JPS59225573A - Short gate field effect transistor and its manufacturing method - Google Patents
Short gate field effect transistor and its manufacturing methodInfo
- Publication number
- JPS59225573A JPS59225573A JP58100225A JP10022583A JPS59225573A JP S59225573 A JPS59225573 A JP S59225573A JP 58100225 A JP58100225 A JP 58100225A JP 10022583 A JP10022583 A JP 10022583A JP S59225573 A JPS59225573 A JP S59225573A
- Authority
- JP
- Japan
- Prior art keywords
- insulating film
- gate electrode
- active region
- gate
- field effect
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005669 field effect Effects 0.000 title claims description 15
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 229910052751 metal Inorganic materials 0.000 claims abstract description 26
- 239000002184 metal Substances 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 25
- 239000000758 substrate Substances 0.000 claims description 11
- 238000005468 ion implantation Methods 0.000 claims description 10
- 238000005530 etching Methods 0.000 claims description 7
- 239000004065 semiconductor Substances 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- 229910052581 Si3N4 Inorganic materials 0.000 abstract 1
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 12
- 238000000137 annealing Methods 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 5
- 230000003071 parasitic effect Effects 0.000 description 5
- 229910052785 arsenic Inorganic materials 0.000 description 3
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000992 sputter etching Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 238000005202 decontamination Methods 0.000 description 1
- 230000003588 decontaminative effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/80—FETs having rectifying junction gate electrodes
Landscapes
- Electrodes Of Semiconductors (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明はショットキゲート型電界効果トランジスタとそ
の製造方法に係9、特に化合物半導体材料を用い微細構
造のゲート電極を有し、しかもゲートとソース間の抵抗
が低く、かつ適当なドレイン耐圧があるショットキゲー
ト型電界効果トランジスタ、とその製造方法に関するも
のである。Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a Schottky gate field effect transistor and a method for manufacturing the same. The present invention relates to a Schottky gate field effect transistor having a low resistance and an appropriate drain breakdown voltage, and a method for manufacturing the same.
化合物半導体材料を用いたショットキゲート型電界効果
トランジスタ(以下ME8FETと云う)は81材料に
よっては達成できない性能を有する超高周波素子として
注目されている。とシわけGaAsを用いたMP!8F
ETは既に実用化されて久しイカ、現在でもGaAsM
ESFFiTの性能向上のための各種の開発が行われて
おり、最近はGaAsME8FETを使用した超高速デ
ジタルICやアナログICの開発が各所で活発化してい
る。A Schottky gate field effect transistor (hereinafter referred to as ME8FET) using a compound semiconductor material is attracting attention as an ultra-high frequency device having performance that cannot be achieved with 81 materials. MP using GaAs! 8F
ET has already been put into practical use for a long time, and even now GaAsM
Various developments are being carried out to improve the performance of ESFFiT, and recently the development of ultra-high-speed digital ICs and analog ICs using GaAsME8FETs has become active in various places.
次に従来のGaAs M E 8 F 8 Tの構造を
第1図にょ)説明する。Next, the structure of a conventional GaAs M E 8 F 8 T will be explained with reference to FIG.
即ち、GaAs半絶縁性基板(1)上に能動領域(2)
と一対の高電子濃度領域(3)を形成し、能動領域(2
)上にはショットキバリアゲート電極金属(以下ゲート
電極と太う)(4)を、高電子濃度領域(3)上にはソ
ース及びドレインのオーム性電極金属(以下ソース及び
ドレイン電極と云う)(5)(6)を形成する。That is, an active region (2) is formed on a GaAs semi-insulating substrate (1).
A pair of high electron concentration regions (3) are formed, and an active region (2) is formed.
) is a Schottky barrier gate electrode metal (hereinafter referred to as gate electrode) (4), and on the high electron concentration region (3) is a source and drain ohmic electrode metal (hereinafter referred to as source and drain electrode) ( 5) Form (6).
このような構造において、高性能なME8FI(Tを得
るためには微細なゲート電極(4)を形成することが重
要であシ、最近では電子ビーム直接描画法や遠紫外線露
光法を用いて0.25〜0.3μmの長さのゲート電極
が製作されている。しかし電子ビーム直接描画法を用い
る場合には製造装置が高価であることや、スループット
が低いという問題があり、また遠紫外線露光法を用いる
場合には、ゲート電極の長さを0.25μm乃至0.8
μmに形成しようとすると、歩留シが著しく悪くなると
、いう問題があった。In such a structure, it is important to form a fine gate electrode (4) in order to obtain a high-performance ME8FI (T). Gate electrodes with a length of .25 to 0.3 μm have been fabricated.However, when using the electron beam direct writing method, there are problems such as expensive manufacturing equipment and low throughput, and deep ultraviolet exposure. When using the method, the length of the gate electrode is 0.25 μm to 0.8 μm.
There was a problem in that when trying to form a film with a thickness of .mu.m, the yield rate deteriorated significantly.
更に、MP!5PITの性能向上を図るためには寄生抵
抗の低減も重要であシ、特にソース抵抗を低減するため
に゛は、・ソース電極下の半導体層を高電子濃度に厚く
形成し、かつソース電極とゲート電極間の距離を短縮し
なければならない。しかしこの距離の短縮(=は、マス
ク合せ精度に限界があるため、通常は1乃至2μm程度
に選ばれている。Furthermore, MP! In order to improve the performance of 5PIT, it is also important to reduce the parasitic resistance.In particular, to reduce the source resistance, ・The semiconductor layer under the source electrode is formed thickly with high electron concentration, and the The distance between gate electrodes must be shortened. However, this shortening of the distance (=) is normally selected to be about 1 to 2 μm because there is a limit to mask alignment accuracy.
しかし、最近になって、ソース電極とゲート電極、間の
距離を0.5μm以下に短縮する方法として各種のセル
フアラ・イメット法、が提案されているっ次に、このセ
ルフアライメント法の一例を第2図(二よシ説明する。However, recently, various self-alignment methods have been proposed as a method for shortening the distance between the source electrode and the gate electrode to 0.5 μm or less. Figure 2 (Explain in detail.
即ち、GaAs半絶縁性基板住υ上に先ず能動領域14
を形成し、その後、ゲート電極o4を形成する。次いで
このゲート電極α力をマスクとしてイオン注入と、その
後のアニールによシ高電子濃度領域α階を形成し、最後
にソース電極(1[有]、ドレイゾ電極(11を形成す
る。この方法によれば、実効的なソース電極a優とゲー
ト電極I間の距離はほとんど零であシ、非常に低いソー
ス抵抗が期待できる。しかし、この様にして形成された
MESFF3Tは、ゲート電極α力とソース電極a9間
の距離もほとんど零であるため、ドレイン耐圧が著しく
低い旋ってこのようなMESFETは破壊し易く、また
大出力を得ることが困難である。またゲート電極α力が
、動′龜子濃度層の形成時に行う、通常800C乃至9
00Cのアニール温度に耐えるも′のでなければならず
、ゲート電極α力の金稿として畠融点、かりGaAsと
の反応が抑制できる金桟な選定する必要がある。しかし
、と ′:の種の金属は一般に抵抗が高く、微細加
工も困難 □である。またゲート電極α力とドレイン
電極時間の距 □離もほは零であるために帰還容量
が大きいという □、。4.あ、。、よ、ヶ□(i
J Jj +07、あ。0、 層未だ良好なマイク四
波特性を持つMESFETは得られていない4.また、
この種の方法でMESFET ””□、t□8、
ヶー、□、Dいよ。8い3よ。 1密着性が悪く剥れ
易いことや高温アニールの影響により、ゲート電極下の
能動領域の電子濃度にばらつきを生じることがあシ、歩
留シ良(MISFETを製造することは困難であった。That is, the active region 14 is first formed on the GaAs semi-insulating substrate.
After that, a gate electrode o4 is formed. Next, using this gate electrode α force as a mask, ion implantation and subsequent annealing are performed to form a high electron concentration region α, and finally, a source electrode (1) and a drazo electrode (11) are formed. According to the method, the effective distance between the source electrode a and the gate electrode I is almost zero, and a very low source resistance can be expected.However, the MESFF3T formed in this way has Since the distance between the source electrodes a9 is almost zero, the drain breakdown voltage is extremely low, making such MESFETs easy to destroy and difficult to obtain large output.Furthermore, the gate electrode α force Normally 800C to 9
It must be able to withstand an annealing temperature of 0.00C, and it is necessary to select a metal plate that has a melting point and can suppress reaction with GaAs as the metal plate for the gate electrode α force. However, metals of the types □ and ′: generally have high resistance and are difficult to microfabricate. Also, since the distance □ between the gate electrode α force and the drain electrode time is zero, the feedback capacitance is large □. 4. a,. ,yo,ga□(i
J Jj +07, ah. 4. MESFET with good microphone four-wave characteristics has not yet been obtained. Also,
In this kind of method, MESFET ””□, t□8,
Yes, □, D. 83. 1. It was difficult to manufacture MISFETs with good yields because of poor adhesion and easy peeling and the effects of high-temperature annealing, which caused variations in the electron concentration in the active region under the gate electrode.
本発明は前述した諸問題に鑑みなされたもので、ソース
抵抗と゛ゲート抵抗が低く、微細なゲート電極を有し、
かつ実用上、問題のない耐圧を有するMESFETとそ
の製造方法を提供することを目的とする。The present invention was made in view of the above-mentioned problems, and has low source resistance and gate resistance, a fine gate electrode,
Moreover, it is an object of the present invention to provide a MESFET having a breakdown voltage that causes no problems in practical use, and a method for manufacturing the same.
本発明は化合物半導体基板上に能動領域及びこの能動領
J1の両側に位置する高電子濃度領域を形成し一能動領
域上にゲート電極金−属と、各高電子濃度領域上にはソ
ース電極金属及びドl/イン電極金属を設けたショット
キゲート型電界効果トランジスタにおいそ、ゲート電極
金属が能動領域と接触する近傍の下方部を上方R11(
′:比しゲート長方向に幅狭く形成することによシ断面
はぼ1字形とし、かつゲート電極金属の下方部壁面を絶
縁膜で保護したことを特徴とするショットキゲート凰電
界効果トランジスタと、このショットキゲート型電界効
果トランジスタの製造方法、特にゲート電極釡属の製造
方法である。In the present invention, an active region and high electron concentration regions located on both sides of the active region J1 are formed on a compound semiconductor substrate, a gate electrode metal is placed on one active region, and a source electrode metal is placed on each high electron concentration region. In a Schottky gate field effect transistor provided with a gate electrode metal and a do/in electrode metal, the lower part near where the gate electrode metal contacts the active region is connected to the upper R11 (
': A Schottky gate field effect transistor characterized in that the gate is formed narrower in the longitudinal direction so that the cross section is shaped like a straight line, and the lower wall surface of the gate electrode metal is protected with an insulating film; This is a method of manufacturing this Schottky gate field effect transistor, particularly a method of manufacturing a gate electrode.
次に本発明MPi8FT13Tの一実施例を第8図によ
シ説明する。Next, an embodiment of the MPi8FT13T of the present invention will be explained with reference to FIG.
即ち、GaAs半絶縁性基板シυはイオン注入によ多形
成された能動領域り4およびこの能動領域123の両側
に同じくイオン注入によ多形成された一対の高電子濃度
領域−を有する。この能動領域(2湯上に形成されたゲ
ート電極(24の断面形状は能動領域■擾と接触する近
傍の下方部でゲート長方向で幅が狭くなる幅狭部となり
、上方部では端部が一対の高電子濃度領域(ハ)に達す
る幅広部でほぼ1字形である。That is, the GaAs semi-insulating substrate υ has an active region 4 formed by ion implantation and a pair of high electron concentration regions on both sides of the active region 123, which are also formed by ion implantation. The cross-sectional shape of the gate electrode (24) formed above this active region (2) is a narrow part where the width becomes narrower in the gate length direction at the lower part near the contact with the active region (24), and at the upper part the end It has a wide portion that reaches a pair of high electron concentration regions (c) and is approximately in the shape of a single letter.
この様な形状のゲート電極(至)にすることによりゲー
ト抵抗を低くすることができる。また能動領域四をはさ
む両側のソース、ドレイン用の高電子濃度領域(2)間
の距離はゲート電極(ハ)の上方部寸法よりは充分に短
かく、ゲート電極の能動領域四とのゲート長方向の接触
面での寸法よシは長く形成されている。例えば第8図中
の符号(d)で示したソースとゲート電極(財)との距
離およびゲート電極(至)とドレインとの距離は0.2
乃至0.5μm程度の所望の長さに制御されている。そ
のためソース抵抗は充分に低く、ドレイン耐圧は実用上
問題とならない大きさが確保され、第2図に示した従来
例に比べてゲートとドレイン間の寄生容量も低く抑えら
れる。またゲート電極Qaの下方部の側壁面は、例えば
耐湿性に優れている8i、N、膜からなる第8の絶縁膜
−で保護された構造とし、さらに、この第8の絶縁膜(
至)に隣接した高電子濃度領域(ハ)上にはsio、か
らなる第2の絶縁膜で覆われた構造となっている。この
様に第8の絶縁膜−および第2の絶縁膜(2)を有する
構造によれば、ゲート電極(財)まわシの製造が容易に
な夛、またゲート電極(財)の機械的変形を防止できる
。By forming the gate electrode in such a shape, the gate resistance can be lowered. In addition, the distance between the high electron concentration regions (2) for source and drain on both sides of active region 4 is sufficiently shorter than the upper dimension of gate electrode (c), and the distance between the gate electrode and active region 4 is sufficiently shorter than the upper dimension of gate electrode (c). The dimensions at the contact surface in the direction are long. For example, the distance between the source and the gate electrode and the distance between the gate electrode and the drain indicated by the symbol (d) in FIG. 8 are 0.2
The length is controlled to a desired length of about 0.5 μm. Therefore, the source resistance is sufficiently low, the drain breakdown voltage is ensured at a level that does not cause any practical problems, and the parasitic capacitance between the gate and the drain is also suppressed to be lower than in the conventional example shown in FIG. Further, the lower side wall surface of the gate electrode Qa is protected by an eighth insulating film made of, for example, an 8i, N, film having excellent moisture resistance, and the eighth insulating film (
The high electron concentration region (c) adjacent to (to) is covered with a second insulating film made of sio. According to the structure having the eighth insulating film and the second insulating film (2) in this way, the gate electrode can be easily manufactured and the gate electrode can be mechanically deformed. can be prevented.
また能動領域(2擾上の第3の絶縁膜(至)は上述のよ
うに耐湿性に優れた膜例えば8illN4膜が望ましい
が、このS輸N4膜はGaAs半絶縁性基板(21)と
の界面でのストレスが大きいためGaA sとの接触部
はなるべく小面積に形成することが好ましい。Furthermore, the third insulating film on the active region (2) is preferably a film with excellent moisture resistance, such as an 8illN4 film, as described above, but this S-type N4 film is not compatible with the GaAs semi-insulating substrate (21). Since the stress at the interface is large, it is preferable to form the area of contact with GaAs as small as possible.
また高電子濃度層(ハ)は温度などの影響を多少受けて
も、特性への影響は、#1とんどな(GaAs半絶縁性
基板(2υ界而でのストレスも小さいので第2の絶縁膜
(至)としてはS10.膜で充分である。In addition, even if the high electron concentration layer (c) is affected by temperature etc. to some extent, the effect on the characteristics will be the same as #1 (GaAs semi-insulating substrate (the stress in the 2υ field is also small, so the second An S10. film is sufficient as the insulating film.
またゲート電極−とソースおよびドレインとの間の絶縁
膜(至)(2)を介した寄生容量は小さい方がよく、そ
のためには膜厚を厚くすると共に比誘電率の小さい材料
を使用することが望ましい。例えば84、N4膜の比誘
電率は約7.8i0.膜の比誘電率は8〜4程度であシ
、かつSiN、膜は5oooi以上の被着で膜に亀裂が
生じやすいが、810.膜は1μm程度の厚さとするこ
ともできる。In addition, the parasitic capacitance via the insulating film (2) between the gate electrode and the source and drain should be small, and for this purpose, it is necessary to increase the thickness of the film and use a material with a small dielectric constant. is desirable. For example, the dielectric constant of 84, N4 film is about 7.8i0. The relative dielectric constant of the film is about 8 to 4, and SiN film tends to crack when it is adhered to a thickness of 810. The membrane can also be as thick as 1 μm.
次に製造方法の一実施例を!#4図により説明する。Next is an example of the manufacturing method! #4 This will be explained using figure 4.
まず、第4図(、)に示すようにGaAs半絶縁性基板
Q乃上に結晶成長法あるいはイオン注入法によシ能動層
(221)を形成する。First, as shown in FIG. 4(, ), an active layer (221) is formed on a GaAs semi-insulating substrate Q by a crystal growth method or an ion implantation method.
次に第4図(b)に示すようにゲート電極を形成する位
置に寸法1μm、高さ5000λ程度の例えば813N
、よシなる第1の絶縁膜cl′?)を形成する。Next, as shown in FIG. 4(b), for example, a 813N electrode with a dimension of 1 μm and a height of about 5000λ is placed at the position where the gate electrode is to be formed.
, a better first insulating film cl'? ) to form.
次にf4S4図(c)に示すように、この第1の絶縁膜
Qηをマスクとしてイオン注入法によシ高電子濃度領域
(至)を形成する。これにより能動領域0擾が第1の絶
縁膜(27)の下部のみに形成される。Next, as shown in FIG. f4S4 (c), a high electron concentration region (to) is formed by ion implantation using this first insulating film Qη as a mask. As a result, the active region 0 is formed only under the first insulating film (27).
次に第4囚(d)に示すように、第1の絶縁膜(27)
の上面を含む尚電子濃度領域(ハ)上を第2の絶縁膜(
至)で被覆する。この場合第2の絶縁膜(ハ)は第1の
絶縁膜(2?)上で薄く形成することが必要であるが、
これは例えば溶剤に溶かしたS、io、をスピンコード
するような方法で容易に形成できる。Next, as shown in the fourth frame (d), the first insulating film (27)
A second insulating film (
to). In this case, the second insulating film (c) needs to be formed thinly on the first insulating film (2?);
This can be easily formed, for example, by spin-coding S, io dissolved in a solvent.
次に第4図(、)に示すように第1の絶縁膜(27)を
除去する。この第1の絶縁1lK12?)の除去には、
例えばリアクティブ・イオン・エツチングによシ第1の
絶縁膜Qηと第2の絶縁膜(至)のエツチング速度の選
択比を利用してもよいし、溶液エツチングや、イオンエ
ツチングと溶液エツチングとの組み合わせによって行っ
てもよい。Next, as shown in FIG. 4(,), the first insulating film (27) is removed. This first insulation 1lK12? ) to remove
For example, reactive ion etching may be used to utilize the etching rate selectivity between the first insulating film Qη and the second insulating film (to), solution etching, or a combination of ion etching and solution etching. A combination may also be used.
次に関電子濃度領域(2)を砒素雰囲気中でアニールし
、イオン種を活性化させる。この砒素雰囲気中でのアニ
ールは第4図(e)の工程以前の第4図(c)のイオン
注入直後や第4図(d)の第2の絶縁膜(至)を形成し
た段階で行なってもよいが、本実施例のように第4図(
e)の工程でアニールすることが望ましい。この理由は
第1の絶縁膜0′?)が被着されている状態でアニール
すると、しばしば能動領域(2擾の電子濃度の変動を引
き起こすことがあるためである。Next, the electron concentration region (2) is annealed in an arsenic atmosphere to activate the ion species. This annealing in an arsenic atmosphere is performed immediately before the step shown in FIG. 4(e), immediately after the ion implantation shown in FIG. 4(c), or at the stage of forming the second insulating film (to) shown in FIG. 4(d). However, as in this example, the
It is desirable to perform annealing in step e). The reason for this is the first insulating film 0'? ) is deposited, this often causes variations in the electron concentration in the active region (2).
しかし、第1の絶縁膜07)を除去した後、即ち能動領
域04を露出したのち、砒素雰囲気でアニールした場合
は、能動領域C擾の電子濃度は非常に安定である。また
前段階でイオンエツチングを採用した場合、GaAs表
面を不良にすることがあるが、アニール工程によシネ良
をなくすことができる。However, when annealing is performed in an arsenic atmosphere after removing the first insulating film 07), that is, exposing the active region 04, the electron concentration in the active region C is very stable. Furthermore, if ion etching is employed in the previous step, the GaAs surface may become defective, but this can be eliminated by the annealing process.
次に第4図(f)に示すように、表面を第8の絶縁膜−
で被覆する。この第8の絶縁膜(イ)はプラズマ形成法
で被着させることが望ましい。この第8′の絶縁膜(ハ
)は第2の絶縁膜Q1の表面や壁面でほぼ同一の膜厚と
なる。本実施例では第8の絶縁膜(ハ)の厚さを800
OAとした。Next, as shown in FIG. 4(f), the surface is coated with an eighth insulating film.
Cover with This eighth insulating film (a) is preferably deposited by a plasma formation method. This 8'th insulating film (c) has approximately the same thickness on the surface and wall surface of the second insulating film Q1. In this example, the thickness of the eighth insulating film (c) is 800 mm.
It was set as OA.
次に第4図(g)に示すように94% gの絶縁膜(ハ
)をリアクティブ・イオン・エツチングのごとき異方性
エツチング法や、′イオンーエツチングと溶液エツチン
グとの併用によシ除去する7、この除染2の絶縁膜(2
)壁面の第8の絶縁膜c11は、はとんどエツチングさ
れないで能動領域(2邊の表面を露出させることができ
る。Next, as shown in Figure 4(g), 94% of the insulating film (c) is removed by an anisotropic etching method such as reactive ion etching or a combination of ion etching and solution etching. 7. Insulating film of this decontamination 2 (2
) The eighth insulating film c11 on the wall surface can expose the surface of the active region (two sides) without being etched.
次に能動領域四の表面処理を行なったのち、第4図(h
)に示すようにゲット電極用の金属膜(241)を1μ
mの厚さに魚屑する、この金属膜(24m)用の金属と
してはA−g、 AA/Ti、 Au/Pi/Tiなど
が採用できる。Next, after surface treatment of active area 4, as shown in Fig. 4 (h
), the metal film (241) for the get electrode is 1 μm thick.
A-g, AA/Ti, Au/Pi/Ti, etc. can be used as the metal for this metal film (24 m), which is coated with fish debris to a thickness of m.
次に通常、のレジストを用いたマスク合せ法によシ、ゲ
ート電極(24)の上部を8μmに形成する。次いで第
2の絶縁膜(ハ)の一部または全部を除去し、高電子濃
度領域(ハ)を露出させ、この高磁子濃度領域(ハ)に
ソース電極(ハ)とドレイン電極(ハ)を形成する。Next, the upper part of the gate electrode (24) is formed to have a thickness of 8 .mu.m by a conventional mask alignment method using a resist. Next, part or all of the second insulating film (c) is removed to expose a high electron concentration region (c), and a source electrode (c) and a drain electrode (c) are formed in this high magneton concentration region (c). form.
この場合、ソース電極e!9とドレイン峨極(ハ)の端
部間はゲート電極04)の上方部の幅広部寸法に一致さ
せると工程が簡易化できる。また断面丁字形となったゲ
ート電極(24)の偏狭部である下方部の側面に被着さ
れている第8の絶縁膜−は必要に応じ、その一部、ある
いは全部を除去してもよい、前述した説明からも明らか
なように最初の第1の絶縁膜(27)の加工工程におい
て、その膜の穴あけ寸法がフォトエツチング法で容易に
形成できる寸法である1μm程既1選んでもゲート長は
0.4μm。In this case, the source electrode e! The process can be simplified by making the distance between the ends of the gate electrode 9 and the drain electrode (c) coincide with the width of the upper wide part of the gate electrode 04). Further, the eighth insulating film coated on the side surface of the lower narrow part of the gate electrode (24), which has a T-shaped cross section, may be partially or completely removed as necessary. As is clear from the above explanation, in the first step of processing the first insulating film (27), the gate length can be adjusted even if the opening size of the film is about 1 μm, which is a size that can be easily formed by photoetching. is 0.4 μm.
ソース、ドレイン用の高電子濃度層C23端とゲート電
極(至)の小面積部間の距離は0.8μmと、いずれも
□0.5μm以下の寸法に制御することが可能で
ある。The distance between the end of the high electron concentration layer C23 for source and drain and the small area portion of the gate electrode (to) is 0.8 μm, which can be controlled to □0.5 μm or less.
この場合、第1の絶縁膜@と第8の絶縁膜01の寸法の
選び方1組与合わせ方を変えることによシ、ゲート長さ
やソースおよびドレインとゲート電極 □との間
の距離を調整でき、電子ビーム直接描画法 □の
ような高価な装置を用いる必要もない。In this case, the gate length and the distance between the source and drain and the gate electrode □ can be adjusted by changing the selection and composition of the dimensions of the first insulating film @ and the eighth insulating film 01. There is no need to use expensive equipment such as the electron beam direct writing method □.
前記実施例ではゲート電極e勺の幅広部とGaAa半絶
縁性基板との間に第8の絶縁膜(ハ)と第2の絶縁膜に
)を介在させたが、このためにゲート電極c!祷と高電
子製動領域(ハ)などとの間の寄性容量の増大によシ素
子としての特性に不具合を生じる場合はゲート電極c4
)を補強し得る範囲内で第2の絶縁膜(至)や第8の絶
縁膜121を適宜エツチングなどで一部を除去してもよ
い。In the above embodiment, the eighth insulating film (c) and the second insulating film) were interposed between the wide part of the gate electrode c! and the GaAa semi-insulating substrate, but for this reason, the gate electrode c! If the characteristics of the device deteriorate due to an increase in parasitic capacitance between the gate electrode and the high-electronic active region (c), the gate electrode c4
) may be partially removed by etching or the like as appropriate to the extent that the second insulating film (to) and the eighth insulating film 121 can be reinforced.
前述した実施例に示した金属や絶縁膜の種類や厚さなど
は、本′発明の特徴を具体的に示すためのものであり、
本発明を拘束するものではない。The types and thicknesses of metals and insulating films shown in the above-mentioned embodiments are for specifically showing the characteristics of the present invention.
This does not limit the invention.
即ち、本発明の変形例としては例えば第5図のような製
造方法もある。なお、第5図では先に説明した実施例と
同一部分は同一符号を付し説明は省略する。That is, as a modification of the present invention, there is also a manufacturing method as shown in FIG. 5, for example. Incidentally, in FIG. 5, the same parts as those of the previously described embodiment are given the same reference numerals, and the description thereof will be omitted.
第5図(、)は第4図(、) (b)(c)までの工程
を終了したのち、下層に第2の絶縁膜(至)としての8
10.膜を形成し、上層に第4の絶縁膜u1をフ、オド
レジストあるいはポリイミド等でスピンコードし、図示
しない能動領域12′4上の第1の絶縁膜を除去した図
である。Figure 5 (,) shows that after completing the steps up to Figure 4 (,) (b) and (c), a second insulating film (to) is formed on the lower layer.
10. This is a diagram in which a fourth insulating film u1 is formed on the upper layer by spin-coding with odoresist or polyimide, and the first insulating film on an active region 12'4 (not shown) is removed.
次に第4の絶縁[(41を除去したのち、イオン注入j
−をアニールし、第5図(b)に示すように第8の絶縁
膜(2)を形成する。Next, after removing the fourth insulator [(41), ion implantation
- is annealed to form an eighth insulating film (2) as shown in FIG. 5(b).
次に実施例と同様な工程を進めることにより、第5図(
c)に示すように前述したようなゲート電極C34)を
有するショットキゲート電界効果トランジスタが得られ
る。Next, by proceeding with the same steps as in the example, as shown in FIG.
As shown in c), a Schottky gate field effect transistor having a gate electrode C34) as described above is obtained.
本発明によれば高価でスループットの悪い電子ビーム直
接描画の方法や歩留pと合わせ精度が悪い遠紫外線露光
法等を用いなくても超微細なゲート電極笠属が低ゲート
抵抗で達成でき、またソースとゲート電極間、ゲートと
ドレイン電極間を微細かつ精密に制御することができる
ため、低ソース抵抗と素子動作上問題の無いドレイン耐
圧さらには低ゲート・ドレイン間寄生容量が達成できる
。According to the present invention, ultra-fine gate electrode caps can be achieved with low gate resistance without using electron beam direct writing methods that are expensive and have poor throughput, or deep ultraviolet exposure methods that have low yield and low precision. In addition, since the distance between the source and gate electrodes and between the gate and drain electrodes can be controlled finely and precisely, low source resistance, drain breakdown voltage that does not cause any problems in device operation, and low parasitic capacitance between the gate and drain can be achieved.
したがって高性能なMBSFETや、Ml(8FFiT
を含む半導体装置が提供できる。Therefore, high performance MBSFET, Ml (8FFiT
A semiconductor device including the following can be provided.
第1図及び第2図は従来のそれぞれ異なるMBSFET
の構造を示す断面図、第8因は本発明のME8FETの
一実施例の構造を示す断面図、第4図は本発明のME
S F ITの製造方法の一実施例を説明する断面図、
第5図は本発明のME8FETの製造方法の変形例を説
明する断面図である。
1、11.21・・・GaAs半絶縁性基板2、12.
22・・・能動領域
8、18.28・・・高電子濃度領域
4、14.24.84・・・ゲート電極金属5.15.
’25・・・ソース電極金属6、16.26・・・ドレ
イン電極金属27・・・第1の絶縁膜
28・・・第2の絶縁膜
29・・・第8の絶縁膜
80・・・第4の絶縁膜
代理人 弁理士 井 上 −男
第 1 図 第 2 図
第3図
?ど
第 4 図
?2 &
第 5 図
tbλ
−320=Figures 1 and 2 show different conventional MBSFETs.
The eighth factor is a cross-sectional view showing the structure of an embodiment of the ME8FET of the present invention, and FIG.
A cross-sectional view illustrating an example of a method for manufacturing SF IT,
FIG. 5 is a cross-sectional view illustrating a modification of the ME8FET manufacturing method of the present invention. 1, 11.21...GaAs semi-insulating substrate 2, 12.
22...Active region 8, 18.28...High electron concentration region 4, 14.24.84...Gate electrode metal 5.15.
'25...Source electrode metal 6, 16.26...Drain electrode metal 27...First insulating film 28...Second insulating film 29...Eighth insulating film 80... Fourth Insulating Film Agent Patent Attorney Inoue - Male Figure 1 Figure 2 Figure 3? What figure 4? 2 & 5 tbλ -320=
Claims (6)
動領域およびこの能動領域の両側に位置するソースとド
レインの内高電子濃度領域を形成したショットキゲート
型電界効果型トランジスタにおいて、前記ゲート電極金
属の能動領域との接触部近傍である下方部を、その上方
部に比してゲート長方向に狭く形成し、かつ前記両高、
電子濃度領域間隔を前記ゲート電極金属と能動領域との
ゲート長方向の接触長よυ大とし、前記ゲート電極金属
の下方−壁面を絶縁膜で覆ったことを特徴とするショッ
トキゲート型電界効果型トランジスタ。(1) Compound In a Schottky gate field effect transistor in which an active region in contact with a gate electrode metal and high electron concentration regions of the source and drain located on both sides of the active region are formed on a semiconductor substrate, the gate electrode metal The lower part near the contact part with the active region is formed narrower in the gate length direction than the upper part, and both heights are
Schottky gate field effect type, characterized in that the distance between the electron concentration regions is υ larger than the contact length in the gate length direction between the gate electrode metal and the active region, and the lower wall surface of the gate electrode metal is covered with an insulating film. transistor.
ン電極金属間隔とがほぼ等しいことを特徴とする特許請
求の範囲第1項記載のショットキゲート型電界効果トラ
ンジスタ。(2) The Schottky gate field effect transistor according to claim 1, wherein the upper dimension of the gate electrode and the metal spacing between the source and drain electrodes are approximately equal.
り形成されていることを特徴とする特許請求の範囲第1
項記載のショットキゲート型電界効果トランジスタ。(3) Claim 1, characterized in that the active region and the high electron concentration region are formed by an ion implantation method.
Schottky gate field effect transistor as described in .
ト電極が形成される領域にあらかじめ第1の絶縁膜を形
成する工程と、前記第1の絶縁膜をマスクとして高電子
濃度領域をイオン注入によ多形成する工程と、前記第1
の絶縁膜の形成されていない領域に第2の絶縁膜を形成
するとともに前記第1の絶縁膜を除去する工程と、全面
にわたり第8の絶縁膜を形成する工程と、前記第2の絶
縁膜の壁面にのみ前記第8の絶縁膜を残し、前記能動領
域を露出させる工程と、前記能動領域から前記第2の絶
縁膜上の所定部までゲート電極金属を形成する工程とを
少なくとも具備することを特徴とするショットキゲート
型電界効果トランジスタの製造方法。(4) A step of forming a first insulating film in advance in a region where a gate electrode is to be formed on the compound semiconductor substrate where an active region is formed, and ion implantation into a high electron concentration region using the first insulating film as a mask. a step of forming a multilayer, and a step of forming the first
forming a second insulating film in a region where no insulating film is formed and removing the first insulating film, forming an eighth insulating film over the entire surface, and removing the second insulating film. The method further comprises at least the steps of: exposing the active region by leaving the eighth insulating film only on the wall surface of the second insulating film; and forming a gate electrode metal from the active region to a predetermined portion on the second insulating film. A method of manufacturing a Schottky gate field effect transistor characterized by:
後にイオン注入層をアニールすることな特徴とする特許
請求の範囲第4項記載のショットキゲート型電界効果ト
ランジスタの製造方法。(5) A method for manufacturing a Schottky gate field effect transistor according to claim 4, characterized in that the ion implantation layer is annealed after forming the second insulating film and removing the first insulating film. .
ることを特徴とする特許請求の範囲$4項記載のショッ
トキゲート型電界効果トランジスタの製造方法。(6) A method for manufacturing a Schottky gate field effect transistor according to claim 4, characterized in that the third insulating film is removed by an anisotropic etching method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58100225A JPS59225573A (en) | 1983-06-07 | 1983-06-07 | Short gate field effect transistor and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58100225A JPS59225573A (en) | 1983-06-07 | 1983-06-07 | Short gate field effect transistor and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59225573A true JPS59225573A (en) | 1984-12-18 |
Family
ID=14268341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58100225A Pending JPS59225573A (en) | 1983-06-07 | 1983-06-07 | Short gate field effect transistor and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59225573A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61160972A (en) * | 1985-01-08 | 1986-07-21 | Nippon Gakki Seizo Kk | Manufacture of semiconductor device |
JPS61284969A (en) * | 1985-06-10 | 1986-12-15 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of field effect transistor |
JPS6239076A (en) * | 1985-08-14 | 1987-02-20 | Nec Corp | Manufacture of field effect transistor |
-
1983
- 1983-06-07 JP JP58100225A patent/JPS59225573A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61160972A (en) * | 1985-01-08 | 1986-07-21 | Nippon Gakki Seizo Kk | Manufacture of semiconductor device |
JPS61284969A (en) * | 1985-06-10 | 1986-12-15 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of field effect transistor |
JPS6239076A (en) * | 1985-08-14 | 1987-02-20 | Nec Corp | Manufacture of field effect transistor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5950567A (en) | Manufacture of field effect transistor | |
KR900008277B1 (en) | Manufacturing Method of Field Effect Transistor | |
JPS6070768A (en) | Method for manufacturing field effect transistors | |
JPS59225573A (en) | Short gate field effect transistor and its manufacturing method | |
JPH0329301B2 (en) | ||
JPS63248136A (en) | Semiconductor device | |
US5382821A (en) | High power field effect transistor | |
JP3248818B2 (en) | Electrode pad for semiconductor device and method of manufacturing the same | |
JPH03165526A (en) | Manufacture of field effect transistor | |
JPS6286870A (en) | Manufacture of semiconductor device | |
JPS5935479A (en) | Manufacturing method of semiconductor device | |
JPH01170051A (en) | field effect transistor | |
JPS6155967A (en) | Manufacture of field-effect transistor | |
JPS6286869A (en) | Manufacturing method of semiconductor device | |
JPS58123777A (en) | Schottky gate field-effect transistor and its manufacture | |
JPS6292479A (en) | Manufacture of semiconductor device | |
JPS6142963A (en) | Manufacturing method of semiconductor device | |
JPS616870A (en) | Manufacture of field-effect transistor | |
JPS63119582A (en) | Manufacture of semiconductor device | |
JPS6239071A (en) | Manufacture of semiconductor device | |
JPH0653242A (en) | Manufacture of semiconductor device | |
JPS62211960A (en) | Manufacture of semiconductor device | |
JPH0330434A (en) | Field effect transistor | |
JPS6167274A (en) | Manufacturing method of semiconductor device | |
JPS5982773A (en) | Manufacturing method of semiconductor device |