating up to 350°C.
図面ばTiZrFe2水素化物の解離等温線を示す。 The drawing shows the dissociation isotherm of TiZrFe2 hydride.
Claims (1)
実質的にnに等しく、またmは実質的に1に等しいかl
より犬である) で表わされる組成を有する合金からなる水素貯蔵用合金
。 2 TiZrFe2 で表わされる組成の合金からな
る特許請求の範囲第1項の水素貯蔵用合金。[Claims] 1 formula % formula % (where l, m and n represent real numbers, the sum of 1 and m is substantially equal to n, and m is substantially equal to 1 or l
A hydrogen storage alloy consisting of an alloy having a composition represented by: 2. The hydrogen storage alloy according to claim 1, comprising an alloy having a composition represented by 2TiZrFe2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55051305A JPS5922783B2 (en) | 1980-04-17 | 1980-04-17 | Alloy for hydrogen storage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55051305A JPS5922783B2 (en) | 1980-04-17 | 1980-04-17 | Alloy for hydrogen storage |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56146844A JPS56146844A (en) | 1981-11-14 |
JPS5922783B2 true JPS5922783B2 (en) | 1984-05-29 |
Family
ID=12883200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55051305A Expired JPS5922783B2 (en) | 1980-04-17 | 1980-04-17 | Alloy for hydrogen storage |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5922783B2 (en) |
-
1980
- 1980-04-17 JP JP55051305A patent/JPS5922783B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS56146844A (en) | 1981-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0079487B1 (en) | Hydriding body-centered cubic phase alloys at room temperature | |
US4359396A (en) | Hydride of beryllium-based intermetallic compound | |
Pourarian et al. | Hydride formation in Zr1− xCexMn2 (x= 0.2, 0.3) | |
JP4846090B2 (en) | Mg-based high storage amount hydrogen storage alloy | |
Lim et al. | The effects of aluminium substitution in TiFe on its hydrogen absorption properties | |
JPS626739B2 (en) | ||
US5100615A (en) | Alloys of Ti-Cr-Cu for occluding hydrogen | |
JPS5922783B2 (en) | Alloy for hydrogen storage | |
JPS61199045A (en) | Hydrogen occluding alloy | |
JPS5947022B2 (en) | Alloy for hydrogen storage | |
US4576639A (en) | Hydrogen storage metal material | |
JPS5839218B2 (en) | Rare earth metal quaternary hydrogen storage alloy | |
JPS58217655A (en) | Hydrogen occluding multi-component alloy | |
JPS583025B2 (en) | Metal materials for hydrogen storage | |
JPS5939493B2 (en) | Titanium-cobalt multi-component hydrogen storage alloy | |
SU1004258A1 (en) | Composition for accumulating hydrogen and its isotopes | |
JPS5841334B2 (en) | Quaternary hydrogen storage alloy | |
JPS58157943A (en) | Alloy for storing hydrogen | |
Mendelsohn et al. | Hydrogen absorption in the new ternary phase LaNi4. 4B0. 6 | |
JPS6141975B2 (en) | ||
JP3000680B2 (en) | Materials for hydrogen storage | |
JPS6146537B2 (en) | ||
JPS63282226A (en) | Hydrogen occlusion alloy | |
JPS5947019B2 (en) | Rare earth metal hydrogen storage alloy | |
JPS5821021B2 (en) | Alloy for hydrogen storage |