JPS59223273A - High sliding characteristic silicon carbide sintered body - Google Patents
High sliding characteristic silicon carbide sintered bodyInfo
- Publication number
- JPS59223273A JPS59223273A JP58097380A JP9738083A JPS59223273A JP S59223273 A JPS59223273 A JP S59223273A JP 58097380 A JP58097380 A JP 58097380A JP 9738083 A JP9738083 A JP 9738083A JP S59223273 A JPS59223273 A JP S59223273A
- Authority
- JP
- Japan
- Prior art keywords
- silicon carbide
- sintered body
- surface layer
- carbide sintered
- wear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims description 47
- 229910010271 silicon carbide Inorganic materials 0.000 title claims description 42
- 239000002344 surface layer Substances 0.000 claims description 42
- 229910052582 BN Inorganic materials 0.000 claims description 27
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 27
- 239000000843 powder Substances 0.000 description 13
- 239000002994 raw material Substances 0.000 description 12
- 230000013011 mating Effects 0.000 description 11
- 238000005452 bending Methods 0.000 description 10
- 238000005245 sintering Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000005299 abrasion Methods 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000000462 isostatic pressing Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007569 slipcasting Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は炭化珪素質焼結体に関し、特に摺動部材に好適
な摺動特性の優れた炭化珪素質焼結体に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a silicon carbide sintered body, and more particularly to a silicon carbide sintered body with excellent sliding properties suitable for sliding members.
近年、高強度であり、耐熱性、耐摩耗性に優れた材料と
して、ニューセラミックの一種である炭化珪素質焼結体
が注目されている。この炭化珪素質焼結体の上記特性を
生かして、炭化珪素質焼結体を摺動部材として利用する
試みがなされている。In recent years, silicon carbide sintered bodies, which are a type of new ceramic, have attracted attention as materials with high strength, excellent heat resistance, and wear resistance. Attempts have been made to utilize the silicon carbide sintered body as a sliding member by taking advantage of the above characteristics of the silicon carbide sintered body.
炭化珪素質焼結体は硬いため、金属材料等からなる相手
部材と摺動させた場合、炭化珪素質焼結体自体の摩耗は
極めて少ない。Since the silicon carbide sintered body is hard, when it is slid against a mating member made of a metal material or the like, the silicon carbide sintered body itself suffers very little wear.
しかしながら、高硬度のため相手部材への攻撃性が高く
、相手部材を大きく摩耗するという不具合があった。こ
のため、従来は炭化珪素質焼結体を摺動部材として使用
することが回能であった。However, due to its high hardness, it is highly aggressive towards the mating member and has the disadvantage of causing significant wear on the mating member. For this reason, conventionally it has been practical to use silicon carbide sintered bodies as sliding members.
本発明は、上記従来技術の不具合を解消するためになさ
れたものであり、炭化珪素質焼結体が持つ優れた耐熱性
、耐摩耗性、高強度に加え、相手部材を摩耗させること
が少ないという優れた摺動特性を具えた炭化珪素質焼結
体を提供することを目的とする。The present invention was made in order to solve the problems of the above-mentioned conventional technology, and in addition to the excellent heat resistance, abrasion resistance, and high strength that silicon carbide sintered bodies have, it causes less wear on the mating member. The purpose of the present invention is to provide a silicon carbide sintered body having excellent sliding properties.
かかる目的は、本発明によれば、炭化珪素を主体とする
炭化珪素質焼結体よりなる基部と、この基部と一体的に
焼結される、窒化硼素を含有する炭化珪素質焼結体より
なる表層部とからなる炭化珪素質焼結体によって達成さ
れる。According to the present invention, the present invention has a base made of a silicon carbide sintered body mainly composed of silicon carbide, and a silicon carbide sintered body containing boron nitride, which is integrally sintered with the base. This is achieved by a silicon carbide sintered body consisting of a surface layer portion.
このとき、表層部に含有される窒化硼素の割合は重量%
で(以下、%はすぺで重量%)2〜64%であることが
望ましい。また、表層部の厚さは0.1〜3n++nで
あることが望ましい。At this time, the proportion of boron nitride contained in the surface layer is % by weight.
(Hereinafter, % is % by weight) It is desirable that it is 2 to 64%. Further, the thickness of the surface layer portion is preferably 0.1 to 3n++n.
本発明によれば、表層部に含有した窒化硼素の自己潤滑
性により相手部材を摩耗させることが大幅に減少でき、
かつ、表層部と基部は炭化珪素という同一材料を基材と
して一体的に製造されているため、剥離等の不具合が生
じないという優れた効果を奏する。According to the present invention, the self-lubricating property of boron nitride contained in the surface layer can significantly reduce the wear of the mating member,
In addition, since the surface layer portion and the base portion are integrally manufactured using the same base material of silicon carbide, an excellent effect is achieved in that problems such as peeling do not occur.
次に、本発明の詳細な説明する。Next, the present invention will be explained in detail.
本発明の炭化珪素質焼結体の母体となる基部は、従来の
炭化珪素質焼結体と同一であ4゜従って、従来と同様に
、炭化珪素粉末と焼結助剤等からなる原料粉末を所定形
状に成形し、焼結することによって得ることができる。The base, which is the matrix of the silicon carbide sintered body of the present invention, is the same as that of the conventional silicon carbide sintered body. It can be obtained by molding into a predetermined shape and sintering.
一方、本発明の炭化珪素質焼結体の摺動面を形成する表
層部は、窒化硼素を含有する炭化珪素質焼結体からなる
。この窒化硼素を含有させたことが本発明の特徴である
。窒化硼素は相手部材をあまり摩耗させないという優れ
た摺動特性を有し、このため窒化硼素が含有された表層
部の摺動特性を大幅に改善する。なお、この優れた摺動
特性は窒化硼素のもつ自己潤滑性に基づくものと考えら
れる。On the other hand, the surface layer portion forming the sliding surface of the silicon carbide sintered body of the present invention is made of a silicon carbide sintered body containing boron nitride. The feature of the present invention is that this boron nitride is contained. Boron nitride has excellent sliding properties that do not cause much wear on the mating member, and therefore greatly improves the sliding properties of the surface layer containing boron nitride. Note that this excellent sliding property is thought to be based on the self-lubricating property of boron nitride.
この窒化硼素の表層部に締める割合は2〜64%が望ま
しい。下限を2%としたのは、窒化硼素のもつ優れた摺
動特性を享受するためである。また、上限を64%とし
たのは、窒化硼素の配合割合が増大するほど摺動特性が
向上する、すなわち、摩耗係数や相手部材に対する攻撃
性は小さくなるものの、逆に表層部の機械的性質、例え
ば、強度等が低下するため、機械的性質の低下が少なく
かつ優れた摺動特性が得られる上限が64%だがらであ
る。The ratio of boron nitride to the surface layer is preferably 2 to 64%. The lower limit is set to 2% in order to enjoy the excellent sliding properties of boron nitride. In addition, the upper limit was set at 64% because as the blending ratio of boron nitride increases, the sliding properties improve.In other words, although the wear coefficient and aggressiveness against mating parts decrease, the mechanical properties of the surface layer For example, since the strength etc. are reduced, the upper limit for obtaining excellent sliding characteristics with little reduction in mechanical properties is 64%.
また、この表層部は炭化珪素がマトリックスを形成し、
窒化硼素が海に浮がぶ島状に炭化珪素マトリックス中に
分散している構造を持つものが好ましい。この表層部は
、基部と同様に、炭化珪素粉末、窒化硼素粉末および焼
結助剤を含む原料粉末を焼結して得ることができる。In addition, silicon carbide forms a matrix in this surface layer,
It is preferable to have a structure in which boron nitride is dispersed in a silicon carbide matrix in the form of islands floating in the sea. This surface layer portion, like the base portion, can be obtained by sintering raw material powder containing silicon carbide powder, boron nitride powder, and sintering aid.
本発明の炭化珪素質焼結体においては、上述した基部と
表層部が焼結により一体的に製造される。In the silicon carbide sintered body of the present invention, the base portion and the surface layer portion described above are integrally manufactured by sintering.
そして、基部は主として機械的強度を受けもち、表層部
は主として摺動特性を受けもつ。この基部と表層部は、
その主成分がともに炭化珪素であるため、両者の親和性
は高く、表層部が基部より剥離する等の不具合が生じな
い。The base mainly has mechanical strength, and the surface layer mainly has sliding properties. This base and surface layer are
Since the main component of both is silicon carbide, the affinity between the two is high, and problems such as peeling of the surface layer from the base do not occur.
なお、表層部の厚さは、比較的薄いものでよい。Note that the thickness of the surface layer portion may be relatively thin.
実用的には0.1〜31が適当である。表層部が薄すぎ
る場合には、表層部の摩耗により優れた摺動特性が失わ
れ、逆に表層部が厚すぎる場合には、摺動特性は長期に
わたり維持できるが、焼結体としての機械的強度が低下
する。Practically speaking, 0.1 to 31 is appropriate. If the surface layer is too thin, the excellent sliding properties will be lost due to abrasion of the surface layer. Conversely, if the surface layer is too thick, the sliding properties can be maintained for a long time, but the mechanical target strength decreases.
次に、本発明に係る炭化珪素質焼結体の製造方法を説明
する。Next, a method for manufacturing a silicon carbide sintered body according to the present invention will be explained.
本発明の炭化珪素質焼結体の製造方法は、従来の炭化珪
素質焼結体の製造方法と基本的に同一である。具体的に
は、従来と同様に炭化珪素質焼結体の原料粉末を所定の
形状に成形し、この成形体のうち、優れた摺動特性が要
求された部分に、所定量の窒化硼素を含有する原料粉末
のスラリーを刷毛等で塗布し、一定厚さの未焼結の表層
部を形成する。この成形体を従来の窒化硼素の成形体と
同様に焼結する。これにより、基部と表層部が同時焼結
により一体化された本発明の炭化珪素質焼結体が得られ
る。The method for producing a silicon carbide sintered body of the present invention is basically the same as the conventional method for producing a silicon carbide sintered body. Specifically, as in the past, raw material powder for a silicon carbide sintered body is molded into a predetermined shape, and a predetermined amount of boron nitride is applied to the parts of the molded body where excellent sliding properties are required. A slurry of the contained raw material powder is applied with a brush or the like to form an unsintered surface layer portion of a constant thickness. This molded body is sintered in the same manner as a conventional boron nitride molded body. Thereby, the silicon carbide sintered body of the present invention in which the base portion and the surface layer portion are integrated by simultaneous sintering is obtained.
炭化珪素質焼結体の原料粉末には、焼結助剤として知ら
れる硼素、炭素等を添加することができる。基部を形成
する炭化珪素粉末、焼結助剤粉末は、ともに粒径が小さ
い程優れた焼結体が得られる。表層部を形成する原料粉
末は、基部を形成する原料粉末とほぼ同一であり、基部
を形成する原料粉末に窒化硼素を配合したものである。Boron, carbon, etc. known as sintering aids can be added to the raw material powder of the silicon carbide sintered body. The smaller the particle size of both the silicon carbide powder and the sintering aid powder that form the base, the better the sintered body can be obtained. The raw material powder forming the surface layer is almost the same as the raw material powder forming the base, and boron nitride is blended with the raw material powder forming the base.
この窒化硼素の粒径は0.1〜1.2μが好ましい。The particle size of this boron nitride is preferably 0.1 to 1.2 microns.
また、基部の成形方法としては、スリップキャスティン
グ、樹脂を混合して可塑性を与えた原料を射出成形・押
出し成形して所定形状のものを成形し、次いで脱脂する
方法、金型内で原料粉末をプレスして圧密体とする方法
等を採用できる。In addition, methods for forming the base include slip casting, injection molding/extrusion molding of raw materials mixed with resin to give plasticity to form a predetermined shape, and then degreasing, and methods of forming raw material powder in a mold. A method such as pressing to form a compacted body can be adopted.
なお、比較的厚い表層部を必要とする場合には、基部と
なる成形体と表層部となる成形体を別々に一成形し、静
水圧成形により一体化することもできる。In addition, when a relatively thick surface layer portion is required, the molded body serving as the base portion and the molded body serving as the surface layer portion may be molded separately and integrated by isostatic pressing.
次に、本発明の詳細な説明する。Next, the present invention will be explained in detail.
実施例
原料として、平均粒径0.8μの炭化珪素粉末、平均粒
径1μの窒化硼素粉末ならびに焼結助剤としての平均粒
径1μの炭素粉末および硼素粉末を用いた。まず、基部
を造るに際し、硼素粉末1%、炭素粉末2%、残部炭化
珪素粉末の割合にしてプラスチック製のボールミルに入
れ、次いでエチルアルコールを添加し6時間源式混合し
た。その後、3%ポリビニルアルコール水溶液を添加し
て混合し、スプレードライヤにより乾燥して原料を顆粒
化した。この顆粒状原料をプレス金型に入れ、圧縮し成
形体とした。As raw materials for the examples, silicon carbide powder with an average particle size of 0.8 μm, boron nitride powder with an average particle size of 1 μm, and carbon powder and boron powder with an average particle size of 1 μm as sintering aids were used. First, when making a base, 1% boron powder, 2% carbon powder, and the balance silicon carbide powder were placed in a plastic ball mill, and then ethyl alcohol was added and mixed for 6 hours. Thereafter, a 3% polyvinyl alcohol aqueous solution was added and mixed, and the mixture was dried with a spray dryer to granulate the raw material. This granular raw material was put into a press mold and compressed into a molded body.
一方、表層部を造るに際し、上記基部を形成する粉末に
窒化硼素粉末を所定量配合し、エチルアルコールを添加
して湿式混合した後、3%ポリビニルアルコール水溶液
を添加してスラリーとした。On the other hand, when making the surface layer part, a predetermined amount of boron nitride powder was blended with the powder forming the base part, ethyl alcohol was added and wet-mixed, and then a 3% polyvinyl alcohol aqueous solution was added to form a slurry.
このスラリーを基部成形体の表面に刷毛塗りした。This slurry was brush-coated onto the surface of the base molded body.
このとき、刷毛塗りと乾燥を繰り返し、最終的に厚さを
0.5 mmとした表層部成形体を基部成形体の表面に
形成した。At this time, brush coating and drying were repeated to form a surface layer molded body having a final thickness of 0.5 mm on the surface of the base molded body.
その後、この成形体をゴム袋に封入して水中に沈め、8
00 kg/ crAの水圧を均等に加えた。次いで、
圧縮された成形体を、2000℃で4時間、不活性ガス
雰囲気中で焼成した。このようにして、縦20mm、横
10mm、長さ100mmの角棒形状を有する焼結体を
得た。Thereafter, this molded body was sealed in a rubber bag and submerged in water for 8 hours.
A water pressure of 0.00 kg/crA was applied evenly. Then,
The compressed compact was fired at 2000° C. for 4 hours in an inert gas atmosphere. In this way, a sintered body having a rectangular bar shape with a length of 20 mm, a width of 10 mm, and a length of 100 mm was obtained.
この角棒形状を有する焼結体を、第1表に示す如(、窒
化硼素の配合割合をかえて7種類製造した。Seven types of sintered bodies having the shape of square rods were manufactured by changing the blending ratio of boron nitride (as shown in Table 1).
次に、本実施例における炭化珪素質焼結体の耐摩耗性、
摺動特性、強度を調べるために摩耗試験と曲げ試験を行
った。Next, the wear resistance of the silicon carbide sintered body in this example,
Abrasion tests and bending tests were conducted to investigate the sliding properties and strength.
(摩耗試験)
実施例により製造した炭化珪素質焼結体から縦15、7
mm、横6.3 mm、高さ10.1 mmのブロッ
ク状の摩耗試験片を製作した。このとき、摩耗試験の相
手部材として、外径40mm、内径35mm、幅6mm
の軸受鋼製リングを使用した。試験は潤滑摩耗20時間
のLFW摩擦摩耗試験を行った。ここで、LFW摩擦摩
耗試験とは、回転するリングの側面に回転軸に対し直角
に角状ブロックの側面を押し付け、滑り摩擦を行う試験
をいう。試験は、相手部材を1分間180回転で回転さ
せ、モータオイル潤滑油を使用し、相手部材の上側側面
に荷重180kgで摩耗試験片を押し付けることにより
行った。この試験を窒化硼素の含有量をかえて行った結
果を第1表に示す。(Abrasion test) From the silicon carbide sintered body manufactured according to the example, vertical
A block-shaped wear test piece measuring 6.3 mm in width and 10.1 mm in height was manufactured. At this time, as a counterpart member for the wear test, an outer diameter of 40 mm, an inner diameter of 35 mm, and a width of 6 mm were used.
A steel bearing ring was used. The test was an LFW friction wear test with lubrication wear for 20 hours. Here, the LFW friction and wear test refers to a test in which the side surface of a square block is pressed against the side surface of a rotating ring at right angles to the rotation axis to generate sliding friction. The test was conducted by rotating the mating member at 180 revolutions for one minute, using motor oil lubricating oil, and pressing the wear test piece against the upper side surface of the mating member under a load of 180 kg. Table 1 shows the results of this test with different boron nitride contents.
第1表 LFW摩擦摩耗試験および曲げ試験結果但し、
No、 1は表層部なし。Table 1 LFW friction and wear test and bending test results However,
No. 1 has no surface layer.
第1表より、窒化硼素を2%以上含有する表層部をもつ
炭化珪素質焼結体は、摩耗係数が低く、相手部材である
リングの摩耗量が極めて小さいご七が判る。また、この
摩耗係数および相手部材の摩耗量は窒化硼素の含有量が
増えるにつれ、低くまたは少なくなっており、窒化硼素
の含有量が多い方が優れた摺動特性を示すことが判る。From Table 1, it can be seen that a silicon carbide sintered body having a surface layer containing 2% or more of boron nitride has a low wear coefficient and extremely small amount of wear on the ring, which is a mating member. Further, the wear coefficient and the amount of wear of the mating member become lower or smaller as the boron nitride content increases, and it can be seen that the larger the boron nitride content, the better the sliding properties are.
(曲げ試験)
実施例により製造した炭化珪素質焼結体から、−辺が4
mrrlで長さ30mmの角柱形状をもつ曲げ試験片を
作成し、スバ720 mm、荷重速度0.5 mm/分
の条件で3点曲げ試験を行った。この結果を第1表にL
FW摩擦摩耗試験結果とともに示す。(Bending test) From the silicon carbide sintered body manufactured according to the example, -side is 4
A prismatic bending test piece with a length of 30 mm was prepared using mrrl, and a three-point bending test was conducted under the conditions of a width of 720 mm and a loading rate of 0.5 mm/min. This result is shown in Table 1.
It is shown together with the FW friction and wear test results.
第1表より、本実施例にお&Jる炭化珪素質焼結体の曲
げ強度は、表層部における窒化−倉め含有量の増大に伴
い若干の低下が認められる。しかし、大きな低下はなく
、窒化硼素を全く含有しない炭化珪素質焼結体とほぼ同
程度の曲げ強度を有することが判る。From Table 1, it can be seen that the bending strength of the silicon carbide sintered bodies in this example decreases slightly as the nitrided-cured content increases in the surface layer. However, there was no significant decrease, and it was found that the bending strength was approximately the same as that of a silicon carbide sintered body containing no boron nitride.
実施例 2
表層部の厚さに対する影響を調べるために、実施例1と
同一の方法で表層部の厚さを0.05〜5mmの範囲で
変えた炭化珪素質焼結体を製造した。Example 2 In order to examine the influence on the thickness of the surface layer, silicon carbide sintered bodies were manufactured using the same method as in Example 1, with the thickness of the surface layer varying in the range of 0.05 to 5 mm.
このとき、表層部の窒化硼素の配合割合は16%とした
。なお、表層部の厚さが2mmを越えるものについては
、表層郭成形体を金型プレスで圧縮成形したものを用い
た。これらの基部と表層部の成形体を実施例1と同様に
一体化し焼結を行った。At this time, the blending ratio of boron nitride in the surface layer portion was 16%. In addition, for those whose surface layer thickness exceeded 2 mm, those obtained by compression molding the surface layer molded body using a mold press were used. The base and surface molded bodies were integrated and sintered in the same manner as in Example 1.
次いで、この炭化珪素質焼結体から実施例1と同様に試
験片を製作し、LFW摩擦摩耗試験と曲げ試験を行った
。この結果を第2表に示す。Next, a test piece was produced from this silicon carbide sintered body in the same manner as in Example 1, and subjected to an LFW friction and wear test and a bending test. The results are shown in Table 2.
第2表 LFW摩擦摩耗試験および曲げ試験結果摩耗試
験の結果を肉眼で観察したところ、隘8の表層部の厚さ
が0.05 mmのものは、その摺動面に基部が露出し
ていたが、その他のものはすべて。Table 2 LFW Friction and Wear Test Results and Bending Test Results When the wear test results were observed with the naked eye, it was found that the base of the No. 8 surface layer with a thickness of 0.05 mm was exposed on the sliding surface. But everything else.
表層部で摩耗が行われていた。第2表より、摺動面に基
部が露出したNo、 8の試験片については、摩耗係数
、摩耗量ともに高い値を示しているが、表層部で摩耗が
行われた陽9〜No、14の試験片においては、摩耗係
数が0.03〜0.04、相手攻撃性を示すリング摩耗
量は0.8〜0.9■、ブロック摩耗量は0.7〜0.
8μと良好な値を示しているのが判る。There was wear on the surface layer. From Table 2, test pieces No. 8 whose base was exposed on the sliding surface showed high values for both the wear coefficient and the amount of wear, but test pieces No. 9 to No. 14 where the wear occurred on the surface layer showed high values. In the test piece, the wear coefficient was 0.03 to 0.04, the ring wear amount indicating opponent aggressiveness was 0.8 to 0.9 cm, and the block wear amount was 0.7 to 0.
It can be seen that it shows a good value of 8μ.
一方、曲げ強度は表層部の厚さの増加とともに若干低く
なっており、表層部の厚さが51のNo、 14の試験
片では15 kg/ mm’と大幅に低下しているのが
判る。On the other hand, it can be seen that the bending strength slightly decreases as the thickness of the surface layer increases, and for test pieces No. 14 and No. 14 with a surface layer thickness of 51, the bending strength significantly decreases to 15 kg/mm'.
この結果として、表層部の厚さは0.1〜3mmが適当
であることが判る。As a result, it is found that the appropriate thickness of the surface layer portion is 0.1 to 3 mm.
Claims (1)
基部と、 この基部と一体的に焼結される窒化硼素を含有する炭化
珪素質焼結体よりなる表層部と、からなる摺動特性に優
れた炭化珪素質焼結体。 (2、特許請求の範囲第1項において、表層部に含有さ
れる窒化硼素の割合は2〜64重量%であることを特徴
とする特許 焼結体。 (3)特許請求の範囲第1項において、表層部の厚さは
0.1〜3mn+であることを特徴とする摺動特性の優
れた炭化珪素質焼結体。[Claims] (11) A base made of a silicon carbide sintered body mainly composed of silicon carbide, and a surface layer made of a silicon carbide sintered body containing boron nitride, which is sintered integrally with the base. A silicon carbide sintered body having excellent sliding properties comprising: (3) A silicon carbide sintered body with excellent sliding properties as set forth in claim 1, characterized in that the thickness of the surface layer is 0.1 to 3 mm+.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58097380A JPS59223273A (en) | 1983-06-01 | 1983-06-01 | High sliding characteristic silicon carbide sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58097380A JPS59223273A (en) | 1983-06-01 | 1983-06-01 | High sliding characteristic silicon carbide sintered body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59223273A true JPS59223273A (en) | 1984-12-15 |
Family
ID=14190900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58097380A Pending JPS59223273A (en) | 1983-06-01 | 1983-06-01 | High sliding characteristic silicon carbide sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59223273A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4971851A (en) * | 1984-02-13 | 1990-11-20 | Hewlett-Packard Company | Silicon carbide film for X-ray masks and vacuum windows |
WO1993025495A1 (en) * | 1992-06-12 | 1993-12-23 | The Carborundum Company | Porous silicon carbide |
-
1983
- 1983-06-01 JP JP58097380A patent/JPS59223273A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4971851A (en) * | 1984-02-13 | 1990-11-20 | Hewlett-Packard Company | Silicon carbide film for X-ray masks and vacuum windows |
WO1993025495A1 (en) * | 1992-06-12 | 1993-12-23 | The Carborundum Company | Porous silicon carbide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2722182B2 (en) | Porous SiC bearing material having three types of pore structure and method of manufacturing the same | |
JPH10251063A (en) | Graphite composite silicon carbide sintered body, graphic composite silicon carbide sintered composite material and mechanical seal | |
US4482388A (en) | Method of reducing the green density of a slip cast article | |
JPS62176970A (en) | Sintered ceramic thrust washer for mechanical seal | |
JPS59223273A (en) | High sliding characteristic silicon carbide sintered body | |
JPH01294833A (en) | Production of aluminum alloy powder sintered compact body | |
JPS59137375A (en) | Silicon nitride sintered body with sliding properties | |
JPS6150132B2 (en) | ||
JPH0569070B2 (en) | ||
WO2002045889A2 (en) | Improvement of flow characteristics of metal feedstock for injection molding | |
JP3485270B2 (en) | Wet friction material | |
JPS63260861A (en) | SiC-graphite self-lubricating ceramic composite and its manufacturing method | |
JPS59131577A (en) | Silicon carbide material and manufacture | |
JP2974738B2 (en) | Sintered copper sliding material | |
JPH0668330B2 (en) | Sliding member and manufacturing method thereof | |
JP2004035993A (en) | Metal-impregnated carbon sliding material | |
JP2543093B2 (en) | Sliding parts for seals | |
JPS62138377A (en) | Silicon carbide base composite material | |
JPH06183841A (en) | Low frictional ceramic | |
JPS5873735A (en) | Manufacturing method of diamond sintered body | |
JPS5895663A (en) | sliding member | |
Juang et al. | Effect of solid content on processing stability for injection molding of alumina evaluated by Weibull statistics | |
JPS5926978A (en) | Silicon nitride sliding member | |
JP2002265271A (en) | Sliding body, production method therefor and mechanical seal | |
JPS61279653A (en) | Ni-based composite material with excellent wear resistance and corrosion resistance and its manufacturing method |