JPS59227725A - Preparation of powder of zirconium oxide having yttrium as solid solution - Google Patents
Preparation of powder of zirconium oxide having yttrium as solid solutionInfo
- Publication number
- JPS59227725A JPS59227725A JP58099307A JP9930783A JPS59227725A JP S59227725 A JPS59227725 A JP S59227725A JP 58099307 A JP58099307 A JP 58099307A JP 9930783 A JP9930783 A JP 9930783A JP S59227725 A JPS59227725 A JP S59227725A
- Authority
- JP
- Japan
- Prior art keywords
- yttrium
- zirconium oxide
- powder
- hydroxide
- oxide powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、イツトリウムを固溶した酸化ジルコニウム粉
を、従来に無い簡単な方法で製造する新らしい技術に関
するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new technology for producing zirconium oxide powder containing yttrium as a solid solution by a simple method not previously available.
従来、イツトリウムを固溶した酸化ジルコニウム粉は、
安定化ジルコニア焼結体、あるいは部分安定化ジルコニ
ア焼結体の材料として、種々の製法が提案されて来てい
る。Conventionally, zirconium oxide powder containing yttrium as a solid solution was
Various manufacturing methods have been proposed as materials for stabilized zirconia sintered bodies or partially stabilized zirconia sintered bodies.
特に、安定化ジルコニア焼結体は、それが持つ特異な酸
素イオン電導性を利用したサンソセンサー材料として、
自動車エンジンの燃焼室内酸素濃度調節機、あるいは、
鉄鋼生産時の溶鉱炉内酸素濃度調節機などに組込まれ、
近年、急速に需要が高まっている。また、部分安定化ジ
ルコニア焼結体は2通常のセラミック材料、たとえば、
アルミナ、マグネシア等の焼結体では期待出来なかった
高靭性を有する新らしいセラミック材料として注目を集
めており、各種機械部品としての適用が検討され始めて
いる。安定化ジルコニア焼結体も5部分安定化ジルコニ
ア焼結体も、共に酸化ジルコニウム結晶中にイツトリウ
ムを固溶する事で、通常の酸化ジルコニウムに見られる
温度変化に伴なう相変態を起さない様にさせた物で、ど
ちらもイツトリウムを固溶した酸化ジルコニウム粉をそ
の原料として用いるのが通常である。現在、この両焼結
体の工業的に実用化されている製法としては、■粉体混
合法および■共沈混合法のλつが知られている。■の粉
体混合法は、酸化イツトリウム粉と酸化ジルコニウム粉
を原料とし、それぞれを所定の割合で混合し、混合粉体
を高温に加熱して酸化ジルコニウム粉中に、酸化イツト
リウムを浴解させる方法であり、いわゆる固体間の反応
となる為、その反応速度(−溶解速度)は、2種籾体ど
うじの接触面積に大きく左右されるものとなっていた。In particular, stabilized zirconia sintered bodies are used as sensor materials that utilize their unique oxygen ion conductivity.
Automotive engine combustion chamber oxygen concentration regulator, or
It is incorporated into equipment such as oxygen concentration regulators in blast furnaces during steel production.
Demand has been increasing rapidly in recent years. In addition, partially stabilized zirconia sintered bodies can be made from two common ceramic materials, e.g.
It is attracting attention as a new ceramic material with high toughness that cannot be expected from sintered bodies such as alumina and magnesia, and its application to various mechanical parts is beginning to be considered. Both the stabilized zirconia sintered body and the 5-part stabilized zirconia sintered body have yttrium dissolved in the zirconium oxide crystal, so they do not undergo the phase transformation that occurs with temperature changes that occurs with ordinary zirconium oxide. In both cases, zirconium oxide powder containing yttrium as a solid solution is usually used as the raw material. Currently, there are two known industrial methods for manufacturing these sintered bodies: (1) powder mixing method and (2) coprecipitation mixing method. The powder mixing method (2) uses yttrium oxide powder and zirconium oxide powder as raw materials, mixes each in a predetermined ratio, and heats the mixed powder to a high temperature to dissolve the yttrium oxide into the zirconium oxide powder. Since this is a so-called reaction between solids, the reaction rate (-dissolution rate) is largely influenced by the contact area between the two types of rice bodies.
従って、該接触面積を大きくシ1反応速度(=溶解速度
)を大とし、生産性を高める為に、原料として用いる酸
化イツトリウム粉、および酸化ジルコニウム粉は実用的
に可能な限り微粒径のものが望まれていた。また、製品
の組成には均一性が要求される為に、2種の原料粉どう
しの分散が均一でなければならず、通常は2種の原料粉
を同時にボールミル等に入れ粉砕−分散−混合の処理を
行なった後、必要があれば加圧成形し、粉体間の接触度
を上げ、しかる後、加熱し固溶を行なうのが一般的な製
法とされていた。しかしながら、工業的規模で作られる
酸化イツトリウム粉、および酸化ジルコニウム粉の粒径
は、たとえ−次粒子径が小さくても、粒としての単位と
なる二次、あるいは三次凝集粒子は大きな物しか得られ
ず、通常、微粒子と言われている酸化イツトリウム粉、
酸化ジルコニウム粉でもその粒径はθ、/〜7.0μm
程度である。これら微粒径の酸化イツトリウム、および
酸化ジルコニウム粉を原料として、ボールミル等で粉砕
−分散−混合の操作を行っても、各原料粉がより細かく
各粉体の一次粒子の大きさにまでなる事は期待出来ず、
従って、■の粉体混合法でイツトリウムを固溶した酸化
ジルコニウム粉を製造する場合、固溶に必要な温度は少
くとも7300℃以上必要とされ、かつ、固溶に必要な
時間も20〜50時間と長く固溶を完全に行なう為には
、より高温に、かつ長時間を必要とされていた。Therefore, in order to increase the contact area and increase the reaction rate (=dissolution rate) and increase productivity, the yttrium oxide powder and zirconium oxide powder used as raw materials are made with particle sizes as fine as practically possible. was desired. In addition, since uniformity is required for the composition of the product, the two types of raw material powders must be uniformly dispersed, and usually the two types of raw material powders are placed in a ball mill etc. at the same time and pulverized, dispersed, and mixed. After the above treatment, the general manufacturing method is to perform pressure molding if necessary to increase the degree of contact between the powders, and then heat to form a solid solution. However, even if the particle size of yttrium oxide powder and zirconium oxide powder produced on an industrial scale is small, only large secondary or tertiary agglomerated particles, which form the unit of grain, can be obtained. Yttrium oxide powder, which is usually said to be fine particles,
Even with zirconium oxide powder, the particle size is θ, /~7.0μm
That's about it. Even if these fine-particle-sized yttrium oxide and zirconium oxide powders are used as raw materials and subjected to pulverization, dispersion, and mixing operations using a ball mill, etc., each raw material powder becomes finer and finer to the size of the primary particles of each powder. cannot be expected,
Therefore, when producing zirconium oxide powder containing yttrium as a solid solution using the powder mixing method described in (2), the temperature required for solid solution must be at least 7300°C or higher, and the time required for solid solution must also be 20 to 50°C. In order to achieve complete solid solution over a long period of time, a higher temperature and a longer period of time were required.
高温での固溶処理を行なう為、得られる固m粉は固溶以
外に焼結をも同時に起し、凝集の強い塊状物となり易く
5通常は、固溶後の製品を與度粉砕しなければ実用性の
有る原料粉とはなりえなかった。Because the solid solution treatment is carried out at high temperatures, the resulting solid powder undergoes sintering in addition to solid solution, and tends to become highly agglomerated lumps5.Normally, the product after the solid solution must be pulverized several times. Otherwise, it could not be used as a practical raw material powder.
上記粉体混合法の欠点を改良すべく提案されたのが■の
共沈混合法である。共沈混合法は、水浴性のイツトリウ
ム塩、例えば、塩化イツトリウム。The coprecipitation mixing method (2) was proposed to improve the drawbacks of the powder mixing method described above. The coprecipitation mixing method uses water-bathable yttrium salts, such as yttrium chloride.
硝酸イツトリウム等の水溶液と、水溶性のジルコニウム
塩、例えば、オキシ塩化ジルコニウム、硝酸ジルコニウ
ム等の水溶液とを所定の割合に混合し、該混合溶液中に
イツトリウム、およびジルコニウムに共通の沈澱剤、例
えばアンモニア水を加え、水酸化ジルコニウムと水酸化
イツトリウムとを同時に析出させ、−次粒子レベルでの
分散を均−El、た混合水酸化物を作り、該混合水酸化
物を焙焼し、混合酸化物とすると同時に固溶を行なわせ
る方法である。An aqueous solution of yttrium nitrate or the like and a water-soluble zirconium salt such as zirconium oxychloride or zirconium nitrate are mixed at a predetermined ratio, and yttrium and a precipitant common to zirconium, such as ammonia, are added to the mixed solution. Water is added to precipitate zirconium hydroxide and yttrium hydroxide at the same time to create a mixed hydroxide with uniform dispersion at the secondary particle level, and the mixed hydroxide is roasted to form a mixed oxide. This is a method of simultaneously performing solid solution.
この方法は、酸化ジルコニウム粉と酸化イツトリウム粉
との混合が、前駆物質である水酸化ジルコニウムと水酸
化イツトリウムの混合物の段階ですでに一次粒子レベル
で分散混合されている為。This method works because the zirconium oxide powder and yttrium oxide powder are already dispersed and mixed at the primary particle level at the stage of the mixture of the precursor materials, zirconium hydroxide and yttrium hydroxide.
前記の粉体混合法に比べより理想的なものとなっている
。従って固溶に必要な温度は粉体混合法(−比べて低く
、/ 000℃程度で充分であると言われている。しか
しながら、この共沈混合法で作られる共沈混合水酸化物
は、共沈操作、すなわち共沈剤を添加する過程で順次そ
の混合組成が変化する欠点を有している。これは、イツ
トリウムとジルコニウムとを全く同時に、同じ速度で水
酸化物として析出させる事が出来ない為であり、溶液の
pH,温度、共沈剤の添加速度、反応系の攪拌条件など
の微妙な違いが、各成分の析出速度をそれぞれ独立に左
右するからである。この為5往々にして、初期に共沈し
た混合水酸化物の組成と、末期に共沈した混合水酸化物
の組成はかなり異なっている事があり、生産トラブルを
起しているのが現状であり、工業的規模で、かつ、バッ
チ式共沈操作はその管理が難しいとされている。This method is more ideal than the powder mixing method described above. Therefore, the temperature required for solid solution is lower than that of the powder mixing method (-), and it is said that around 1,000 degrees Celsius is sufficient. However, the coprecipitated mixed hydroxide produced by this coprecipitation mixing method is It has the disadvantage that the mixture composition changes sequentially during the coprecipitation operation, that is, the process of adding the coprecipitant.This is because yttrium and zirconium cannot be precipitated as hydroxides at the same time and at the same rate. This is because subtle differences in the pH and temperature of the solution, the addition rate of the coprecipitant, and the stirring conditions of the reaction system independently affect the precipitation rate of each component. However, the composition of the mixed hydroxide co-precipitated at the beginning and the composition of the mixed hydroxide co-precipitated at the final stage may be quite different, which is causing production troubles and is not suitable for industrial use. Large-scale, batch-type coprecipitation operations are said to be difficult to manage.
また、共沈混合法で得られた共沈混合水酸化物遠心分離
機、フィルタープレス等の長時間の使用が必要である事
も、この方法の生産性を低めている原因の1つである。In addition, the need to use coprecipitation mixed hydroxides obtained by the coprecipitation mixing method for a long time using centrifuges, filter presses, etc. is also one of the reasons for lowering the productivity of this method. .
また、上記の共沈混合水酸化物は、炉別後も多量の水分
を含んでおり、乾燥には多大な熱量を必要とする欠点も
有している。Further, the coprecipitated mixed hydroxide described above contains a large amount of water even after being furnaced, and has the disadvantage that a large amount of heat is required for drying.
さらシ=、上記の共沈混合水酸化物を乾燥した物は、凝
集の激しい塊状物となり、これを加熱し。When the above-mentioned co-precipitated mixed hydroxide is dried, it becomes a highly agglomerated lump, which is heated.
固溶を行った後の製品は極めて凝集の激しい塊状物とな
り、■の粉体混合法と同様、粉砕を行なわないと、実用
性ある原料粉とはなり得なかった。The product after solid solution becomes a highly agglomerated lump, and as with the powder mixing method (2), it could not be used as a practical raw material powder unless it was pulverized.
上記の凝集を防ぐ意味で、共沈混合水酸化物を有機溶媒
、たとえばアセトン、メタノール等で洗浄し、水分除去
を行った後、乾燥、および固溶の為の加熱を行な)方法
も提案されているが、当然操作は煩雑なものとなる。In order to prevent the above-mentioned agglomeration, we also proposed a method in which the coprecipitated mixed hydroxide is washed with an organic solvent such as acetone or methanol, water is removed, and then dried and heated to form a solid solution. However, the operation is naturally complicated.
本発明者等は、固溶(=必要な加熱温度が低く、固溶後
の機械粉砕を必要としなく、かつ、製造された粉体の組
成が均一なイツトリウムを固溶した酸化ジルコニウム粉
の製法を鋭意検討してきた結果、イツトリウム原料とし
て、ゲル状不定形水酸化イツトリウムを用い、ジルコニ
ア原料として、通常の酸化ジルコニウム粉を用いること
により。The present inventors have developed a method for producing zirconium oxide powder containing yttrium in solid solution (= low heating temperature required, no need for mechanical pulverization after solid solution, and the composition of the produced powder is uniform). As a result of intensive research, we decided to use gelled amorphous yttrium hydroxide as the yttrium raw material and ordinary zirconium oxide powder as the zirconia raw material.
上記の目的を達し得ることを見出し1本発明を完成した
。The inventors discovered that the above objects could be achieved and completed the present invention.
即ち、本発明は2表面にゲル状不定形水酸化イツトリウ
ムを付着させた酸化ジルコニウム粉を焙焼する事を特徴
とするイツトリウムを固溶した酸化ジルコニウム粉の製
造方法である。That is, the present invention is a method for producing zirconium oxide powder containing yttrium as a solid solution, which is characterized by roasting zirconium oxide powder to which gelled amorphous yttrium hydroxide is attached to two surfaces.
以下;一本発明の詳細な説明する。Hereinafter, one aspect of the present invention will be described in detail.
本発明に使用するゲル状不定形水酸化イツトリウムは、
水浴性のイノ)リウム塩、例えば、塩化イツトリウム、
硝酸イツトリウム等の鉱酸塩、酢酸イツトリウム、ギ酸
イツトリウム等の有機酸塩などの水溶液と、アルカリ、
例えば、アンモニア、力性ソーダ、力性カリ、等の水溶
液を反応させて得られる半透明の非晶質物であり、水中
に分散した状態ではノリ状を■する物である。The gel-like amorphous yttrium hydroxide used in the present invention is
Bathable inolium salts, such as yttrium chloride,
Aqueous solutions of mineral acid salts such as yttrium nitrate, organic acid salts such as yttrium acetate and yttrium formate, and alkalis,
For example, it is a translucent amorphous substance obtained by reacting an aqueous solution of ammonia, aqueous soda, aqueous potassium, etc., and has a paste-like appearance when dispersed in water.
イツトリウム塩の水溶液とアルカリの水溶液との反応は
、温度、濃度= pH等を変化させる事で生成物の種類
が変わるものであり、本発明に使用するゲル状不定形水
酸化イツトリウムを選択的に作る方法としては、反応温
度を好ましくは4to℃以下に調整し、イツトリウム濃
度を好ましくはイツトリウムイオン濃度として0.2M
/を以下に調整し、pHを好ましくは♂、!以上に保ち
1反応させる事により製造される。In the reaction between an aqueous solution of yttrium salt and an aqueous alkali solution, the type of product changes by changing the temperature, concentration = pH, etc. As a method of making it, the reaction temperature is preferably adjusted to 4to℃ or less, and the yttrium concentration is preferably 0.2M as the yttrium ion concentration.
/ Adjust the pH to below, preferably ♂,! It is manufactured by maintaining the temperature above and performing one reaction.
また、アルカリの必要量は、イツトリウム/原子に対し
て、3当量以上である事が必要である。Further, the required amount of alkali needs to be 3 equivalents or more with respect to yttrium/atom.
もちろん、本発明に使用するゲル状不定形水酸化イツト
リウムは、純粋にゲル状不定形水酸化イツトリウムのみ
から構成される物でなくとも、一部、水酸化イツトリウ
ムあるいはイツトリウムの塩基性塩が混っている物も使
用することができる。Of course, the gelled amorphous yttrium hydroxide used in the present invention does not have to be composed purely of gelled amorphous yttrium hydroxide, but may be partially mixed with yttrium hydroxide or a basic salt of yttrium. You can also use what you have.
上記の方法で作られたゲル状不定形水酸化イツトリウム
は、第1図のX線回折チャートに示したごとく非晶質物
の特徴であるブロードな回折パターンを示し、第2図に
示した結晶質水酸化イツトリウムのX線回折チャートが
示すシャープな回折パターンと明らかに異なる。また、
ゲル状不定形水酸化イツトリウムを常温真空乾燥した後
の赤外吸収スペクトルを見ると、第3図に示すように水
酸基に基因する吸収ピークがブロードなものであり、第
9図に示した結晶質水酸化イツトリウムの赤外線吸収ス
ペクトルのように明確な水酸基に基因する吸収ピークを
持つものと明らかに異なっている。さらに、ゲル状不定
形水酸化イツトリウムを水洗した後、酸に溶解して該溶
液の成分を分析したところ、アルカリ成分は無く、また
、イツトリウム塩の酸残基も存在しない事から、イツト
リウムと酸素と水から構成されていることが判明した。The gel-like amorphous yttrium hydroxide produced by the above method exhibits a broad diffraction pattern, which is characteristic of an amorphous material, as shown in the X-ray diffraction chart in Figure 1, and a crystalline one, as shown in Figure 2. This is clearly different from the sharp diffraction pattern shown in the X-ray diffraction chart of yttrium hydroxide. Also,
Looking at the infrared absorption spectrum of gel-like amorphous yttrium hydroxide after vacuum drying at room temperature, the absorption peak due to hydroxyl groups is broad, as shown in Figure 3, and the crystalline substance shown in Figure 9 is It is clearly different from the infrared absorption spectrum of yttrium hydroxide, which has clear absorption peaks due to hydroxyl groups. Furthermore, after washing the gel-like amorphous yttrium hydroxide with water and dissolving it in acid, the components of the solution were analyzed. As a result, there was no alkali component and no acid residues of yttrium salt were present. It turns out that it is made up of water and water.
さらに、上記のゲル状不定形水酸化イツトリウムは、水
中で半透明であるにもかかわらず5.2oooG程度の
G値で遠心沈降が可能であり、G−3のガラスフィルタ
ーで水中から戸別できる。Furthermore, although the gel-like amorphous yttrium hydroxide is translucent in water, it can be centrifugally sedimented with a G value of about 5.2 oooG, and can be separated from water using a G-3 glass filter.
これらのことから判断して、水酸化イツトリウム分子が
多数縮重合した、ポリマーである事が予想される。Judging from these facts, it is expected that it is a polymer in which many yttrium hydroxide molecules are condensed and polymerized.
このゲル状不定形水酸化イツトリウムは1通常の有機高
分子、特に水酸基を多数有するポバールなどと同様にゲ
ル状水酸化イツトリウムを懸濁させた水中に、酸化ジル
コニウム粉を加え、攪拌を行った後放置すると、該溶液
中に自由に分散した状態のゲル状不定形水酸化イツトリ
ウムは無くなり、酸化ジルコニウム粉の表面に吸着する
。その結果、該浴液の上ずみ液は透明なものとなる。こ
の場合の固形分沈降体積は、酸化ジルコニウム粉のみの
スラリーが示す沈降体積とほぼ同じであり、もちろん、
ゲル状不定形水酸化イツトリウムのみが示す沈降体積よ
りも小さい。This gel-like amorphous yttrium hydroxide is produced by adding zirconium oxide powder to water in which gel-like yttrium hydroxide is suspended in the same manner as ordinary organic polymers, especially poval, which has many hydroxyl groups, and stirring. When left to stand, the gel-like amorphous yttrium hydroxide that is freely dispersed in the solution disappears and adsorbs onto the surface of the zirconium oxide powder. As a result, the rising liquid of the bath liquid becomes transparent. The sedimentation volume of solids in this case is almost the same as the sedimentation volume of a slurry of only zirconium oxide powder, and of course,
It is smaller than the sedimentation volume exhibited only by gel-like amorphous yttrium hydroxide.
本発明の酸化ジルコニウム粉末の表面に、ゲル状不定形
水酸化イツトリウムを付着させる方法は、所定量のゲル
状不定形水酸化イツトリウムを先に用意して、酸化ジル
コニウム粉と混合する方法。The method for attaching gelled amorphous yttrium hydroxide to the surface of the zirconium oxide powder of the present invention is to first prepare a predetermined amount of gelled amorphous yttrium hydroxide and mix it with the zirconium oxide powder.
アルカリ水酸液中に酸化ジルコニウム粉を懸濁させたの
ち、該懸濁液中に所定量のイツトリウム塩水溶液を添加
し、ゲル状不定形水酸化イツトリウムを析出させると同
時に酸化ジルコニウム粉表面に付着させる方法、あるい
は、イツトリウム塩の水浴液中に酸化ジルコニウム粉を
懸濁させておいて、該懸濁液中にアルカリの水溶液を加
え、ゲル状不定形水酸化イツトリウムを析出させると同
時に、酸化ジルコニウム粉表面に付着させる方法などが
ある。また、酸化ジルコニウム粉の表面(二付着させる
ゲル状不定形水酸化イツトリウムの量は、酸化ジルコニ
ウム中に固溶するイツトリウムの量より決めれば良く、
製品の使用目的により随意法められる。例えば、部分安
定化ジルコニア焼結体用の原料粉としての場合には、ジ
ルコニア粉表面に付着させるゲル状不定形水酸化イツト
リウムを、酸化イツトリウムに換算して、Y2(%/
Z r Q2のモル比が(3〜、t)/(y7〜9.5
′)の範囲の内から選ばれるある比率になる量を用いれ
ば良く、また、安定化ジルコニア焼結体用原料粉として
の場合は、同様に、Y2O1/ZrO2のモル比が(l
〜/2)/(タコ〜♂?)の範囲の内から選ばれるある
比率の量を用いればよい。After suspending zirconium oxide powder in an alkaline hydroxide solution, a predetermined amount of yttrium salt aqueous solution is added to the suspension to precipitate gel-like amorphous yttrium hydroxide, which simultaneously adheres to the surface of the zirconium oxide powder. Alternatively, zirconium oxide powder is suspended in a water bath solution of yttrium salt, and an aqueous alkali solution is added to the suspension to precipitate gel-like amorphous yttrium hydroxide. There are methods to attach it to the powder surface. In addition, the amount of gel-like amorphous yttrium hydroxide to be attached to the surface of the zirconium oxide powder may be determined based on the amount of yttrium dissolved in the zirconium oxide.
Laws may be regulated at will depending on the intended use of the product. For example, in the case of raw material powder for partially stabilized zirconia sintered bodies, gel-like amorphous yttrium hydroxide to be attached to the surface of the zirconia powder is converted to yttrium oxide, and Y2 (%/
The molar ratio of Z r Q2 is (3~,t)/(y7~9.5
’), and in the case of raw material powder for stabilized zirconia sintered bodies, the molar ratio of Y2O1/ZrO2 is
A certain proportion of the amount selected from the range of ~/2)/(octopus ~ male?) may be used.
さらに、 Y2O3/ ZrO2のモル比が大なる組成
に関しても本発明の方法が適用できることは、実施例か
らも判る。Furthermore, it can be seen from the examples that the method of the present invention can be applied to compositions having a large molar ratio of Y2O3/ZrO2.
上記の水溶液からゲル状不定形水酸化イツトリウム吸着
酸化ジルコニウム粉の分離は、通常実施されている方法
、例えば遠心濾過機、プレスフィルター等を用いた固液
分離の方法で分離される。The gel-like amorphous yttrium hydroxide-adsorbed zirconium oxide powder is separated from the aqueous solution by a commonly used method, such as solid-liquid separation using a centrifugal filter, press filter, or the like.
本発明の表面にゲル状不定形水酸化イツトリウムを付着
した酸化ジルコニウム粉を焙焼する温度は、粉体混合法
に比べて低い温度で良く、具体的には900〜7300
℃程度で良い。また、焙焼時間もθ8.2オ〜一時間で
充分である。The temperature at which the zirconium oxide powder with the gelled amorphous yttrium hydroxide attached to the surface of the present invention is roasted may be lower than that in the powder mixing method, and specifically, the temperature is 900 to 7300.
It should be around ℃. Further, a roasting time of θ8.2° to 1 hour is sufficient.
この理由として考えられるのは1本発明で使用するゲル
状不定形水酸化イン)9ウムを付着した構造の酸化ジル
コニウム粉は、酸化ジルコニウム粉の表面のかなりの部
分をゲル状不定形水酸化イツトリウムが薄い層状に被覆
しており、従来の粉体混合法で用いられる酸化イツトリ
ウムと酸化ジルコニウム粉末どうしの接触面積に比べ極
めて大きな接触面積を有する為、固溶速度が大きくなる
ためと考えられる。One possible reason for this is that the zirconium oxide powder used in the present invention, which has a structure in which 9 um (gel-like amorphous yttrium hydroxide) is attached, has a large portion of the surface of the zirconium oxide powder covered with gel-like amorphous yttrium hydroxide. This is thought to be due to the fact that the solid solution rate increases because the powder is coated in a thin layer and has a much larger contact area than the contact area between yttrium oxide and zirconium oxide powders used in conventional powder mixing methods.
また、酸化ジルコニウム粉の表面に付着したゲル状不定
形水酸化イツトリウムは、かなり強固に付着しており、
スラリー状態で激しく攪拌しても。In addition, the gel-like amorphous yttrium hydroxide that adhered to the surface of the zirconium oxide powder was quite firmly attached.
Even if the slurry is vigorously stirred.
水分の濾過操作、あるいは乾燥などの操作を行っても分
離することはない。従つ。て、これらの操作を行なう事
による組成の変動は見られない。It does not separate even when water is filtered or dried. Follow. Therefore, no change in composition was observed due to these operations.
さらに驚くべき事には、酸化ジルコニウム粉とゲル状不
定形水酸化物とを水中懸濁状態で混合し、表面にゲル状
不定形水酸化イツトリウムを付着した酸化ジルコニウム
粉を、炉別して、!θ℃〜/θO℃の熱風乾燥機で乾燥
した物は、凝集の無い、流動性を有した粉体となる事で
ある、本発明の方法で作られたイツトリウムを固溶した
酸化ジルコニウム粉は、固溶の為の焙焼を終えた段階で
凝集は無く、粉砕操作を必要とせず、そのまま、成形材
料用原料粉として用いる事が可能である。また、その粒
度分布は、原料として用いる酸化ジルコニウム粉の粒度
分布とほとんど同じ、−
であり、その使用目的に応じて原料となる酸化ジルコニ
ウム粉の粒度分布を選択すれば良い事になる。What is even more surprising is that zirconium oxide powder and gel-like amorphous hydroxide are mixed in a suspended state in water, and the zirconium oxide powder with gel-like amorphous yttrium hydroxide attached to the surface is separated in a furnace! Zirconium oxide powder containing yttrium as a solid solution produced by the method of the present invention is a powder that is free from agglomeration and has fluidity when dried in a hot air dryer at θ℃~/θO℃. There is no agglomeration at the stage of completion of roasting for solid solution, and there is no need for a pulverization operation, and it can be used as it is as a raw material powder for molding materials. Moreover, its particle size distribution is almost the same as the particle size distribution of the zirconium oxide powder used as a raw material, which means that the particle size distribution of the zirconium oxide powder used as a raw material can be selected according to its intended use.
本発明で言う所のイツトリウムを固溶した酸化ジルコニ
ウム粉とは、該物中の元累の組成が、ジルコニウム、酸
素、およびイツトリウムから成り、しかも、該粉のX線
回折チャートには、酸化イツトリウムの独立した回折ピ
ークがほとんど現われないものである。In the present invention, the zirconium oxide powder containing yttrium as a solid solution has an elementary composition of zirconium, oxygen, and yttrium, and the X-ray diffraction chart of the powder shows that yttrium is Almost no independent diffraction peaks appear.
実施例/ A〕 ゲル状不定形水酸化イツトリウムの製造。Example/ A] Production of gel-like amorphous yttrium hydroxide.
塩化イツトリウム、硝酸イツトリウム、酢酸イットリウ
ムの各0、/ M/を濃度の水溶液yt中に、3M/l
a度のアンモニア水をθ、4tJ−tを一度に加え、室
温で30分間攪拌を行った後、生じたゲル状物をそれぞ
れo−3のガラスフィルターで涙取した。各ゲル状物の
一部を取出し、水洗を行ない。Each of yttrium chloride, yttrium nitrate, and yttrium acetate was added to an aqueous solution yt with a concentration of 3 M/l.
A degree of ammonia water θ and 4tJ-t were added at once, and the mixture was stirred at room temperature for 30 minutes, and then the resulting gel was filtered out using an O-3 glass filter. A portion of each gel material was taken out and washed with water.
それぞれのX線回折を測定したところ、各ゲル状物とも
、第1図に示したチャート通りであった。When X-ray diffraction was measured for each gel-like material, the results were as shown in the chart shown in FIG.
また、各ゲル状物の7部を水洗した後常温で真空乾燥し
、それぞれの赤外吸収スペクトルを測定したところ、各
ゲル状物とも第3図に示したチャート通りであった。ま
た、各ゲル状物の7部を水洗した後、希硫酸に溶解し、
該溶液中のアンモニアイオン、塩素イオン、硝酸イオン
、および酢酸イオンを常法により定量したが、各成分と
も各ゲル中には観測されなかった。In addition, 7 parts of each gel-like material was washed with water and vacuum-dried at room temperature, and the infrared absorption spectra of each were measured, and the results were as shown in the chart shown in FIG. 3 for each gel-like material. In addition, after washing 7 parts of each gel with water, dissolve it in dilute sulfuric acid,
Ammonia ions, chloride ions, nitrate ions, and acetate ions in the solution were quantified by conventional methods, but none of the components were observed in each gel.
B〕 ゲル状水酸化イツトリウムの酸化ジルコニウム粉
表面への付着。B] Adhesion of gel-like yttrium hydroxide to the surface of zirconium oxide powder.
前記の各ゲル状物をそれぞれ<11の水中へ加えて攪拌
し、ゲル状物を懸濁した液を作った。該懸濁液を攪拌を
とめて/昼夜放置したところ、各ゲル状物は少し沈降し
、その沈降体積はそれぞれほぼ3.61であった。名演
を再度攪拌しつつ、酸化ジルコニウム粉(平均粒径/μ
m、純度99.J″w + % )を名演に9,6モル
(/、/1rKq)添加し、70分後に攪拌を停止し、
2時間放置した。名演とも容器の底に固形物が沈降し、
上部は透明な液であった。Each of the above-mentioned gel-like substances was added to <11 water and stirred to prepare a suspension of the gel-like substances. When the suspension was left standing day and night with stirring, each gel-like substance slightly settled, and the sedimentation volume was approximately 3.61. While stirring the famous powder again, zirconium oxide powder (average particle size/μ
m, purity 99. 9.6 mol (/, /1rKq) of J″w + %) was added to the well, stirring was stopped after 70 minutes,
It was left for 2 hours. With great performances, solid matter settles to the bottom of the container,
The upper part was a clear liquid.
底部の固形物沈降体積は名演とも0.21であった。The sedimentation volume of solids at the bottom was 0.21 in both cases.
上記の名演をG−4のガラスフィルターで固形物分離を
行なったのち、それぞれの含水ケークを700℃に調温
した熱風乾燥器で乾燥した。それぞれのケークは、凝集
の無い、流動性の良い粉状物となっていた。After the solids were separated using a G-4 glass filter, each of the water-containing cakes was dried in a hot air dryer whose temperature was adjusted to 700°C. Each cake was a powder with good fluidity and no agglomeration.
C〕 固溶の為の焙焼。C] Roasting for solid solution.
前記した各乾燥粉をそれぞれ70等分し、次の条件で、
焙焼した。Each of the dry powders described above was divided into 70 equal parts and processed under the following conditions.
Roasted.
イ)9θθ℃×一時間
口) l xグ時間
ハ)//θθ℃×/時間
二) ×2 #
ホ) ×グ I
へ)/100℃×♂時間
ト)/3θO℃X O,2j時間
チ) ×O,j #す)×/
ヌ)×2N
各焙焼物のイツトリウムとジルコニアの組成比を、ケイ
光X線法で測定したところ、それぞれが。A) 9θθ℃×1 hour (mouth) l x g time C) //θθ℃×/hour 2) ×2 # e) H) ×O,j #S)×/ N)×2N The composition ratio of yttrium and zirconia in each roasted product was measured by fluorescent X-ray method, and the results were as follows.
Y2O3/ZrO2のモル比で表わして(θ、θグ士o
、oθ/)/(o、9t±θ、00.:2 )の範囲に
あった。Expressed as the molar ratio of Y2O3/ZrO2 (θ, θg
, oθ/)/(o, 9t±θ, 00.:2).
また、各焙焼物のX線回折を行ったところ、酸化ジルコ
ニウム中へ固溶していない酸化イツトリウムの単独ピー
クが測定されたのは、各資料とも焙焼条件がイ)1口)
、ハ)、二)の物であり、その他の条件で焙焼したもの
には見られなかった。In addition, when X-ray diffraction was performed on each roasted product, a single peak of yttrium oxide, which was not solidly dissolved in zirconium oxide, was measured.
, C), and 2), and were not observed in the roasted products under other conditions.
また、イ)、口)、ノ\)、二)の各焙焼物を一定量採
取し、これに一定量の酸化ビスマスを内部標準として加
え混合した試料のX線回折チャートを作り、酸化イツト
リウムの(222)面の回折ピークの高さと、酸化ビス
マスの(/、2/)面の回折ピークの高さの比を測定す
る方法で、各試料中に存在する未固溶酸化イツトリウム
の量を概略測定した。In addition, we collected a certain amount of each of the roasted products of a), 口), \), and 2), added a certain amount of bismuth oxide as an internal standard, and created an X-ray diffraction chart of the mixed sample. This method measures the ratio of the height of the diffraction peak of the (222) plane to the height of the diffraction peak of the (/, 2/) plane of bismuth oxide, which roughly estimates the amount of undissolved yttrium oxide present in each sample. It was measured.
結果は各試料とも、イ)の条件の物は約夕θwL%、口
)の条件の物は20wt1%、ハ)の条件の物は72w
t4−二)の条件の物は♂W1%であった。The results for each sample are approximately θwL% for the sample under condition a), 20wt1% for the sample under condition a), and 72w for the sample under condition c).
In the case of condition t4-2), the male W was 1%.
また、得られた各イツトリウム同浴酸化ジルコニウム粉
の構造は、原料として用いた酸化ジルコニウムの構造で
ある単斜晶単独構造でなく、正方晶と立方晶と単斜晶の
混合物であり、その存在比率は使用したゲル状不定形水
酸化イツトリウムの違いにより変るものでは無く、焙焼
条件により多少変わるものである事が判った。例として
口)およびホ)の条件で焙焼した製品のX線回折チャー
トを第!図(a)および第j図fblに示す。In addition, the structure of each yttrium bathed zirconium oxide powder obtained is not a single monoclinic structure, which is the structure of the zirconium oxide used as a raw material, but a mixture of tetragonal, cubic, and monoclinic, and the presence of It was found that the ratio does not change depending on the gel-like amorphous yttrium hydroxide used, but changes somewhat depending on the roasting conditions. As an example, here is an X-ray diffraction chart of the product roasted under the conditions of (1) and (5). It is shown in Figure (a) and Figure J fbl.
また、得られた各製品は凝集が無く、流動性の良い粉で
あり2各粉ともその平均粒径はθ、91μm〜/、/4
tltrnの間にあった。In addition, each product obtained is a powder with good fluidity without agglomeration, and the average particle size of each powder is θ, 91 μm ~ /, /4
It was between tltrn.
実施例コ
塩化イツトリウムの0./M/l@度の水浴液411中
に−3M/を濃度の力性ソーダ水をo、<ttt一度に
加え2実施例/と同様なゲル状物を作った。該ゲル状物
の組成および構造を実施例/と同様の方法で測定したと
ころ、実施例/で作ったゲル状不定形水酸化イツトリウ
ムと同じ物である事が判った。このゲル状物を用いて実
施例/と同様に酸化ジルコニウムへの付着、およびそれ
に続く乾燥。Example 0.0 of co-yttrium chloride. A gelatinous material similar to Example 2 was prepared by adding -3M/l strength soda water at once to a water bath solution 411/M/l@degrees. The composition and structure of the gel-like material were measured in the same manner as in Example 1, and it was found that it was the same as the gel-like amorphous yttrium hydroxide produced in Example 2. This gel-like material was used to adhere to zirconium oxide in the same manner as in Example, followed by drying.
焙焼(温度:7700℃、時間;グ時間)を行った。得
られた粉末は、その組成、構造、平均粒径、ともに実施
例/で作られた物と同等であった。Roasting (temperature: 7,700° C., time: 7 hours) was performed. The obtained powder was equivalent to that produced in Example/in terms of composition, structure, and average particle size.
実施例3
塩化イツトリウムのθ、/M/を濃度の水溶液りt中に
、実施例1で用いたのと同じ酸化ジルコニウム粉を9.
6モル(/、1rKy)加え、攪拌を行ない均一な懸濁
液を作った。該懸濁液中に、3 M/を濃度のアンモニ
ア水θ、<t J−tを一度に加え、攪拌を3θ分間続
けた後、一時間放置した。容器の底には白色固体が沈澱
しており、その沈降体積はθ、/lであった。上部は透
明な液であり、該液中のイツトリウム濃度を通常の方法
で測定したところ。Example 3 The same zirconium oxide powder as used in Example 1 was added to an aqueous solution of yttrium chloride at a concentration of 9.
6 mol (/, 1 rKy) was added and stirred to make a uniform suspension. Aqueous ammonia θ, <t J-t with a concentration of 3 M/ was added at once to the suspension, stirring was continued for 3 θ minutes, and then left for 1 hour. A white solid was precipitated at the bottom of the container, and the precipitated volume was θ,/l. The upper part is a transparent liquid, and the yttrium concentration in the liquid was measured using a normal method.
イツトリウムは検出されなかった。Yttrium was not detected.
得られた沈澱なG−4のガラスフィルターで戸数し、実
施例/と同様の方法で乾燥、および焙焼(温度:710
0℃、時間ニゲ時間)を行った。The resulting precipitate was filtered through a glass filter of G-4, dried and roasted in the same manner as in Example (temperature: 710°C).
The test was carried out at 0° C. for several hours.
得られた粉状物は、その組成、構造、平均粒径とも実施
例/で作られた物と同等の物であった。The obtained powder was equivalent to that produced in Example/in terms of composition, structure, and average particle size.
また、得られた粉状物には凝集が見られず流動性の良い
粉であった。Further, the obtained powder showed no agglomeration and had good fluidity.
実施例グ
濃度が0.3M/lのアンモニア水<1.11と一実施
例/で用いたのと同じ酸化ジルコニウム粉966モル(
/、11Kg)とを混合し、攪拌をしなからθ、2M/
を濃度の塩化イツトリウム水溶液2tを添加し。Example: Aqueous ammonia with a concentration of 0.3 M/l<1.11 and 966 mol of the same zirconium oxide powder as used in Example/
/, 11Kg) and stirred, then θ, 2M/
2 tons of yttrium chloride aqueous solution with a concentration of
70分間後に攪拌を停止した。2時間放置後、上ずみ液
中のイツトリウム濃度を測定したところ、イツトリウム
は検出されながった。Stirring was stopped after 70 minutes. When the yttrium concentration in the supernatant liquid was measured after being left for 2 hours, no yttrium was detected.
上記で得られた固形分を戸数した後、実施例/と同様に
乾燥及び焙焼(温度:7700℃、時開ニゲ時間)を行
なった所、凝集の無い流動性の良い粉を得た、接物の組
成、構造、平均粒径な実施例/と同様に測定したところ
、実施例/で作られた物と同等の物である事が判った。After weighing the solid content obtained above, it was dried and roasted (temperature: 7,700°C, occasional heating time) in the same manner as in Example, and a powder with good fluidity without agglomeration was obtained. The composition, structure, and average particle diameter of the contact material were measured in the same manner as in Example/, and it was found to be equivalent to the product made in Example/.
実施例j
実施例/と同様な方法でゲル状不定形水酸化イノ)リク
ムを作り、実施例/で用いたのと同じ酸化ジルコニウム
粉に、次の組成比になるよう実施例1と同様な方法で付
着した。Example J A gel-like amorphous ino)licum hydroxide was prepared in the same manner as in Example/, and the same zirconium oxide powder as used in Example/ was added in the same manner as in Example 1 to have the following composition ratio. Attached by method.
イ) Y2O3/Zr02(モル比)=1/り2口)
=/ 乙/lグ
ハ) =3.2/l
♂二) =グθ/6θ
各試料を、実施例1と同様な方法で乾燥し、ついで焙焼
(温度;7100℃、時間:1.を時間)を行った。b) Y2O3/Zr02 (molar ratio) = 1/2 units)
=/ Otsu/l Guha) =3.2/l
♂2) =gθ/6θ
Each sample was dried in the same manner as in Example 1, and then roasted (temperature: 7100°C, time: 1 hour).
得られた粉状物は、それぞれ凝集の無い流動性のある粉
であった。また、各粉の平均粒径は、それぞれが/、0
μm〜/、/¥μmの範囲にあった。The obtained powders were free-flowing powders without agglomeration. In addition, the average particle size of each powder is /,0
It was in the range of μm to /, /\μm.
得られた各粉のX線回折を行ないイツトリウムの固溶の
状態を実施例/と同様の方法で測定した。Each of the obtained powders was subjected to X-ray diffraction, and the state of solid solution of yttrium was measured in the same manner as in Example.
結果は、イ)1口)、ハ)は共に未固溶酸化イツトリウ
ムの単独ピークは無く、それぞれ第6図に示したチャー
トであった。二)の条件で作った物は未固溶酸化イツト
リウムがごw14あった。The results were as shown in FIG. 6, with no single peak of undissolved yttrium oxide in both a) 1 mouth) and c). The product made under the conditions of 2) contained 14% of undissolved yttrium oxide.
比較例/
純度カタタ、りwt%、平均粒径がθ、tμmの酸化イ
ツトリウム粉と、実施例/で用いたのと同じ酸化ジルコ
ニウム粉とを用い2モル比がY2O3/Z r02−グ
/り乙、およびざ/92になるように計量混合し、それ
ぞれボールミルに入れ、l!り時間分散、混合した混合
粉を作った。Comparative Example/Yttrium oxide powder with a purity of 1.5 wt% and an average particle size of θ, t μm and the same zirconium oxide powder as used in Example/ were used in a 2 molar ratio of Y2O3/Zr02-g/R. Weigh and mix so that Otsu, and ZA are /92, put them in a ball mill, and mix them. A mixed powder was made by dispersing and mixing for a while.
各混合粉を次の条件で焙焼した。Each mixed powder was roasted under the following conditions.
イ)焙焼無し
口)I10θ℃X1時間
ハ)/3θO℃×2時間
二) ×24を時間
上記のハ)および二)の条件で得られた物は、凝集が大
であり、粉状では無く塊状物であった。B) No roasting) I10θ℃ x 1 hour C) / 3θO℃ x 2 hours 2) x 24 hours The product obtained under the above conditions C) and 2) has a large amount of agglomeration and is not in powder form. There were no lumps.
また、それぞれの焙焼物のX線回折を行ない、イツトリ
ウムの固溶の程度を2実施例/と同じ酸化ビスマスを用
いた内部標準法で測定したところ表−7のような結果と
なった。Further, each roasted product was subjected to X-ray diffraction, and the degree of solid solution of yttrium was measured using the same internal standard method using bismuth oxide as in Example 2, and the results were as shown in Table 7.
また、 Y2O5/Zr02= / / 92 f)1
ft合8 ライ) オヨび口)の条件で処理した物のX
線回折チャートを、第7図−(alib)i二本す。Also, Y2O5/Zr02= / / 92 f)1
X of the product treated under the conditions of
Two line diffraction charts are shown in Figure 7-(alib)i.
表−/
実施例および比較例から判るように、本発明の方法は、
イツトリウムの固溶速度が速く、かつ。Table-/ As can be seen from the Examples and Comparative Examples, the method of the present invention:
The solid solution rate of yttrium is fast and.
得られた物に凝集が見られず、原料として用いる酸化ジ
ルコニウム粉の粒径なほとんど維持するものである。No agglomeration was observed in the obtained product, and the particle size of the zirconium oxide powder used as the raw material was almost maintained.
さらに、実施例!から判るようC二、本発明の方法では
、酸化ジルコニウム中に酸化イツトリウムをY2O3/
ZrO2(モル比) = 3’ 0 / 70 程度
マチ。Furthermore, examples! As can be seen from C2, in the method of the present invention, yttrium oxide is added to zirconium oxide as Y2O3/
ZrO2 (mole ratio) = 3'0/70 approximately.
極めて容易に固溶しうる。It can be dissolved in solid solution very easily.
第1図はゲル状不定形水酸化イツトリウムのX線回折チ
ャート、第2図は結晶質水酸化イツトリウムのX線回折
チャート、第3図は常温真空乾燥後のゲル状不定形水酸
化イツトリウムの赤外吸収スペクトル、第9図は結晶質
水酸化イツトリウムの赤外吸収スペクトル、第!図 +
3+は実施例/において(ロ)の条件で(2θO℃グ時
間)焙焼して得られた製品のX線回折チャート、第5図
fb)は実施例/において(ホ)の条件(I10θ℃
g時間)で焙焼して得られた製品のX線回折チャート、
第6図は実施例において、(イ)の条件(Y2O:l/
Zr02(モル比) −179、りで得られた製品の
X線回折チャート、第7図 (a+は比較例/において
、イ)の条件(焙焼なし)で処理した物のX線回折チャ
ート、第7図 (blは比較例11′−おいて1口))
の条件(I10θ℃グ重量倍焼)で処理した物のX線回
折チャートである。
特許出願人 旭化成工業株式会社
第1図
(2e)
第2図
(2e)
第3図
波& (xlo2cm−’)
第4図
5皮 R1(x 10” cm−’)
第6図
30 、 40 50
600
第7図
(0)
27 29 3+ 33 350
(b)Figure 1 is an X-ray diffraction chart of gelled amorphous yttrium hydroxide, Figure 2 is an X-ray diffraction chart of crystalline yttrium hydroxide, and Figure 3 is the red color of gelled amorphous yttrium hydroxide after vacuum drying at room temperature. External absorption spectrum, Figure 9 is the infrared absorption spectrum of crystalline yttrium hydroxide, Figure 9! Figure +
3+ is an X-ray diffraction chart of the product obtained by roasting under the conditions (B) (for a time of 2θO℃) in Example/.
X-ray diffraction chart of the product obtained by roasting at
FIG. 6 shows the conditions (A) (Y2O:l/
Zr02 (molar ratio) -179, X-ray diffraction chart of the product obtained by ri, Figure 7. Figure 7 (BL is 1 mouthful in Comparative Example 11'-)
This is an X-ray diffraction chart of a product treated under the following conditions (I10θ°C, double the weight). Patent Applicant: Asahi Kasei Industries, Ltd. Figure 1 (2e) Figure 2 (2e) Figure 3 Wave &(xlo2cm-') Figure 4 5 Skin R1 (x 10"cm-') Figure 6 30, 40 50
600 Figure 7 (0) 27 29 3+ 33 350 (b)
Claims (1)
酸化ジルコニウム粉を焙焼する事を特徴とするイツトリ
ウムを固溶した酸化ジルコニウム粉の製造方法Surface 1: A method for producing zirconium oxide powder containing yttrium as a solid solution, characterized by roasting zirconium oxide powder to which gelatinous amorphous yttrium hydroxide is attached.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58099307A JPS59227725A (en) | 1983-06-06 | 1983-06-06 | Preparation of powder of zirconium oxide having yttrium as solid solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58099307A JPS59227725A (en) | 1983-06-06 | 1983-06-06 | Preparation of powder of zirconium oxide having yttrium as solid solution |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59227725A true JPS59227725A (en) | 1984-12-21 |
Family
ID=14243970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58099307A Pending JPS59227725A (en) | 1983-06-06 | 1983-06-06 | Preparation of powder of zirconium oxide having yttrium as solid solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59227725A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5008092A (en) * | 1987-09-29 | 1991-04-16 | Rhone-Poulenc Chimie | Homogeneous powders of yttrium-stabilized quadratic zirconia |
WO2000009461A1 (en) * | 1998-08-14 | 2000-02-24 | Robert Bosch Gmbh | Method for producing ceramic powders using gas-expelling or gas-generating additives |
CN110550952A (en) * | 2019-09-24 | 2019-12-10 | 华南理工大学 | zirconia ceramic powder and preparation method thereof |
-
1983
- 1983-06-06 JP JP58099307A patent/JPS59227725A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5008092A (en) * | 1987-09-29 | 1991-04-16 | Rhone-Poulenc Chimie | Homogeneous powders of yttrium-stabilized quadratic zirconia |
WO2000009461A1 (en) * | 1998-08-14 | 2000-02-24 | Robert Bosch Gmbh | Method for producing ceramic powders using gas-expelling or gas-generating additives |
US6582669B1 (en) | 1998-08-14 | 2003-06-24 | Bosch Gmbh Robert | Method for producing ceramic powders utilizing gas-displacing or gas-generating additives |
CN110550952A (en) * | 2019-09-24 | 2019-12-10 | 华南理工大学 | zirconia ceramic powder and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4851293A (en) | Stabilized metallic oxides | |
KR100427005B1 (en) | Spheroidally Agglomerated Basic Cobalt(II) Carbonate and Spheroidally Agglomerated Cobalt(II) Hydroxide, Process for Their Production and Their Use | |
JP2540880B2 (en) | Method for producing fine zirconium oxide powder | |
US6030599A (en) | Process for producing water-dispersible alumina hydrates having a nanocrystalline structure and use thereof | |
US5989510A (en) | Method of producing granular amorphous silica | |
US4820593A (en) | Stabilised metallic oxides | |
US4173485A (en) | Production of zinc and alkaline earth metal titanates | |
JPH02503790A (en) | sinterable nitride | |
GB1560944A (en) | Slurries of titanium dioxide | |
JPS59227725A (en) | Preparation of powder of zirconium oxide having yttrium as solid solution | |
JPS6016819A (en) | Production method of zirconium oxide powder containing yttrium as a solid solution | |
JPS59111922A (en) | Production of fine powder of zirconium oxide | |
JPS6197134A (en) | Zirconia-based agglomerated particle powder and manufacturing method | |
JP3992214B2 (en) | Rare earth element-containing barium titanate powder and method for producing the same | |
JPS60166226A (en) | Preparation of zirconium oxide powder containing rare earth element as solid solution | |
JPS61141619A (en) | Production of zirconia fine powder | |
JPH04280815A (en) | Fine particulate alkali titanate and its production | |
JPS63252927A (en) | Production of fine particle powder of sodium hexatitanate | |
JPS59232920A (en) | Production method of zirconium oxide powder containing yttrium as a solid solution | |
JPS61146713A (en) | Production of barium-strontium titanate solid solution or barium titanate | |
JPH0312322A (en) | Zirconium dioxide powder, method for producing the same, and method for using it in producing a sintered body | |
JPS6051617A (en) | Production method of zirconium oxide powder containing yttrium as a solid solution | |
JPH06171944A (en) | Production of zirconium oxide powder | |
JPH06171943A (en) | Method for producing zirconium oxide powder | |
JPH07247162A (en) | Production of ito sintered body |