JPS59226152A - Heat resistant cr-mo-v steel - Google Patents
Heat resistant cr-mo-v steelInfo
- Publication number
- JPS59226152A JPS59226152A JP9931183A JP9931183A JPS59226152A JP S59226152 A JPS59226152 A JP S59226152A JP 9931183 A JP9931183 A JP 9931183A JP 9931183 A JP9931183 A JP 9931183A JP S59226152 A JPS59226152 A JP S59226152A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- creep rupture
- rupture strength
- toughness
- hardenability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は蒸気タービン用ロータシャフトに使用されるC
r−MO−V鋼に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a carbon fiber used in a rotor shaft for a steam turbine.
Regarding r-MO-V steel.
従来、蒸気タービンの高圧及び中圧ロータシャフトは蒸
気温度が566Cまたは538Cの高温雰囲気にさらさ
れるため、高温下における高いクリープ破断強度を有す
ることが要求されている。また、近年、原子力タービン
がベース負荷に開用されるのに対し、蒸気タービンは頻
繁な負荷変動や起動、停止運転等の過酷な条件で使用さ
れるようになってきた。蒸気タービンロータの起動、停
止時には高い熱応力が発生するので、従来より高い靭性
を有する材料が必要になってきた。よって、高圧及び中
圧タービンロータ材としては前述した高いクリープ破断
強度と高い靭性を具備した蒸気タービンロータシャフト
が必要である。Conventionally, high-pressure and intermediate-pressure rotor shafts of steam turbines are exposed to high-temperature atmospheres with steam temperatures of 566C or 538C, and are therefore required to have high creep rupture strength at high temperatures. Furthermore, in recent years, nuclear power turbines have been used for base load, whereas steam turbines have come to be used under harsh conditions such as frequent load fluctuations, startup and shutdown operations. Since high thermal stress occurs when a steam turbine rotor starts and stops, materials with higher toughness than before have become necessary. Therefore, a steam turbine rotor shaft having the above-mentioned high creep rupture strength and high toughness is required as a high-pressure and intermediate-pressure turbine rotor material.
このような高温にさらされる高圧及び中圧蒸気タービン
ロータシャフトは538C,10’万時間クリープ破断
強度が15.5 Ks+ /ran !以上要求される
。The high-pressure and intermediate-pressure steam turbine rotor shafts exposed to such high temperatures have a 538C, 100,000-hour creep rupture strength of 15.5 Ks+/ran! The above is required.
350C以下の蒸気温度で使用される低圧ロータシャフ
トは低温靭性の高いNiを比較的多量に含ム365%N
i−1,71Cr−0,4596Mo −0,13%V
鋼が使用されている。このロータシャフト材はクリープ
破断強度が著しく低いため、高圧及び中圧タービンロー
タシャフトには使用できない。The low-pressure rotor shaft used at steam temperatures below 350C contains 365%N, which contains a relatively large amount of Ni, which has high low-temperature toughness.
i-1,71Cr-0,4596Mo-0,13%V
steel is used. This rotor shaft material has extremely low creep rupture strength and cannot be used for high-pressure and intermediate-pressure turbine rotor shafts.
本発明の目的は、高いクリープ破断強度と高い靭性を具
備した、主にベーナイト組織を有する耐熱鋼を提供する
におる。An object of the present invention is to provide a heat-resistant steel having mainly a bainitic structure and having high creep rupture strength and high toughness.
本発明は、主にベーナイト組織を有する鋼のC及びSi
量が以下の式で表わされるD値が22.9〜22.6の
範囲内であることを特徴とするCr−Mo−V耐熱鋼に
ある。The present invention mainly focuses on C and Si of steel having a bainitic structure.
The Cr-Mo-V heat-resistant steel is characterized by having a D value expressed by the following formula within a range of 22.9 to 22.6.
JJ)= (f c x fsi)X100(但し、f
c、fsiはC及びSiのそれぞれの含有量によって決
まる焼入性倍数を意味する)。JJ)=(f c x fsi)X100 (however, f
c and fsi mean hardenability multiples determined by the respective contents of C and Si).
上述の鋼は、重量で、C0,27〜0.35係、sio
、a係以下、Mn0.5〜1%、 N i o、1〜o
、a ts、 c r O,9〜1.3 ts 。The above-mentioned steel has a weight of C0.27 to 0.35, sio
, below A section, Mn 0.5-1%, Nio, 1-o
, ats, cr O, 9-1.3 ts.
MO1〜1.5%、 Vo、2〜0.31及び残部Fe
がらな)、主にベーナイト組織を有する焼入、焼もどし
された鍛鋼が好ましい。MO1~1.5%, Vo, 2~0.31 and balance Fe
Hardened and tempered forged steel having a bainite structure is preferred.
本発明は耐熱鋼は、部材がクリープを生じる温度領域で
匣用されるものをいう。In the present invention, heat-resistant steel refers to steel that is used in a temperature range in which members creep.
Biは不純物元素と同様にクリープ破断強度を低め、さ
らに使用中脆化を促進する元素で、かつ、酸素と反応し
てSiO□の非金属介在物を形成し鋼其の品質を悪化す
るため近年、真空炭素脱酸法(Si低減)による製造法
が採用されている。本製造法は従来脱酸剤として使用し
ていたAt。Like impurity elements, Bi is an element that lowers creep rupture strength and promotes embrittlement during use, and also reacts with oxygen to form nonmetallic inclusions of SiO□, deteriorating the quality of steel. , a manufacturing method using a vacuum carbon deoxidation method (Si reduction) is adopted. This production method uses At, which has conventionally been used as a deoxidizing agent.
Siを全く使用しないため高品質の鋼塊が得られる。Since Si is not used at all, a high quality steel ingot can be obtained.
Si量が低下する分だけ焼入性が低下し、蒸気タービン
ロータの冷却速度の遅い中心部の靭性確保が難しくなる
。Si低下による焼入性の低下はD値を22.9〜26
.6の範囲内に調整することによよシすぐれた効果を得
ることが出来る。Hardenability decreases as the amount of Si decreases, making it difficult to ensure toughness in the center of the steam turbine rotor where the cooling rate is slow. The decrease in hardenability due to the decrease in Si increases the D value from 22.9 to 26.
.. By adjusting it within the range of 6, even better effects can be obtained.
Dの適正範囲は、C及びSiのクリープ破断強度及び靭
性に及はす影響を多数の実験データから求め、得られた
ものである。Dは(fcXfsi)X100で表わされ
、fc、fsjはC及びSiのそれぞれの含有量によっ
て決まる焼入性倍数を意味し、第1図及び第2図の関係
から求まる。The appropriate range of D was obtained by determining the influence of C and Si on creep rupture strength and toughness from a large amount of experimental data. D is expressed as (fcXfsi)X100, and fc and fsj mean hardenability multiples determined by the respective contents of C and Si, which are determined from the relationships shown in FIGS. 1 and 2.
本発明の耐熱鋼はCとSiの成分を調整しD値を22.
9〜26.6の範囲内にすべきである。The heat-resistant steel of the present invention has a D value of 22.
It should be in the range of 9 to 26.6.
Dは22.9よシ低くなると著しく靭性が低下するため
22.9以上とすべきである。Dが26.6を越えると
炭化物の凝集粗大化が促進し、著しくクリープ破断強度
が低下する。Dは22.9〜26.6の範囲内に調整す
ることによシ蒸気タービンロータ中央部の高い靭性並び
に高いクリープ破断強度が得られる。If D is lower than 22.9, the toughness decreases significantly, so it should be 22.9 or higher. When D exceeds 26.6, agglomeration and coarsening of carbides is promoted, and creep rupture strength is significantly reduced. By adjusting D within the range of 22.9 to 26.6, high toughness and high creep rupture strength at the center of the steam turbine rotor can be obtained.
ベーナイト組織は焼入れ焼もどしすることによって得ら
れ、低合金鋼において最もすぐれたクリープ破断強度を
有する。全ベーナイト組織を有するのが特に好ましい。The bainitic structure is obtained by quenching and tempering, and has the highest creep rupture strength among low alloy steels. It is particularly preferred to have an entirely bainite structure.
ベーナイト組織は焼入焼もどし処理によって得られるが
、この組織を得るには、C,Mn、Ni、Cr、MO1
&ヒVJt(7)成分調整が必要である。これらの成分
調整は使用目的に応じて適宜行うことができる。Bainite structure is obtained by quenching and tempering treatment, but to obtain this structure, C, Mn, Ni, Cr, MO1
&hi VJt(7) component adjustment is required. These components can be adjusted as appropriate depending on the purpose of use.
Cは焼入性を向上させるとともにMO及びCrと結合し
て炭化物を形成し、高温におけるクリープ破断強度を向
上させるのに必要な元素である。C is an element necessary to improve hardenability, combine with MO and Cr to form carbide, and improve creep rupture strength at high temperatures.
このため、0.2%以上含有させることが好ましく、逆
に0.35%を越えると炭化物が粗大化して靭性及びク
リープ破断強度を低下させる傾向がろり、好ましくない
。特に1.0.27〜0.351が好ましい。For this reason, it is preferable to contain 0.2% or more; conversely, if the content exceeds 0.35%, the carbide tends to become coarse and the toughness and creep rupture strength decrease, which is not preferable. Particularly preferred is 1.0.27 to 0.351.
Mnは焼入性ならびに強度を増大させるが、めまシ多量
となると靭性を害するので、1%以下が好ましい。特に
、0.5〜1%が好ましい。Although Mn increases hardenability and strength, a large amount of Mn impairs toughness, so it is preferably 1% or less. In particular, 0.5 to 1% is preferable.
Niは焼入性を増大させ、低温における機械的強度及び
靭性を向上させるのにきわめて有効な元素であるが、あ
まシ多量に添加すると脆化を促進し、かつ、クリープ強
度を低下させる傾向があるので、1チ以下が好ましい。Ni is an extremely effective element for increasing hardenability and improving mechanical strength and toughness at low temperatures, but when added in large amounts it tends to promote embrittlement and reduce creep strength. Therefore, 1 inch or less is preferable.
特に、0.1〜0.6チが好ましい。In particular, 0.1 to 0.6 inches is preferable.
Crは焼入性を増大させ、靭性及びクリープ破断強度を
向上させるのに有効な元素であるが、多まシ多量に添加
しても効果が飽和するので0.5〜1.5チが好ましい
。特に、0.9〜1.3%が好ましい。0.9%未満で
は耐酸化性が悪くなる傾向がお9問題がるる。Cr is an effective element for increasing hardenability and improving toughness and creep rupture strength, but the effect is saturated even if added in large amounts, so 0.5 to 1.5 Cr is preferable. . In particular, 0.9 to 1.3% is preferable. If it is less than 0.9%, oxidation resistance tends to deteriorate.
MoはC及びCrとの共存下で高温における強度を増大
させ、かつ、高温脆化を抑制するのに有効な元素であり
、0.5〜2チが好ましい。特に、1〜1.5チが好ま
しい。Mo is an element that is effective in increasing the strength at high temperatures and suppressing high temperature embrittlement in coexistence with C and Cr, and is preferably 0.5 to 2 H. In particular, 1 to 1.5 inches is preferred.
■は高温における強度を増大させるのに最も有効な元素
であるがあまシ多量に添加すると高温の延性を低下させ
るので0.1〜0.5%が好ましい。(2) is the most effective element for increasing the strength at high temperatures, but if added in large amounts, it lowers the ductility at high temperatures, so it is preferably 0.1 to 0.5%.
特に、0.2〜0.3俤が好ましい。In particular, 0.2 to 0.3 kt is preferable.
実施例
第1表は実験に供した試料の化学成分(重量%)を示す
表である。Table 1 of Examples is a table showing the chemical components (% by weight) of the samples used in the experiment.
これらの鋼塊の製造法は以下のとおシである。The method for producing these steel ingots is as follows.
原料を真全誘導溶解炉(真空度10’−3■ug)によ
シ20〜鋼塊を溶製し、所定形状に鍛造後、970Cで
加熱後、一般事業用ロータ中心部の冷却速度に相当する
。100C/bに調節冷却し、焼入れを行なった。焼入
後、660pで所定時間保持した後炉冷した。The raw material is melted into a steel ingot in a true induction melting furnace (vacuum level 10'-3 ug), forged into a specified shape, heated at 970C, and then cooled to the cooling rate of the center of a rotor for general business use. Equivalent to. It was controlled to cool to 100 C/b and quenched. After quenching, it was held at 660p for a predetermined time and then cooled in the furnace.
本発明鋼は1〜3及び比較鋼は4〜6であシ、いずれも
全ベーナイト組織でるる。The invention steels are Nos. 1 to 3 and the comparative steels are Nos. 4 to 6, all of which have a completely bainitic structure.
第3図は、2mmVノツチシャルピーFM片(JISZ
22024号試験片)ヲ用イ、til[f[f25t?
で求めた吸収エネルギーとDの関係を示す線図である。Figure 3 shows a 2mm V notch Charpy FM piece (JISZ
No. 22024 test piece)
FIG. 2 is a diagram showing the relationship between absorbed energy and D determined in FIG.
図に示す如く、吸収エネルギーはDの増加とともに直線
的に大きくなる。As shown in the figure, the absorbed energy increases linearly as D increases.
蒸気タービンロータ中央部に要求される吸収エネルギー
は0.71〜ク一1n以上であるが、比較鋼4及び5の
Dが22.9未満では、上記の要求値を満足しない。D
は22.9以上にすべきである。The absorbed energy required for the central portion of the steam turbine rotor is 0.71 to 1n or more, but if D of Comparative Steels 4 and 5 is less than 22.9, the above required value is not satisfied. D
should be 22.9 or higher.
第4図は1,538c、10万時間クリープ破断強度と
Dの関係を示す線図でろる。図に示す如く、クリープ破
断強度はDの増加するに従い、低下する。Figure 4 is a diagram showing the relationship between 1,538c, 100,000 hour creep rupture strength and D. As shown in the figure, the creep rupture strength decreases as D increases.
蒸気タービンロータに要求される強度15.5Kv−’
を満足するためにはDを26.6以下にすべきである。Strength required for steam turbine rotor: 15.5Kv-'
In order to satisfy the following, D should be 26.6 or less.
比較jil’16(D=28.0)は要求値を満足しな
い。Comparison jil'16 (D=28.0) does not satisfy the required value.
第3図、第4図の結果から吸収エネルギーの点からはD
を22.9以上に、クリープ破断強度の点からはDを2
6.6以下にすべきである。From the results of Figures 3 and 4, it is D from the point of absorbed energy.
D should be 22.9 or more, and D should be 2 from the point of view of creep rupture strength.
It should be 6.6 or less.
以上の如く、本発明の耐熱鋼は、Dを22.9〜26.
6の範囲内でCとSiの成分調整を行なうことによp高
いクリープ破断強僕と高い靭性を具備した蒸気タービン
用高圧及び中圧ロータの製造に好適である。As described above, the heat-resistant steel of the present invention has a D of 22.9 to 26.
By adjusting the C and Si components within the range of 6, it is suitable for manufacturing high-pressure and intermediate-pressure rotors for steam turbines having high creep rupture strength and high toughness.
第1図はC量と焼入性倍数fcとの関係を示す線図、第
2図はSi量と焼入性倍数fsiとの関係を示す線図、
第3図はクリープ破断強度とDとの関係を示す線図、第
4図はM収エネルギーとDとの関係を示す線図である。
第1図
c <y−ノ
St(’t)
p=Cチcx fs;)xtoo
[セ
D=C九XfSi)X100 ”FIG. 1 is a diagram showing the relationship between the amount of C and the hardenability multiple fc, FIG. 2 is a diagram showing the relationship between the amount of Si and the hardenability multiple fsi,
FIG. 3 is a diagram showing the relationship between creep rupture strength and D, and FIG. 4 is a diagram showing the relationship between M yield energy and D. Figure 1c <y-noSt('t) p=Cchicx fs;)xtoo [SeD=C9XfSi)X100''
Claims (1)
、Ni1%以下、Cr 0.5〜1.5%、 Mo0.
5〜2%、 Vo、1〜0.5%、S:O,a%以下及
び残部Feからなる低合金銀銅において、C及びSiの
量を、次式 %式%) (但し、fc、fsiはC及びSiのそれぞれの含有量
によって決まる焼入性倍数を意味する)で表わした場合
にD=22.9〜26.6の範囲内に構成したことを特
徴とするOr−Mo−V耐熱鋼。[Claims] 1. C0, 20-0.35%, Mlll, 5% or less, Ni 1% or less, Cr 0.5-1.5%, Mo0.
In low alloy silver copper consisting of 5 to 2%, Vo, 1 to 0.5%, S: O, a% or less and the balance Fe, the amount of C and Si is expressed by the following formula % formula %) (However, fc, Or-Mo-V characterized in that D=22.9 to 26.6 when expressed as (fsi means hardenability multiple determined by each content of C and Si) Heat resistant steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9931183A JPS59226152A (en) | 1983-06-06 | 1983-06-06 | Heat resistant cr-mo-v steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9931183A JPS59226152A (en) | 1983-06-06 | 1983-06-06 | Heat resistant cr-mo-v steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59226152A true JPS59226152A (en) | 1984-12-19 |
Family
ID=14244087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9931183A Pending JPS59226152A (en) | 1983-06-06 | 1983-06-06 | Heat resistant cr-mo-v steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59226152A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62290849A (en) * | 1986-06-10 | 1987-12-17 | Mitsubishi Heavy Ind Ltd | Rotor for geothermal steam turbine |
EP2302089A1 (en) * | 2009-09-24 | 2011-03-30 | General Electric Company | Steam turbine rotor and alloy therefor |
US9206704B2 (en) | 2013-07-11 | 2015-12-08 | General Electric Company | Cast CrMoV steel alloys and the method of formation and use in turbines thereof |
-
1983
- 1983-06-06 JP JP9931183A patent/JPS59226152A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62290849A (en) * | 1986-06-10 | 1987-12-17 | Mitsubishi Heavy Ind Ltd | Rotor for geothermal steam turbine |
EP2302089A1 (en) * | 2009-09-24 | 2011-03-30 | General Electric Company | Steam turbine rotor and alloy therefor |
US8523519B2 (en) | 2009-09-24 | 2013-09-03 | General Energy Company | Steam turbine rotor and alloy therefor |
US9206704B2 (en) | 2013-07-11 | 2015-12-08 | General Electric Company | Cast CrMoV steel alloys and the method of formation and use in turbines thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3461945B2 (en) | Method of manufacturing high-low pressure integrated turbine rotor | |
JPS58110661A (en) | Heat resistant steel | |
US20030127163A1 (en) | Ferritic heat-resistant steel and method for producing it | |
US4857120A (en) | Heat-resisting steel turbine part | |
CN109487170B (en) | Plug with long perforation life and manufacturing method thereof | |
JP3483493B2 (en) | Cast steel for pressure vessel and method of manufacturing pressure vessel using the same | |
JP2011042812A (en) | Method for manufacturing forged steel article superior in toughness | |
JPS59116360A (en) | heat resistant steel | |
JP4212132B2 (en) | Ferritic heat resistant steel having martensitic structure and method for producing the same | |
JP3492969B2 (en) | Rotor shaft for steam turbine | |
JPS59226152A (en) | Heat resistant cr-mo-v steel | |
JPS60165359A (en) | High strength and high toughness steel for high and medium pressure rotor of steam turbine | |
JP2001073092A (en) | 9-12% Cr HEAT RESISTING STEEL EXCELLENT IN HIGH TEMPERATURE STRENGTH AND TOUGHNESS, AND ITS MANUFACTURE | |
JPS6132384B2 (en) | ||
JPS6338420B2 (en) | ||
JPH021901B2 (en) | ||
JP3301284B2 (en) | High Cr ferritic heat resistant steel | |
JPH0234724A (en) | Manufacture of turbine rotor | |
JPS5845360A (en) | Low alloy steel with temper embrittlement resistance | |
JP3546127B2 (en) | High-strength heat-resistant steel and turbine rotor for high-low pressure integrated rotor | |
JPS59232231A (en) | Manufacture of rotor for turbine | |
US4049432A (en) | High strength ferritic alloy-D53 | |
JPH01230723A (en) | Manufacture of turbine rotor | |
JP3254102B2 (en) | High strength low alloy cast steel and its heat treatment method | |
JP4103191B2 (en) | High hardness steel for induction hardening with excellent corrosion resistance |