JPS59224324A - Control of injection process in electric molding machine - Google Patents
Control of injection process in electric molding machineInfo
- Publication number
- JPS59224324A JPS59224324A JP9901083A JP9901083A JPS59224324A JP S59224324 A JPS59224324 A JP S59224324A JP 9901083 A JP9901083 A JP 9901083A JP 9901083 A JP9901083 A JP 9901083A JP S59224324 A JPS59224324 A JP S59224324A
- Authority
- JP
- Japan
- Prior art keywords
- injection
- speed
- value
- control
- drive source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002347 injection Methods 0.000 title claims abstract description 98
- 239000007924 injection Substances 0.000 title claims abstract description 98
- 238000000034 method Methods 0.000 title claims abstract description 42
- 230000008569 process Effects 0.000 title claims abstract description 28
- 238000000465 moulding Methods 0.000 title claims abstract description 23
- 238000005429 filling process Methods 0.000 claims description 12
- 230000007246 mechanism Effects 0.000 claims description 7
- 230000007423 decrease Effects 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 4
- 230000009467 reduction Effects 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 4
- 238000001746 injection moulding Methods 0.000 abstract description 4
- 239000011347 resin Substances 0.000 description 16
- 229920005989 resin Polymers 0.000 description 16
- 238000007906 compression Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 238000004886 process control Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 230000006835 compression Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/76—Measuring, controlling or regulating
- B29C45/77—Measuring, controlling or regulating of velocity or pressure of moulding material
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
この発明はサーボモータを駆動源として用いた電動式射
出成形機の新たな射出工程制御方法に関するものである
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new injection process control method for an electric injection molding machine using a servo motor as a drive source.
射出成形機における各工程のなかで、溶融樹脂を金型内
に充填する射出工程は成形品品質に影響を及ぼす極めて
重要な工程である。Among the various steps in an injection molding machine, the injection step of filling the mold with molten resin is an extremely important step that affects the quality of the molded product.
射出工程は射出開始から樹脂が金型内にほぼ充満するま
での充填工程と、金型内に充満した樹脂を圧縮する圧縮
二[程と、圧縮充填した溶融樹脂を冷却による収縮分を
補充填するため又は再圧縮するため、あるいはイケ1脂
の機械のノズル側への逆流をとめるため等の保圧工程に
分割して考えることかでさる。しかしわからその分割点
を見い出すことはすこぶる困難なことである。従来の射
出工程制御方法においては、制御上から便宜的に分割点
を県い出す方法であシ、たとえば充填工程は射出スクリ
ュあるいはプランジャの速度制御で行ない、圧縮工程と
保圧工程については射出スクリュの前進力(電動式成形
機においては駆動モータの回転トルク)、即ち、力の制
御に切換えて行なうか、あるいは圧縮工程については充
填工程の終期に含めて行なうかしていた。The injection process consists of a filling process from the start of injection until the mold is almost filled with resin, a compression stage to compress the resin filled in the mold, and a refilling process to compensate for the shrinkage of the compressed and filled molten resin due to cooling. This can be divided into pressure holding processes, such as for compressing the oil, recompressing it, or stopping the backflow of fat to the nozzle side of the machine. However, it is extremely difficult to find the dividing point. In conventional injection process control methods, dividing points are predetermined for convenience in control. For example, the filling process is performed by controlling the speed of the injection screw or plunger, and the compression process and pressure holding process are performed by controlling the injection screw or plunger speed. The forward force (rotational torque of the drive motor in the case of an electric molding machine), that is, the force control has been used to control the compression process, or the compression process has been carried out as part of the final stage of the filling process.
いずれにしても、従来の射出工程制御は速1反制御から
力の制御への切換時には駆動側の力と溶融園脂−9の負
荷とのバランスによる間接的制御に依存した不安定な過
渡的制御状態を含めていたので、安定した制御がしにく
り、一定品質の成形品の生産ができにくい欠点があった
。又電動式成形機の場合には、充填工程の速度制御状態
から直接力制御状態に切換えたのでは、充填完了点の射
出スクリュはもちろんのこと、電動機の回転子、あるい
は駆動用ギア、軸等の機械式成形機の特有な慣性エネル
ギーが個別されるため、圧縮工程における樹脂に作用す
る実際の射出力が設定された射出力にくらべて、油圧式
成形機の場合よシもよシ過人となり、樹脂が金型内によ
り過充填されることがあ勺、充填工程直後の射出力の設
定値を低くしたとしても上記慣性エネルギーの影響をな
くすことはできず、このため成形条件法めがし難い欠点
があった。In any case, when switching from speed 1 control to force control, conventional injection process control relies on indirect control based on the balance between the force on the drive side and the load on the molten resin-9. Since the control state was included, it was difficult to achieve stable control, making it difficult to produce molded products of constant quality. In addition, in the case of an electric molding machine, switching from the speed control state to the direct force control state in the filling process will not only affect the injection screw at the filling completion point, but also the rotor of the electric motor, drive gear, shaft, etc. Since the unique inertia energy of a mechanical molding machine is separated, the actual injection force acting on the resin during the compression process is much lower than that of a hydraulic molding machine compared to the set injection force. Therefore, the resin may be overfilled in the mold, and even if the setting value of the injection force immediately after the filling process is lowered, the influence of the above-mentioned inertial energy cannot be eliminated. It had some serious drawbacks.
本来、」二記圧縮工程においても、直接制御することが
望ましいことは勿論のこと、射出速度あるいは射出力の
各成サイクルごとに繰返し安定性の良い制御をするため
には、上記慣性エネルギーの影響が無視できるまで射出
速度を低速にして、射出力制御に移行させることが有効
であって、さすれば安定成形が可能となジ、成形条件の
設定も容易となって作業の合理化ができる。Originally, it is desirable to directly control the compression process as well, but in order to control the injection speed or injection force with good repeatability for each formation cycle, it is necessary to control the influence of the inertial energy mentioned above. It is effective to reduce the injection speed until it becomes negligible and then shift to injection force control, which allows stable molding, and also makes it easier to set molding conditions and rationalize the work.
この発明は上記のことから開発されたものであって、そ
の目的とするところは、電動式成形機における改良され
た制御方法を提供するとともに、射出工程のすべての区
間の速度あるいは力を直接制御することができる新たな
射出工程制御方法を提供することにある。This invention has been developed in view of the above, and its purpose is to provide an improved control method for an electric molding machine and to directly control the speed or force of all sections of the injection process. The object of the present invention is to provide a new injection process control method that can
」−記目的によるこの発明の1つの特徴は、充填工1.
H中は、駆動源の回転速度値とトルク値とを設定すると
ともに、駆動源の回転速度がその射出速度飴となる様に
閉ループ制御による速度制御にて行ブトい、充填完了点
にて速度の設定値を前以って設定されたゼロまたは射出
力制呻への切換時に射出スクリュ等の慣性エネルギーが
ほとんど無視できるグI″度の低い鎖(C変更し、閉ル
ープにて減速させる減速[ス聞を設け、射出速度がその
設定値にほぼ到達した後に、駆動源のトルク値及び回転
速度値の設定を前以って設定された値に変−更して速度
制f卸から射出力制御に移行させる射出工程制御方法に
ある。”-One feature of this invention for the purpose of writing is that: 1.
During H, the rotation speed value and torque value of the drive source are set, and the speed is controlled by closed loop control so that the rotation speed of the drive source matches the injection speed, and the speed is adjusted at the filling completion point. When switching to a preset zero or injection force control, the inertial energy of the injection screw, etc. is almost negligible. After the injection speed has almost reached the set value, change the settings of the torque value and rotational speed value of the driving source to the values set in advance, and then change the injection speed from the speed control f wholesaler to the injection force. The injection process is controlled by a method for controlling the injection process.
またこの発明の他の1つの特徴は、充填工程中は駆動源
の回転速度値とトルク値とを設定するとともに駆動源の
回転速度がその射出速度値となるように閉ループ制御に
よる速度制御にて行ない、充填完了点にて速度の設定値
を前もって設定されたゼロまたは射出力制御への切換時
に射出スクリュ等の慣性エネルギーがほとんど無視でき
る程度に低い値に変更し、閉ループにて減速させる減速
区間を設け、充填工程完了点以降の減速区間における駆
動源のトルク値の設定を変えることにより、減速区間の
射出速度の低下率を変更さることを含む射出工程制御方
法にある。Another feature of the present invention is that during the filling process, the rotational speed and torque values of the drive source are set, and the speed is controlled by closed loop control so that the rotational speed of the drive source matches the injection speed. At the filling completion point, the speed setting value is changed to a preset zero or to a value so low that the inertial energy of the injection screw, etc. can be almost ignored when switching to injection force control, and the deceleration section is used to decelerate in a closed loop. The injection process control method includes changing the rate of decrease in the injection speed in the deceleration section by changing the setting of the torque value of the drive source in the deceleration section after the completion point of the filling process.
以下この発明を図示による例を用い、従来例の補足説明
とともに詳細に説明する。Hereinafter, the present invention will be described in detail using illustrated examples and supplementary explanations of conventional examples.
第1図は電気サーボモータを駆動源とする電動式射出成
形機の射出機構の主たる構造を1例として略示したもの
である。FIG. 1 schematically shows, as an example, the main structure of an injection mechanism of an electric injection molding machine using an electric servo motor as a drive source.
射出機構1は、射出用のスクリュ2を内装しホッパー4
を有する射出加熱筒6と、射出加熱筒6の保持を兼ねる
ハウジング5とを有する。該ハウジング5の内部には、
ねじ軸17を備えた回動軸16が4jl架してあり、そ
のねじ軸17に可動部材18が螺合しである。またスク
、リュ2の後端には上記可動部材18に先端を軸受した
延長軸15 がスクリュ2と同体に連結しである。また
回動軸16と延長’!Qll 15には、互い(で干渉
しない位置にスクリュ前進用の歯車19と延長!PlI
115 のスプラインを介しj1々11方向移動自在1
で取向けたスクリュ回転用の歯車14とを有し、更に回
動11qil 16の端部にはハT/ シング壁部5a
に固定したヒステリシスプレーギを内装置−だ背圧制御
装置22 が数句けである。The injection mechanism 1 includes an injection screw 2 and a hopper 4.
The housing 5 has an injection heating cylinder 6 and a housing 5 which also serves to hold the injection heating cylinder 6. Inside the housing 5,
A rotating shaft 16 having a threaded shaft 17 is mounted on a 4jl frame, and a movable member 18 is screwed onto the threaded shaft 17. Further, at the rear end of the screw 2, there is an extension shaft 15 integrally connected to the screw 2, the tip of which is supported by the movable member 18. In addition, the rotation axis 16 and extension'! Qll 15 is extended with gear 19 for screw advancement in a position where they do not interfere with each other! PlI
Freely movable in 11 directions via 115 splines
It has a gear 14 for rotating the screw which is attached at the end of the rotation 11qil 16.
There are several back pressure control devices 22 that control the hysteresis pressure fixed to the inner device.
上記ハウジング5の下部内には、上記回動軸16及び延
長軸15と並行な伝動軸21がハウジング5を11通し
て設けである。伝動軸21及びクラッチ機構(図示なし
)を介すことによシ、型締機構「lすへの動力の伝達を
することもできる。A transmission shaft 21 parallel to the rotation shaft 16 and the extension shaft 15 is provided in the lower part of the housing 5 and extends through the housing 5 . Power can also be transmitted to the mold clamping mechanism via the transmission shaft 21 and a clutch mechanism (not shown).
丑た上記伝動軸21には上記歯車14.19とそれぞれ
噛合する伝動歯車12.13が回転自在にして、電磁ク
ラッチ20.11を介して電気的指令によシ伝動lll
1lI21との結合或いは解除がなされるようeこ設け
である。射出工程中は電磁クラッチ11が、針車工程中
は電磁クラッチ20が励磁される。Transmission gears 12.13 meshing with the gears 14.19 are rotatably connected to the transmission shaft 21, and the transmission gears 12.13 and 12.13 mesh with the gears 14.19, respectively.
This is provided so that it can be connected to or released from 11I21. The electromagnetic clutch 11 is energized during the injection process, and the electromagnetic clutch 20 is energized during the needle wheel process.
更にまた伝動軸21 のハウジング壁部5a から外
部に突出した軸部は、ハウジング壁部5aに固定した電
気サーボモータ9と連結しており、サーボモータ9はタ
コメータジェネレータ10を備tている。6は射出切換
位置検出器、7はスクリュ回転速度スローダウン位置検
出器、8は計量限位置検出器で、そ7′Lらはリミット
スイッチ、近接スイッチなどによりなる。なお26は機
台である。Furthermore, the shaft portion of the transmission shaft 21 projecting outward from the housing wall 5a is connected to an electric servo motor 9 fixed to the housing wall 5a, and the servo motor 9 is equipped with a tachometer generator 10. 6 is an injection switching position detector, 7 is a screw rotation speed slowdown position detector, 8 is a metering limit position detector, and 7'L is composed of a limit switch, a proximity switch, etc. Note that 26 is a machine stand.
第2図は制御装置を例示するもので、集中制御装置24
とサーボモータ9及びタコメータジェネレータ10とを
接続したサーボモータ側脚アンプ25との間K、速度設
定器v1〜v6とトルク設定器(電流最高値の設定器)
F1〜F4の信号切換器26.27とがサーボモー〆9
の正転・逆転指令回路28と共に接続されている。この
例のサーボモータ9は直流サーボモータである。FIG. 2 shows an example of the control device, in which the central control device 24
and the servo motor side leg amplifier 25 connected to the servo motor 9 and tachometer generator 10, the speed setting devices v1 to v6 and the torque setting device (maximum current value setting device)
F1 to F4 signal switch 26.27 and servo motor switch 9
The normal rotation/reverse rotation command circuit 28 is connected to the normal rotation/reverse rotation command circuit 28. The servo motor 9 in this example is a DC servo motor.
サーボモータ制御アンプ25は、集中制御装置24の指
令によってサーボモータ9の正転・逆転ならびに回転数
(速度)、電流(トルク)等を制御する機能をもち、タ
コメータジェネレータ1゜の信号をフィードバックし、
回転数(速度)の閉ループ1frlJ(71+を行なわ
せるものである。また集中制+i11+装置24は機、
誠の制御を掌る機能をもち、スフIJ ユ回転(H量)
、背圧力等(図示なし)の制御をすると共に、集中側
(It装置24には、上記位置検出器6〜8、時間設定
器T1.T2、射出用電磁クラッチ11、スクリュ回転
用電磁クラッチ20等が接続しである。The servo motor control amplifier 25 has a function of controlling forward/reverse rotation, rotation speed, current (torque), etc. of the servo motor 9 according to commands from the central control device 24, and feeds back signals from the tachometer generator 1°. ,
The closed loop 1frlJ (71+) of the number of revolutions (speed) is performed.In addition, the central control +i11+ device 24 is a machine,
Has the function of controlling Makoto, Sufu IJ Yu rotation (H amount)
, back pressure, etc. (not shown), and the concentration side (It device 24 includes the above-mentioned position detectors 6 to 8, time setters T1 and T2, an electromagnetic clutch 11 for injection, and an electromagnetic clutch 20 for screw rotation). etc. are connected.
次に従来の射出制御方法について説明する。Next, a conventional injection control method will be explained.
第6図は従来の射出制御方法の1例についての1説明図
で、射出工程(Cおけるサーボモータ9の回転速#、(
射出速度)とトルクの制御関係線図で設定値V+ 、
Fi (i=112.3)、実行値Va、Faを縦Ii
+1に、スクリュ位置及び時間を横軸に表わす。FIG. 6 is an explanatory diagram of an example of a conventional injection control method, showing the rotational speed # of the servo motor 9 in the injection process (C,
In the control relationship diagram of injection speed) and torque, set value V+,
Fi (i=112.3), actual values Va and Fa are vertically Ii
+1 represents the screw position and time on the horizontal axis.
直流サーボモータの特性によって電流とトルクは比例関
係にある。集中制御装置24の指令にもとづき、図示の
ように速度設定器■1によって速度の設定値V1が、ま
た各トルク設定器F1〜F乙によってトルク設定値(電
流制限設定値) F+〜F3が設定される。入力によシ
サーボモータ9は実行値Vaに示すように、a−b間を
加速されてvlの設定値V1までほぼ直線的に増速回転
する。このときサーボモータ9には加速させるために起
動電流が設定器P’1 ic J:つて設定されたF1
値まで発生ずるが、実行速度がvl となったb点以
降は大きなトルクが不用となるので、電流値は下降し、
り:1メータジエネレータ10 のフィードバック信号
すこよシ速度の閉ループ制御がサーボアンプ25により
なされる結果、b−c間の速度実行値Vaはvl と
一致したものとなる。金型内への樹脂の充填量が増加す
る((従い、再び実行電流値(トルク)は上昇していき
充填完了点である射出切換位置検出器乙の作動位置にス
クリュが達するとその信号によって集中制御装置24が
作動し、信号切換器27 によってトルク設定器F2
が選択され、電流値は瞬時に下降してF2となシ、制御
は速度制御領域Iから力制御領域■に入る。一方実行射
出速度Va は電流値(駆動源)・ルク値)がF2とな
る為、速度設定値がVlにもかかわらず、0点にてのス
クリュ等の慣性エネルギーとモータ回転トルク値とによ
る駆動側の力と樹脂側の負荷との関係によって下降し力
がバランスしたd点でほぼ速度0となる。区間c、−d
間で樹脂の圧縮がなされる。Due to the characteristics of a DC servo motor, current and torque are in a proportional relationship. Based on the command from the central control device 24, as shown in the figure, the speed setting value V1 is set by the speed setting device 1, and the torque setting value (current limit setting value) F+ to F3 is set by each of the torque setting devices F1 to FB. be done. In response to the input, the servo motor 9 is accelerated between a and b, as shown by the execution value Va, and rotates almost linearly at increased speed up to the set value V1 of vl. At this time, in order to accelerate the servo motor 9, a starting current is set using the setting device P'1 ic J:F1.
However, after point b when the execution speed reaches vl, the large torque is no longer needed, so the current value decreases.
1 meter As a result of closed loop control of the speed of the feedback signal of the generator 10 by the servo amplifier 25, the speed execution value Va between b and c becomes equal to vl. The amount of resin filled into the mold increases ((Accordingly, the effective current value (torque) increases again, and when the screw reaches the operating position of the injection switching position detector B, which is the filling completion point, the signal The central control device 24 operates, and the signal switch 27 switches the torque setting device F2.
is selected, the current value drops instantaneously to F2, and control shifts from speed control area I to force control area ■. On the other hand, the effective injection speed Va is driven by the inertial energy of the screw, etc. at the 0 point and the motor rotation torque value, because the current value (drive source) / torque value) is F2, even though the speed setting value is Vl. The speed decreases depending on the relationship between the force on the side and the load on the resin side, and the speed becomes almost 0 at point d, where the forces are balanced. Interval c, -d
The resin is compressed between the two.
一方、射出切替位置検出器6が作動すると時間設定器′
■゛1 が作動する。時間設定器′j゛1 がタイ
ムアツプした0点ではトルク設定器F6 に切換わる。On the other hand, when the injection switching position detector 6 is activated, the time setting device'
■゛1 is activated. At the 0 point at which the time setter 'j1' times out, it switches to the torque setter F6.
この様にして圧縮工程後の保圧工程が実行され、集中制
御装置24からの指令によって射出行程が終了する。上
記の様にc−d間は、トルク制御状I測にサーボモータ
を作動させても0点で保有しているスクリュ等の慣性エ
ネルギーのため実際に樹脂に作用する射出力は設定され
たF2 よりも−過大なものとなる。すなわち、負荷
・と設定値との関係によって実行値がきめられてしまう
不安定で過渡的な制御区間となっている。In this way, the pressure holding process after the compression process is executed, and the injection process is completed by a command from the central control device 24. As mentioned above, even if the servo motor is operated in the torque control state I measurement, the injection force that actually acts on the resin is the set F2 due to the inertial energy of the screw etc. held at the 0 point. It becomes excessive. In other words, this is an unstable and transient control section in which the execution value is determined by the relationship between the load and the set value.
次に本発明の説明を第1図、第2図、第4図による例を
用いて説明する。Next, the present invention will be explained using examples shown in FIGS. 1, 2, and 4.
第4図はこの発明の射出制御方法の1例についての説明
図で、射出工程におけるサーボモータ9の回転速度(射
出速度)とトルク(電流値)の制御関係線図で設定値V
i (i =1.2.3)、Fi(i−1,2,3)−
実行値Va 、 Faを縦軸に、スクリュ位置及び時間
を連続させて横軸に表わす。集中制御装置240指令に
もとづき、図示のように速度設定器■1〜■6によって
速度の設定値■1〜V3が、また各トルク設定器F1〜
F3によってトルり設定値(電流制限設定値) F1〜
F5が設定される。射出工程が開始されると集中制御装
置24 の指令にもとづき、電磁クラッチ11が励俳さ
れ、サーフJ5モータ9は実行値Va に示すようにg
−h間を加速されて設定29V1の設定値■1まで回転
する。このときサーボモータ9には加速させるための起
動電流が設定されだ■パ1 値まで発生するが11点
以降は大きなトルクが不用となるので電流値は下降し、
タコメータジェネレータ100フイートノくツク信号に
より速度の閉ループ制御がサーボアンプ25によりなさ
れる結果11−4間の速度実行値VaはVlと一致する
。金型内の樹脂の充填量が増加するに従い再び実行電流
値(トルク)は上昇していく。FIG. 4 is an explanatory diagram of an example of the injection control method of the present invention, and shows a control relation diagram between the rotational speed (injection speed) and torque (current value) of the servo motor 9 in the injection process, and shows the set value V
i (i = 1.2.3), Fi (i - 1, 2, 3) -
The execution values Va and Fa are plotted on the vertical axis, and the screw position and time are plotted on the horizontal axis. Based on the command from the central control device 240, as shown in the figure, the speed set values ■1 to V3 are set by the speed setters ■1 to ■6, and each torque setter F1 to
Torque setting value (current limit setting value) by F3
F5 is set. When the injection process is started, the electromagnetic clutch 11 is energized based on the command from the central control device 24, and the Surf J5 motor 9 generates g as shown in the execution value Va.
It is accelerated between -h and rotates to the setting value ■1 of setting 29V1. At this time, the starting current for accelerating the servo motor 9 is set and the current is generated up to the Pa1 value, but after the 11th point, the large torque is no longer needed, so the current value decreases.
As a result of closed loop control of the speed by the servo amplifier 25 based on the foot check signal of the tachometer generator 100, the speed execution value Va between 11-4 coincides with Vl. As the amount of resin filled in the mold increases, the effective current value (torque) increases again.
射出スクリュが充填完了点である射出切替位置検出器乙
の作動付層に達するとその信号によって集中制御装置i
#24が作動し、信号切換器26 によって速度設定器
v2が選択され、その設定値v2は0まだ1は力制御へ
の切換時に射出スクリュ等の慣性エネルギーがほとんど
無視できる程度に低い値に設定されているので、I−ノ
間は減速域となってサーボモータの制動作用によシ速度
はほぼ直線的に■2 の値寸で降下する5、その理由
は、i −3間は速度設定値が0または小さな値に変更
されているので速度の閉ループ制御によって図示のよう
に電流設定器(トルク設定器)Flの設定値F1までモ
ータ12は負の電流が流肛てモータに回生制動が発生す
るためである。When the injection screw reaches the activated layer of the injection switching position detector B, which is the filling completion point, the central control device i is activated by the signal.
#24 is activated, and the speed setter v2 is selected by the signal switch 26, and its set value v2 is set to 0 or 1 to a value so low that the inertial energy of the injection screw, etc. can be almost ignored when switching to force control. Therefore, the area between I and No becomes a deceleration region, and the speed used for the braking action of the servo motor decreases almost linearly at the value of Since the value has been changed to 0 or a small value, a negative current flows through the motor 12 up to the set value F1 of the current setting device (torque setting device) Fl by closed loop control of the speed, as shown in the figure, and regenerative braking is applied to the motor. This is because it occurs.
一方充填完了点Iより時間設定器T+、T2が作動する
。本例の時間設定器T1ば1−3間の減速区間の完了点
を設定するものであシ、速IWが■2に達した確認の代
用は通常はジ。。秒以下の単位で設定できる時間設定器
を使用して時間にて行なう。その理由は1−3間は閉ル
ープ制御による減速区間であるため、動作の再現性が良
いので時間にてさしつかえないことと、操作性が良く、
廉価な装置となることによる。On the other hand, the time setters T+ and T2 operate from the filling completion point I. The time setter T1 in this example is used to set the completion point of the deceleration section between 1 and 3, and is usually used as a substitute for confirming that the speed IW has reached 2. . This is done in time using a time setting device that can be set in units of seconds or less. The reason for this is that the period between 1 and 3 is a deceleration section by closed loop control, so the reproducibility of the operation is good, so the time is not a problem, and the operability is good.
This is due to the fact that it is an inexpensive device.
なお、j点の検出は、場合によっては速度の検出でも良
いし−スクリュ位置検出器、あるいはスクリュ移動量検
出器、あるいは全型内樹脂圧力の検出装置を使用しても
よい。Note that the detection of the j point may be performed by detecting the speed depending on the case, or by using a screw position detector, a screw movement amount detector, or a detection device for detecting the resin pressure within the entire mold.
上記時間設定器′F1 による設定時間t1 が経
過すると、そのタイムアツプ信号によって制御装置24
が作動し、j点にて速度設定器V3と電流設定器F2と
が選択される。1−3間において樹脂の圧縮がおこなわ
れた後に、3点((て速度制御領域酊から力制御(射出
力制御)領域IVに切換f)F2の射出力となる。速度
設定値v3は設定値v2よシも大きく設定し、電流(ト
ルク)の応答を早める目的で使用する。時間設定器T2
の設定時間t2が経過すると、電流設定器F6が選択さ
れ、その設定値1逸の射出力となり保圧工程が続行され
る。When the time t1 set by the time setting device 'F1 has elapsed, the time-up signal causes the control device 24 to
is activated, and the speed setter V3 and current setter F2 are selected at point j. After the resin is compressed between 1 and 3, the injection force becomes F2 at 3 points ((switching from speed control area 2 to force control (injection force control) area IV f).The speed setting value v3 is set. It is used to speed up the response of current (torque) by setting a larger value than v2.Time setting device T2
When the set time t2 has elapsed, the current setting device F6 is selected, and the injection force becomes the set value of 1, and the pressure holding process is continued.
集中制御装置24 からの射出工程終了指令によって、
モータは動作を停止し、電磁クラッチ11が解放されて
射出工程が終了する。集中制御装置24の指令Qてよっ
て電磁クラッチ2oが励磁され背圧:fjlJ御装置2
2が通電されてモータが起動し、あらかじめ設定された
速度によってスクリュ回転が開始し、計量工程に入シ、
スクリュは樹脂の移送によって後退していき、スクリュ
回転速度スローダウン位置検出器7が作動するとあらか
じめ低速に設定された速度に切換り、低速回転となった
後、言1石限位置演出器8の信号によってモータは動作
停止し、その後電磁クラッチ20 が解除され計量工程
が完了する。背圧制御装置22は制御装置従24の指令
によって適宜に解放される。スクリュ回転速度は射出速
度と同様に閉ループによって制御される(動作図等の図
は省略)。By the injection process end command from the central control device 24,
The motor stops operating, the electromagnetic clutch 11 is released, and the injection process is completed. The electromagnetic clutch 2o is excited by the command Q of the central control device 24, and the back pressure: fjlJ control device 2
2 is energized, the motor starts, the screw starts rotating at a preset speed, and the weighing process begins.
The screw moves backward as the resin is transferred, and when the screw rotation speed slowdown position detector 7 is activated, the speed is changed to a preset low speed, and after reaching the low speed rotation, the screw limit position indicator 8 is activated. The signal causes the motor to stop operating, and then the electromagnetic clutch 20 is released to complete the metering process. The backpressure control device 22 is appropriately released by command of the control device slave 24. The screw rotation speed is controlled in a closed loop similar to the injection speed (figures such as operation diagrams are omitted).
上記説明の様に、1−」間をモータの制動作用を利用し
た速度の閉ループ制御によって射出スクリュは減速され
るため再現性が良く、短時間に減速させることもできる
。力(射出力)制御に切換る3点のスクリュ速度は微速
となっており、慣性エネルギーのほとんどない状態から
力制御に切換えることになるので、トルク(電流)の設
定値と実射出力とがほとんど一致したものとなる。父上
記説明で明らかなように、l−1間の電流設定値を変更
できるように電流設定器F4を設定して、集中制御装置
24によシ選択制御させて使用することによって、その
設定値F4 を犬きくするとモータの制動力が犬、又小
さくすると制動力が小となるので、’ JI:fJの
減速区間の速度の低下率を変更することもできる。As explained above, the injection screw is decelerated by closed-loop control of the speed using the braking action of the motor during the period 1-'', so the reproducibility is good and the deceleration can be achieved in a short time. The screw speeds at the three points that switch to force (injection force) control are very slow, and since the switch is made to force control from a state where there is almost no inertial energy, the set value of torque (current) and the actual injection output are It's almost a match. As is clear from the above explanation, the current setting device F4 is set so that the current setting value between l-1 can be changed, and the setting value is changed by selectively controlling and using the central controller 24. If F4 is increased, the braking force of the motor will be increased, and if F4 is decreased, the braking force will be decreased, so it is also possible to change the speed reduction rate in the deceleration section of 'JI: fJ.
速度の低下率の変更は、樹脂の圧縮速度をかえたことに
なシ成形上の効果が期待でき、たとえばレンズの様々成
形時の残留応力が問題となる成形品においては、圧縮速
度を遅くすることによって過充填が防止できると共に制
御の特徴から再現性が良いため、良品の安定成形によシ
一層有効となる。Changing the speed reduction rate can be expected to have an effect on molding by changing the compression speed of the resin. For example, in molded products where residual stress is a problem when molding various lenses, the compression speed can be slowed down. As a result, overfilling can be prevented and the reproducibility is good due to the control characteristics, making it even more effective for stable molding of good products.
本実施例においては、充填工程完了点をスクリュ位置に
よシ行なっているが、全型内樹脂圧力があらかじめ設定
きれた圧力となったとき、あるいは射出開始点等からの
タイマーによる設定時間が経過したとき、あるいはサー
ボモータの電流値があらかじめ定められた値となったぁ
きでもよい。In this example, the filling process completion point is determined by the screw position, but when the entire resin pressure in the mold reaches a preset pressure, or when the time set by the timer from the injection start point etc. has elapsed. The current value of the servo motor may reach a predetermined value.
又成形品によっては、充填工程中の射出速度を種々プロ
グラムさせる射出速度のプログラム制御を併用すること
によってより効果が期待できる。Further, depending on the molded product, more effects can be expected by combined use of program control of the injection speed in which various injection speeds are programmed during the filling process.
この発明id上述のように速度制御領域■は閉ループ側
脚(Cで行ない、速度fljlJ 1jllから力制御
領域■に切換る直前にd:減速1−吟間を設けるため、
慣性エイ・ルギーのほとんど影響のない状態(Cて力(
射出力’) :li!I t4]領域1■に切換えるこ
とができるので、電動式成形機の欠点である駆動用ギア
等の油圧式成形イ茨(・てはない特有な慣性エネルギー
の影響をなくすことが−Cきる。This invention id As mentioned above, the speed control area ■ is performed with the closed loop side leg (C, and d: deceleration 1-gin is provided immediately before switching from the speed fljlJ 1jll to the force control area ■.
A state where there is almost no influence of inertia force (C force)
Injection force'): li! Since it is possible to switch to region 1 (It4), it is possible to eliminate the influence of inertial energy peculiar to hydraulic molding such as drive gears, which is a drawback of electric molding machines.
更に下記のごとき効果をも奏する。Furthermore, the following effects are also achieved.
(1)速度(・ゴ閉ループ制御されるので、再現性、安
定性に優れ、安定成形ができる。(1) Speed (-) Since the speed is controlled in a closed loop, it has excellent reproducibility and stability, allowing stable molding.
′2)射出工程の全区間にわたシ、速度あるいは力のj
ljlJ御がなされ、従来の方法の様な負荷とのバラン
スによる過渡的な制御区間がないので、従来にない安定
成形ができる。'2) The force, velocity, or force during the entire injection process.
Since ljlJ control is performed and there is no transient control section due to load balance as in conventional methods, stable molding can be achieved unlike in the past.
(3) (2)の特長はサーボモータを使用した電動
機駆動式機械であればこそ簡便に制御が可能であり油圧
式機械では実施がきわめて困難なことである。(3) The feature of (2) is that it can be easily controlled by an electric motor-driven machine using a servo motor, and is extremely difficult to control with a hydraulic machine.
又射出容量が10.F以下の小型成形機は特に廉価に実
施可能である。Also, the injection capacity is 10. Small molding machines of F or less can be implemented particularly inexpensively.
(4)速度制御領域と力制御領域をはっきりと分けて制
御するので操作性が向上し成形作業の合理化となる。(4) Since the speed control area and the force control area are clearly separated and controlled, operability is improved and molding work is streamlined.
(5)慣性エネルギーの影響がほとんどない状態での1
llJ御ができるので、過充填のない成形品の生産が答
易となる。(5) 1 with almost no influence of inertial energy
Since llJ can be controlled, it becomes easy to produce molded products without overfilling.
(6)減速区間の速度の低下率の変更を簡便にして廉価
に実施できる。(6) The speed reduction rate in the deceleration section can be changed easily and inexpensively.
第1図はこの発明に係る射出工程制御方法を実施し得る
電動式成形機の略示縦断面図、第2図は電動式成形機の
制御装置のブロック図、第6図は従来法(でよる射出制
御の駆動源の速度とトルクの制御関係線図、第4図はこ
の発明の射出工程制御力法における駆動源の速度とトル
クの制御関係線図である。−
1・ 射出機構 2・・・射出スクリュ6・
射出切替位置検出器9・・・サーボモータ10・・ タ
コメータジェネレータ
24・・・集中制御装置
25・ サーボモータ制御アンプ
26・27・・・信号切換器
ンε3 ・逆転指令回路FIG. 1 is a schematic vertical cross-sectional view of an electric molding machine that can implement the injection process control method according to the present invention, FIG. 2 is a block diagram of a control device for the electric molding machine, and FIG. 6 is a conventional method ( FIG. 4 is a diagram showing the control relationship between the speed and torque of the drive source in the injection process control force method of the present invention.-1. Injection mechanism 2.・Injection screw 6・
Injection switching position detector 9... Servo motor 10... Tachometer generator 24... Central control device 25, Servo motor control amplifiers 26, 27... Signal switch ε3, Reverse command circuit
Claims (2)
た電動式成形機の射出工程において、充填工程中は駆動
源の回転速度値とトルク値とを設定するとともに、駆動
源の回転速度がその射出速度値となる様に閉ループ制御
による速度制御にて行ない、充填完了点にて速度の設定
値を前以って設定された七口寸たは射出力制御への切換
時に射出スクリュ等の慣性エネルギーがほとんど無視で
きる程度の低い値に変更し、閉ループにて減速さぜる減
速区間を設け、射出速度がその設定値にほぼ到達した後
に、駆動源のトルク値及び回転速度値の設定を前以って
設定された値に変更して速度制御から射出力?i!II
御に移行さぜることを含むことを特数とする射出工程制
御方法。(1) In the injection process of an electric molding machine that uses an electric servo motor as the drive source of the injection mechanism, during the filling process, the rotation speed value and torque value of the drive source are set, and the rotation speed of the drive source is The speed is controlled by closed-loop control to maintain the injection speed value, and at the point when filling is completed, the speed setting value is set in advance or the inertia of the injection screw is changed to the injection force control. The energy is changed to a low value that is almost negligible, a deceleration section is created in which the deceleration is performed in a closed loop, and after the injection speed has almost reached the set value, the torque value and rotation speed value of the driving source are set beforehand. Change the injection force from speed control to the set value? i! II
A method for controlling an injection process, the special feature of which is to control the injection process.
た電動式成形機の射出工程において、充填工程中ば、駆
動源の回転速度値とトルク値とを設定するとともに駆動
源の回転速度がその射出速度値となるように閉ループ制
御による速度制御にて行ない、充填完了点にて速度の設
定値を前もって設定さ才したゼr:l址た何:射出力制
御への切換時に射出スクリュ等の慣性エネルギーがほと
んど無視できる程度に低い値に変更し、閉ループにて減
速させる減速区間を設け、充填工程完了点以降の減速区
間における1駆動源のトルク値の設定を変えることによ
シ、減速14間の射出速度の低下率を変更さることを含
むことを利徴とする電動式成形機の射出工l、′制佃1
方法。(2) In the injection process of an electric molding machine that uses an electric servo motor as the drive source of the injection mechanism, during the filling process, the rotation speed value and torque value of the drive source are set, and the rotation speed of the drive source is The speed is controlled by closed-loop control so that the injection speed value is the same, and the speed setting value is set in advance at the filling completion point.When switching to injection force control, the injection screw etc. By changing the inertia energy to a low value that is almost negligible, providing a deceleration section in which deceleration is performed in a closed loop, and changing the setting of the torque value of one driving source in the deceleration section after the filling process completion point, deceleration 14 is achieved. Injection process of an electric molding machine characterized by changing the rate of decrease in injection speed between 1 and 1
Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9901083A JPS59224324A (en) | 1983-06-03 | 1983-06-03 | Control of injection process in electric molding machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9901083A JPS59224324A (en) | 1983-06-03 | 1983-06-03 | Control of injection process in electric molding machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59224324A true JPS59224324A (en) | 1984-12-17 |
JPH0428532B2 JPH0428532B2 (en) | 1992-05-14 |
Family
ID=14235111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9901083A Granted JPS59224324A (en) | 1983-06-03 | 1983-06-03 | Control of injection process in electric molding machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59224324A (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6119328A (en) * | 1984-07-05 | 1986-01-28 | Niigata Eng Co Ltd | Pressure controller in injection molding machine |
JPS61167519A (en) * | 1985-01-21 | 1986-07-29 | Fanuc Ltd | Control method of injection and follow-up pressure of injection molding machine |
WO1986005740A1 (en) * | 1985-03-28 | 1986-10-09 | Fanuc Ltd | Metering and kneading system for injection molding machines |
WO1986005741A1 (en) * | 1985-03-28 | 1986-10-09 | Fanuc Ltd | Injection molding machine with display graphing metering and kneading conditions |
WO1986006021A1 (en) * | 1985-04-08 | 1986-10-23 | Fanuc Ltd | Device for controlling injection pressure of injection molding machine |
DE3612439A1 (en) * | 1985-04-12 | 1986-10-23 | Nissei Plastics Industrial Co., Ltd., Nagano | METHOD AND DEVICE FOR CONTROLLING THE INJECTION PROCESS IN AN INJECTION MOLDING MACHINE |
WO1986006320A1 (en) * | 1985-04-30 | 1986-11-06 | Fanuc Ltd | Method of controlling kneading in injection molding machine |
WO1986006319A1 (en) * | 1985-04-30 | 1986-11-06 | Fanuc Ltd | System for switching and controlling unit amount of torque limit value of servo motor for injection molding machine |
WO1987003245A1 (en) * | 1985-11-27 | 1987-06-04 | Fanuc Ltd | Metering method in an injection molding machine |
WO1987003244A1 (en) * | 1985-11-20 | 1987-06-04 | Fanuc Ltd | Metering device for injection molding machine |
JPS639522A (en) * | 1986-07-01 | 1988-01-16 | Ube Ind Ltd | How to monitor molding conditions |
JPS63286320A (en) * | 1987-05-19 | 1988-11-24 | Fanuc Ltd | Dwel control method of motor-driven injection molding machine |
JPH01135609A (en) * | 1987-11-24 | 1989-05-29 | Yaskawa Electric Mfg Co Ltd | Driving device of motorized injection molder |
WO1990011174A1 (en) * | 1989-03-28 | 1990-10-04 | Fanuc Ltd | Apparatus for discriminating acceptable products from rejectable products for injection molding machines |
JPH03213320A (en) * | 1990-01-18 | 1991-09-18 | Fanuc Ltd | Injection device for motorized injection molding machine |
JPH0422616A (en) * | 1990-05-18 | 1992-01-27 | Sumitomo Heavy Ind Ltd | Controlling method for injection speed of electromotive injection molding machine |
US5092753A (en) * | 1989-04-26 | 1992-03-03 | Canon Kabushiki Kaisha | Electric injection molding apparatus |
JPH06218785A (en) * | 1993-11-15 | 1994-08-09 | Fanuc Ltd | Control method of driving of injection molding machine by servomotor |
JPH08309808A (en) * | 1996-05-28 | 1996-11-26 | Fanuc Ltd | Drive controlling method for injection molding machine driven by servo motor |
EP1728616A1 (en) | 2005-06-02 | 2006-12-06 | Fanuc Ltd | Controller for injection molding machine |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57199427U (en) * | 1981-06-12 | 1982-12-18 | ||
JPS5862030A (en) * | 1981-10-08 | 1983-04-13 | Nissei Plastics Ind Co | Injection molder |
-
1983
- 1983-06-03 JP JP9901083A patent/JPS59224324A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57199427U (en) * | 1981-06-12 | 1982-12-18 | ||
JPS5862030A (en) * | 1981-10-08 | 1983-04-13 | Nissei Plastics Ind Co | Injection molder |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0421575B2 (en) * | 1984-07-05 | 1992-04-10 | Niigata Engineering Co Ltd | |
JPS6119328A (en) * | 1984-07-05 | 1986-01-28 | Niigata Eng Co Ltd | Pressure controller in injection molding machine |
JPS61167519A (en) * | 1985-01-21 | 1986-07-29 | Fanuc Ltd | Control method of injection and follow-up pressure of injection molding machine |
JPH0253216B2 (en) * | 1985-01-21 | 1990-11-16 | Fanuc Ltd | |
WO1986005741A1 (en) * | 1985-03-28 | 1986-10-09 | Fanuc Ltd | Injection molding machine with display graphing metering and kneading conditions |
WO1986005740A1 (en) * | 1985-03-28 | 1986-10-09 | Fanuc Ltd | Metering and kneading system for injection molding machines |
US4755123A (en) * | 1985-03-28 | 1988-07-05 | Fanuc Ltd | Metering system of injection molding machine |
WO1986006021A1 (en) * | 1985-04-08 | 1986-10-23 | Fanuc Ltd | Device for controlling injection pressure of injection molding machine |
US4887012A (en) * | 1985-04-08 | 1989-12-12 | Fanuc Ltd. | Injection control apparatus for injection molding machine |
DE3612439A1 (en) * | 1985-04-12 | 1986-10-23 | Nissei Plastics Industrial Co., Ltd., Nagano | METHOD AND DEVICE FOR CONTROLLING THE INJECTION PROCESS IN AN INJECTION MOLDING MACHINE |
DE3612439C3 (en) * | 1985-04-12 | 1998-02-26 | Nissei Plastics Ind Co | Method and device for controlling the injection process in an injection molding machine |
WO1986006320A1 (en) * | 1985-04-30 | 1986-11-06 | Fanuc Ltd | Method of controlling kneading in injection molding machine |
WO1986006319A1 (en) * | 1985-04-30 | 1986-11-06 | Fanuc Ltd | System for switching and controlling unit amount of torque limit value of servo motor for injection molding machine |
US4759705A (en) * | 1985-04-30 | 1988-07-26 | Fanuc Ltd | Switching control system for unit torque limit value of servo motor for injection molding machine |
US4787834A (en) * | 1985-11-20 | 1988-11-29 | Fanuc Ltd. | Metering apparatus of injection molding machine |
WO1987003244A1 (en) * | 1985-11-20 | 1987-06-04 | Fanuc Ltd | Metering device for injection molding machine |
WO1987003245A1 (en) * | 1985-11-27 | 1987-06-04 | Fanuc Ltd | Metering method in an injection molding machine |
JPH0249893B2 (en) * | 1986-07-01 | 1990-10-31 | Ube Industries | |
JPS639522A (en) * | 1986-07-01 | 1988-01-16 | Ube Ind Ltd | How to monitor molding conditions |
JPH0813485B2 (en) * | 1987-05-19 | 1996-02-14 | ファナック株式会社 | Holding pressure control method for electric injection molding machine |
JPS63286320A (en) * | 1987-05-19 | 1988-11-24 | Fanuc Ltd | Dwel control method of motor-driven injection molding machine |
JPH01135609A (en) * | 1987-11-24 | 1989-05-29 | Yaskawa Electric Mfg Co Ltd | Driving device of motorized injection molder |
WO1990011174A1 (en) * | 1989-03-28 | 1990-10-04 | Fanuc Ltd | Apparatus for discriminating acceptable products from rejectable products for injection molding machines |
US5092753A (en) * | 1989-04-26 | 1992-03-03 | Canon Kabushiki Kaisha | Electric injection molding apparatus |
JPH03213320A (en) * | 1990-01-18 | 1991-09-18 | Fanuc Ltd | Injection device for motorized injection molding machine |
JPH0422616A (en) * | 1990-05-18 | 1992-01-27 | Sumitomo Heavy Ind Ltd | Controlling method for injection speed of electromotive injection molding machine |
JPH06218785A (en) * | 1993-11-15 | 1994-08-09 | Fanuc Ltd | Control method of driving of injection molding machine by servomotor |
JPH08309808A (en) * | 1996-05-28 | 1996-11-26 | Fanuc Ltd | Drive controlling method for injection molding machine driven by servo motor |
EP1728616A1 (en) | 2005-06-02 | 2006-12-06 | Fanuc Ltd | Controller for injection molding machine |
US7462025B2 (en) | 2005-06-02 | 2008-12-09 | Fanuc Ltd | Controller for injection molding machine |
Also Published As
Publication number | Publication date |
---|---|
JPH0428532B2 (en) | 1992-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59224324A (en) | Control of injection process in electric molding machine | |
JPH041687B2 (en) | ||
KR20010111631A (en) | Injection molding machine and method for controlling screw position in the same | |
JPS6365010B2 (en) | ||
KR910000288B1 (en) | Injection molding machines and methods for controlling the same | |
JPH0444891B2 (en) | ||
JPH0464492B2 (en) | ||
JPS646931B2 (en) | ||
JPS6127229A (en) | Method of controlling injection step of motor driven injection molding machine | |
JPH0259023B2 (en) | ||
JPS61158417A (en) | In-line screw type injection molding machine | |
JPS63312128A (en) | Pressure holding process control device for injection molding machines | |
JP2000037755A (en) | Apparatus and method for injection for injection molder | |
JPH09142853A (en) | Apparatus for forming blank mold of bottle producing machine | |
JP2632708B2 (en) | Screw drive control device for injection molding machine | |
JPH0567410B2 (en) | ||
JPH0259025B2 (en) | ||
JPH0639890A (en) | Apparatus for controlling injection process in motordriven injection molding machine | |
JPH0428530B2 (en) | ||
EP0253906B1 (en) | Apparatus for controlling machines having movable and stationary members | |
JPS634926A (en) | Control method of injection molding machine | |
JPH01301221A (en) | Strong mold clamping method for injection molding machine of electric power type | |
JP2000006207A (en) | Starting method of rotation of screw in injection molder | |
JPS6158286B2 (en) | ||
JP2024177969A (en) | Die casting machine and injection molding method |