[go: up one dir, main page]

JPS5922210B2 - lcd display reflector - Google Patents

lcd display reflector

Info

Publication number
JPS5922210B2
JPS5922210B2 JP48027207A JP2720773A JPS5922210B2 JP S5922210 B2 JPS5922210 B2 JP S5922210B2 JP 48027207 A JP48027207 A JP 48027207A JP 2720773 A JP2720773 A JP 2720773A JP S5922210 B2 JPS5922210 B2 JP S5922210B2
Authority
JP
Japan
Prior art keywords
liquid crystal
light
transparent
plate
transparent plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP48027207A
Other languages
Japanese (ja)
Other versions
JPS491253A (en
Inventor
リ− フアガソン ジエ−ムス
ブラドリ− ハ−シ− ト−マス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Publication of JPS491253A publication Critical patent/JPS491253A/ja
Publication of JPS5922210B2 publication Critical patent/JPS5922210B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/08Shutters

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 液晶を用いるデジタルディスプレイの構造が或る明確な
利点を有していることが知られている。
DETAILED DESCRIPTION OF THE INVENTION It is known that the construction of digital displays using liquid crystals has certain distinct advantages.

この様な利点の最も重要な1ツは、液晶ディスプレイの
作動には低出力が必要とされることで、現代のソリツド
ステツド回路と寿命の延長された電池作動の装置との結
合を容易にしている。低出力の利点はディスプレイ自体
以外の出力源により生じられる周囲光線または人工光線
を制御するよう液晶を用いることによつて得られる。従
つて、光の発生をなすよう大半のディスプレイに必要と
されるような出力値は不要である。しかし、液晶にて光
線、特に周囲光線を制御するために、液晶ディスプレイ
を通る光線を反射する方法を設けなければならない。光
線を制御するよう液晶を用いる2ツの方法がある。
One of the most important of these advantages is the low power required to operate liquid crystal displays, making them easier to combine with modern solid-state circuits and extended-life battery-operated devices. . The advantage of low power is obtained by using the liquid crystal to control ambient or artificial light produced by power sources other than the display itself. Therefore, there is no need for a power value such as is required for most displays to produce light. However, in order to control the light rays, especially the ambient light, at the liquid crystal display, a method must be provided to reflect the light rays passing through the liquid crystal display. There are two ways to use liquid crystals to control the light beam.

この様な方法の1ツは動的散乱として普通に知られる光
の散乱作用を用いており、また他の1ツは光の弁として
働く液晶により偏光される光線を用いている。後者の方
法は、例えば本出願人により昭和47年3月8日に出願
されて昭和47年12月13日に公開された特開昭47
=4129号(特願昭47−23?52号)明細書に詳
しく記載されている。動的散乱や偏光される光線に基づ
いた両液晶ディスプレイは、ディスプレイを照射するよ
うに周囲光線または或る低出力光源を用いることができ
るためにディスプレイの背後に或る種の反射器が設けら
れる低出力装置として利用できる。
One such method uses light scattering, commonly known as dynamic scattering, and the other uses light beams that are polarized by liquid crystals that act as light valves. The latter method is disclosed in, for example, Japanese Patent Application Laid-Open No. 1983-1993, which was filed by the present applicant on March 8, 1972 and published on December 13, 1972.
It is described in detail in the specification of No. 4129 (Japanese Patent Application No. 47-23-52). Both liquid crystal displays based on dynamic scattering or polarized light are provided with some type of reflector behind the display so that ambient light or some low-power light source can be used to illuminate the display. Can be used as a low output device.

光散乱ディスプレイにては、液晶物質は活性化されると
きに光線を前方に散乱し、ディスプレイの背後の反射器
にて反射して液晶物質を通つて戻し、前方に再び散乱す
る。光線のこの様な散乱により、活性化された液晶は観
察者に対し暗く或は白つぽくみえる。偏光シヤツタ型の
液晶デイスプレイにては、液晶セルは偏光された光線の
偏光面を90゜回転するようなす。
In a light scattering display, the liquid crystal material, when activated, scatters light forward, reflects off a reflector behind the display back through the liquid crystal material, and scatters the light forward again. This scattering of light rays causes the activated liquid crystal to appear dark or whitish to the viewer. In a polarizing shutter type liquid crystal display, the liquid crystal cell rotates the plane of polarization of the polarized light beam by 90 degrees.

この様な液晶セルはねじれネマチツク液晶である。液晶
セルが交又する偏光器間に置かれるときに、不活性の液
晶セルに光を伝達するようできる。もし反射器が液晶セ
ルと偏光器の組合せ体の背後に置かれて反射器による反
射の後に十分な偏光が維持されるならば、デイスプレイ
は不活性のときに明るくみえる。しかし、この型式の液
晶セルは電位が与えられて活性化されたときには、偏光
面を回転する液晶の能力は損われ、液晶セルは入射光線
が反射器にて遮断されるので暗くみえる。しかし、理解
される様に、液晶セルは活性化されるまでは光を通常遮
断するよう構成することができる。結果的には、液晶セ
ルが光を伝達して不活性のときは逆に、暗い背景上に像
が白つぽく現われることを除いては実質的に同じである
0動的散乱を用いる液晶セルにて周囲光線デイスプレイ
を構成するよう反射器として高反射率の鏡を使用できる
ことが知られている。
Such a liquid crystal cell is a twisted nematic liquid crystal. Light can be transmitted to the inactive liquid crystal cell when the liquid crystal cell is placed between crossed polarizers. If a reflector is placed behind the liquid crystal cell and polarizer combination to maintain sufficient polarization after reflection by the reflector, the display will appear bright when inactive. However, when this type of liquid crystal cell is activated by applying a potential, the liquid crystal's ability to rotate the plane of polarization is impaired and the liquid crystal cell appears dark because the incident light is blocked by the reflector. However, it will be appreciated that liquid crystal cells can be configured to normally block light until activated. The result is a liquid crystal cell using zero dynamic scattering, which is essentially the same except that when the liquid crystal cell transmits light and is inactive, the image appears white on a dark background. It is known that highly reflective mirrors can be used as reflectors to construct ambient light displays.

実際に、液晶セルの背後電極は金属化反射面とすること
ができる。この種の構成は、好適なデイスプレイを形成
するが、デイスプレイにて反射を得るのが非常にやつか
いである。更に、得られる観察角度は、光線を散乱する
角度が光線を主に散乱する液晶物質にもとづいているの
で、大きくない。従つて、光散乱液晶デイスプレイと組
合せられた金属化反射器の欠点はやつかいな背景反射と
小さな観察角度とである。液晶デイスプレイを構成する
偏光法は最後の偏光器の後に置かれた金属化反射器の使
用によりまた実施することができる。
In fact, the back electrode of a liquid crystal cell can be a metallized reflective surface. Although this type of arrangement makes a suitable display, it is very difficult to obtain reflections in the display. Moreover, the obtained viewing angle is not large since the angle of scattering the light beam is based on the liquid crystal material that mainly scatters the light beam. Therefore, the disadvantages of metallized reflectors combined with light scattering liquid crystal displays are difficult background reflections and small viewing angles. Polarization methods for constructing liquid crystal displays can also be implemented by the use of metallized reflectors placed after the last polarizer.

実際に、これは、金属化反射器にて反射されるときに光
線ビームの偏光が維持されるので、偏光される光線を用
いるデイスプレイを構成する理想的手段である。しかし
、実際に、単一の金属化反射器が偏光光線型液晶デイス
プレイの背後に置かれるときに、デイスプレイが非常に
小さな観察角度を有することが見出された。また、やつ
かいな背景反射と、生理学的に不適当なデイスプレイに
対する輝きとがある。偏光される光線液晶デイスプレイ
の鏡反射器にて出会う困難を低減するために、高反射率
の白い背景が研究されてきた。これには高反射率の塗料
、白紙、白いプラスチツクおよび類似物が塗布されたア
ルミナ、セラミツクおよびアルミナ板にて構成される高
反射率の背景が含まれる。この種の高反射率の全ての白
反射器は、散乱反射にもとづく改善された観察角度と、
不活性および活性化状態の液晶デイスプレイ間の十分良
好なコントラスト比とをもたらす改善を金属反射器以上
になすことが見出された。しかし、コントラスト比は反
射により予期されるほど大きくない。これは、全ての白
い高反射面がこれに当たる光を偏光を消すようにしてコ
ントラスト比の損失をもたらすことによるものである。
この発明に依れば、反射装置は、観察角度が大きく、偏
光された光線が良好に反射し、コントラスト比が大きく
、不都合な反射のない偏光型の液晶デイスプレロを提供
している。
In fact, this is an ideal means of constructing displays using polarized light, since the polarization of the light beam is maintained when reflected off the metallized reflector. However, in practice it has been found that when a single metallized reflector is placed behind a polarized light liquid crystal display, the display has a very small viewing angle. There are also nasty background reflections and a physiologically inappropriate glow to the display. Highly reflective white backgrounds have been investigated to reduce the difficulties encountered in mirror reflectors of polarized light liquid crystal displays. This includes highly reflective backgrounds constructed of alumina, ceramic and alumina plates coated with highly reflective paint, white paper, white plastic and the like. This kind of high reflectance all white reflector has improved viewing angle based on scattered reflection and
It has been found that improvements over metal reflectors result in a sufficiently good contrast ratio between liquid crystal displays in the inactive and activated states. However, the contrast ratio is not as large as expected due to reflection. This is because all white highly reflective surfaces depolarize the light that hits them, resulting in a loss of contrast ratio.
According to the invention, the reflection device provides a polarized liquid crystal display with a large viewing angle, good reflection of polarized light, a high contrast ratio, and no undesirable reflections.

この発明の実施にては、ガラス、プラスチツクまたは他
の類似材料でつくられる初めの透明板は、偏光型の液晶
デイスプレイの2ツの偏光器の一方の背後に散乱面を設
けるよう一方の面がこすられ、或は砂吹付けがなされる
In the practice of the invention, an initial transparent plate made of glass, plastic or other similar material is provided with one side so as to provide a scattering surface behind one of the two polarizers of a polarized liquid crystal display. Scrubbed or sandblasted.

この透明板の反対側は高反射率を有するアルミニウム、
ニツケルまたはクロムの様な金属で被覆される。透明板
の一方の側の散乱面と、反対側の金属化された反射被覆
との組合せ体は、偏光液晶シヤツタデイスプレイの後に
置かれるときに非常に大きな角度で光を散乱する散乱反
射をもたらす高効率の散乱反射器をなすと共に、また反
射光線の偏光をもたらすので、従来の液晶デイスプレイ
以上に観察角度の実質的な増大と、コントラストにおけ
る利点をもたらす。この発明の別の特長は相対する側に
散乱面と反射面を有する透明板とランプまたは光源の組
合せた構成にあり、このために液晶デイスプレイは周囲
光線なしにみることができる。この後者の場合に、ラン
プからの光線は、板縁辺の透明部分を通つて照射されて
この板の後の金属被覆にて反射される。この発明の上述
した目的や他の目的並びに特長はこの明細書の一部をな
す添附図面に関連した以下の詳細な説明から明らかとな
ろう。
The other side of this transparent plate is aluminum with high reflectivity.
Coated with a metal such as nickel or chrome. The combination of a scattering surface on one side of the transparent plate and a metalized reflective coating on the opposite side results in a scattering reflection that scatters light at a very large angle when placed after a polarizing LCD shutter display. It provides a highly efficient scattering reflector and also provides polarization of the reflected light, resulting in a substantial increase in viewing angle and advantages in contrast over conventional liquid crystal displays. Another feature of the invention is the combination of a lamp or light source with a transparent plate having a scattering surface and a reflective surface on opposite sides, so that the liquid crystal display can be viewed without ambient light. In this latter case, the light rays from the lamps are directed through the transparent part of the edge of the plate and reflected on the metallization behind this plate. The above objects and other objects and features of the invention will become apparent from the following detailed description taken in conjunction with the accompanying drawings, which form a part of this specification.

図面、特に第1,2図に就いていま説明するに、図示の
液晶セルは昭和47年3月8日に出願されて昭和47年
12月13日に公開された特開昭47−41290号(
特開昭47−23252号)明細書に記載される偏光シ
ヤツタ型のものである。
To explain the drawings, especially FIGS. 1 and 2, the illustrated liquid crystal cell is disclosed in Japanese Patent Application Laid-Open No. 47-41290, which was filed on March 8, 1972 and published on December 13, 1972. (
It is of the polarizing shutter type described in Japanese Patent Laid-Open No. 47-23252).

液晶セルは適宜なガスケツト14により隔てられた一対
の透明板10,12から成る。ガスケツト14は透明板
10,12を約0.0013mm(0.0005インチ
)に等しい大きさ透明板10,12を離しており、透明
板10,12の間の隙間にてガスケツト14により形成
される囲い内には正の誘導異方性のネマチツク相液晶物
質の層がある。液晶物質は、ビス一(45−n−オクチ
ルオキシベンザル)−2−クロロフエニレンジアミンお
よびp−メチルベンザル−p!−n−ブチルアニリンの
20%乃至80%の様な主部分から成つてこれら主組成
が全組成の約60%乃至97%で、残余がp−シアノベ
ンザル−p1−n−ブチルアニリン3%乃至40%から
好適に成る。この物質は本出願人に譲渡された昭和47
年2月9田こ出願されて昭和47年9月16日に公開さ
れた特開昭47−18783号(特願昭47−1364
9号)明細書に十分説明されている。第1図に示される
様に、透明板10,12の対向する面には酸化チタンま
たは酸化インジウムの様な透明な伝導材料の模様が形成
されている。
The liquid crystal cell consists of a pair of transparent plates 10, 12 separated by a suitable gasket 14. Gasket 14 separates transparent plates 10, 12 by a distance equal to approximately 0.0013 mm (0.0005 inch), and gasket 14 forms a gap between transparent plates 10, 12. Within the enclosure is a layer of nematic phase liquid crystal material of positive induced anisotropy. The liquid crystal substances are bis-(45-n-octyloxybenzal)-2-chlorophenylenediamine and p-methylbenzal-p! -n-butylaniline, such as 20% to 80% of the total composition, with the remainder being p-cyanobenzal-p1-n-butylaniline, 3% to 40% of the total composition. %. This material was transferred to the applicant in 1972.
Japanese Patent Application Laid-open No. 18783/1978 (Patent Application No. 1364/1978) was filed on February 9, 1972 and published on September 16, 1972.
No. 9) It is fully explained in the specification. As shown in FIG. 1, opposing surfaces of transparent plates 10 and 12 are patterned with a transparent conductive material such as titanium oxide or indium oxide.

透明板12には透明伝導材料の4ツのパツチ16,18
,20,22が設けられ、また別の透明板12には透明
伝導材料の相互に絶縁された4組の条片が設けられてお
り、これら4組の条片には符号24,26,28,30
が附けられている。透明板10,12がガスケツト14
の両側に接着されるときに、透明伝導パツチ16,18
,20,22は透明板10の一連の条片24,26,2
8,30と整列する。透明板10上の条片組の各々の点
32は透明板12の対応する点34と整列する。液晶セ
ルの作用が以下に詳しく説明されるが、条片組24の全
条片が例えば不透明になつて周囲部分が光を通すときに
は数字ゞ8″の形が結果的に表われることが明らかであ
ろう。同様に、条片組24の選ばれた条片を不透明にす
ることによつて1からOまでのどんな数字をも明確につ
くることができる。条片組24〜30の種々の互に絶縁
された伝導条片は透明伝導材料36の互に絶縁された多
数のノ条片を介して図示されない外部リード線に接続さ
れるようなつている。
The transparent plate 12 has four patches 16, 18 of transparent conductive material.
, 20, 22 are provided, and another transparent plate 12 is provided with four sets of mutually insulated strips of transparent conductive material, these four sets of strips are designated 24, 26, 28. ,30
is attached. Transparent plates 10 and 12 are gaskets 14
transparent conductive patches 16, 18 when glued on both sides of
, 20, 22 are a series of strips 24, 26, 2 of the transparent plate 10.
Align with 8,30. Each point 32 of the strip set on the transparent plate 10 is aligned with a corresponding point 34 on the transparent plate 12. The operation of the liquid crystal cell will be explained in more detail below, but it will be clear that when all the strips of the strip set 24 are, for example, opaque and the surrounding areas are transparent, the shape of the figure 8'' will result. Similarly, by making selected strips of strip set 24 opaque, any number from 1 to O can be created clearly. The insulated conductive strips are connected to external leads (not shown) through a number of mutually insulated conductive strips of transparent conductive material 36.

この点で、第2図から、条片36がある透明板10の下
端が液晶セル38の残りの部分の下に延びていて適宜な
電気コネクタを透明板10の下部分に滑らせて伝導条片
36を外部電気回路に接続できることが理解されよう。
条片36Aが透明板10の底部から頂部に延びていて水
平部40で終つており、透明板12の伝導材料のパツチ
16に接続された対応する水平部42に直接対向してい
ることが注意される。導電性エポキシ材料または同様な
ものがガスケツト14の開口44に設けられて、水平部
40,42を連接している。この様な構成にて、電源の
1ツの端子を条片36aに、続いて一方の側の液晶物質
の端子条片36に接続でき、また残りの条片36の選ば
れた部分を同じ電源の他方の端子に接続でき、これによ
つて条片36の選ばれた部分の附勢(すなわち電源の他
方の端子に接続された)にもとづいて選ばれた部分の液
晶物質を横切る電場における電位の傾きを達成する。液
晶セルの製作にて、ネマチツク相液晶物質と接触される
透明伝導材料の層は例えば木綿布にて定方向に塗つたり
或はこすつたりしてつくられねばならない。
At this point, it can be seen from FIG. 2 that the lower end of transparent plate 10 with strip 36 extends below the remaining portion of liquid crystal cell 38 and that a suitable electrical connector is slid onto the lower portion of transparent plate 10 to provide a conductive strip. It will be appreciated that piece 36 can be connected to an external electrical circuit.
Note that strip 36A extends from the bottom to the top of transparent plate 10 and terminates in a horizontal portion 40 directly opposite a corresponding horizontal portion 42 connected to patch 16 of conductive material in transparent plate 12. be done. A conductive epoxy material or the like is provided in the opening 44 of the gasket 14 to connect the horizontal portions 40,42. In such a configuration, one terminal of the power source can be connected to the strip 36a and subsequently to the terminal strip 36 of the liquid crystal material on one side, and selected portions of the remaining strips 36 can be connected to the same power source. , thereby increasing the potential in the electric field across the selected portion of the liquid crystal material based on the energization of the selected portion of the strip 36 (i.e., connected to the other terminal of the power supply). Achieve a slope of In the fabrication of liquid crystal cells, the layer of transparent conductive material that comes into contact with the nematic phase liquid crystal material must be created by directional painting or rubbing with a cotton cloth, for example.

更に、透明板12上の透明伝導材料は透明板10上の透
明伝導材料のこすり方向と直角に一定方向にこすられね
ばならない。これによつて前述の特開昭47−4129
0号(特願昭47−23252号)明細書に十分説明さ
れる様に間挿された液晶物質のねじられたネマチツク構
造をつくるようなす。透明板10と接触して第1の偏光
板46があり、透明板12の裏側に第2の偏光板48が
ある。2ツの偏光板46,48の偏光面は互に直角をな
しており、偏光板46の偏光面は透明板10上の透明伝
導材料のこすり方向と平行である。
Furthermore, the transparent conductive material on the transparent plate 12 must be rubbed in a direction perpendicular to the rubbing direction of the transparent conductive material on the transparent plate 10. As a result, the above-mentioned Japanese Patent Application Laid-Open No. 47-4129
0 (Japanese Patent Application No. 47-23252) to create a twisted nematic structure of intercalated liquid crystal material as fully explained in the specification. In contact with the transparent plate 10 is a first polarizing plate 46, and on the back side of the transparent plate 12 is a second polarizing plate 48. The polarization planes of the two polarizing plates 46 and 48 are at right angles to each other, and the polarization plane of the polarizing plate 46 is parallel to the rubbing direction of the transparent conductive material on the transparent plate 10.

また、第2の偏光板48の背後には散乱面を形成するよ
う面52がすられたり或は砂吹きされるガラス、プラス
チツクまたは他の材料でつくられた透明板50があり、
透明板50の反対側は高反射特性のアルミニウム、ニツ
ケルまたはクロムの様な金属の層で被われる。第1図に
示される全ての板は特に第2図に明示されるようサンド
イツチ構造に組立てられる。液晶セルの作動にては、偏
光板46の前面にあたる周囲光線は、透明板10の透明
伏導材料のこすり線方向に光が偏光されるように偏光板
46を通る。
Also behind the second polarizing plate 48 is a transparent plate 50 made of glass, plastic or other material with a surface 52 rubbed or sandblasted to form a scattering surface;
The opposite side of the transparent plate 50 is coated with a layer of metal such as aluminum, nickel or chrome with high reflective properties. All of the plates shown in FIG. 1 are assembled in a sanderch structure as specifically shown in FIG. In operation of the liquid crystal cell, ambient light impinging on the front surface of the polarizer 46 passes through the polarizer 46 such that the light is polarized in the direction of the rub line of the transparent conductive material of the transparent plate 10.

この偏光された光線は、透明板10,12間の液晶物質
の層を通るように9『回転され、透明板10,12上の
導電被覆間に電位が作用されないとすれば、この90被
の回転は液晶物質の層の全面領域に亘つて生じる。偏光
板48の偏光面は偏光板46の偏光面に対し9『にある
。従つて、透明板10,12上の導電被覆間に電位が作
用されなければ、偏光された光は液晶セルの全体、透明
板50の散乱面52を通り、次いで面54にて反射され
て再び偏光板48、液晶セルおよび偏光板46を通る。
この様な状況にて、デイスプレイ全体は白くみえる。い
ま、5ボルトまたはそれ以上の値の電位がもし透明板1
0,20の伝導膜間に作用され\ば、液晶セルは透明板
10の附勢された条片部分にて9『偏光面を回転するこ
とがもはやない。
This polarized light beam is rotated 9' so that it passes through the layer of liquid crystal material between the transparent plates 10, 12, and if no potential is applied between the conductive coatings on the transparent plates 10, 12, this 90 The rotation occurs over the entire area of the layer of liquid crystal material. The plane of polarization of the polarizing plate 48 is located at 9' with respect to the plane of polarization of the polarizing plate 46. Therefore, if no potential is applied between the conductive coatings on the transparent plates 10 and 12, the polarized light will pass through the entire liquid crystal cell, through the scattering surface 52 of the transparent plate 50, and then be reflected at the surface 54 and reflected again. It passes through a polarizing plate 48, a liquid crystal cell, and a polarizing plate 46.
In this situation, the entire display appears white. Now, if a potential of 5 volts or more is applied to the transparent plate 1.
By acting between the conductive films 9 and 20, the liquid crystal cell no longer rotates the plane of polarization in the energized strip section of the transparent plate 10.

従つて、この様な状況下にては偏光板48は光を遮ぎり
、電位が作用する部分を横切る部分が白の背景にて暗く
現われる。第2図には数字ゞ2″が示され、このことは
、一方の極性の電位を伝導条片36Aに作用してこれに
より透明板12の導電材料のパツチ16が作用される一
方の極性の電位を有すると共に、条片組24の条片56
,58,60,62,64に接続された導体に反対極性
の電位が作用されることによつて達成できる。同様に、
他の数字は各条片組26乃至30の各々の条片の夫々を
選択的に附勢すると同時に、液晶物質の反対側の伝導パ
ツチ16〜22を附勢することによつて現われるように
することができる。液晶セルの組立にては、透明伝導膜
が透明板10,12上に設けられて上述した様に互に直
角方向にこすられる。その次に、ガスケツト14が設け
られてこのガスケツト14により取囲まれた部分に液晶
物質の滴が入れられる。次いで、透明板10がガスケツ
ト14と係合するよう動かされて接着されて、これにて
液晶物質の滴が薄い膜に拡げられる。偏光板46,48
に加えて、散乱面52と金属化面54を有する透明板5
0から成る反射装置が設けられる。完成装置は第2図に
みられる通りで、第3図に示されるもの\様にハウジン
グ66内に配置することができる。透明伝導膜の選ばれ
た部分が附勢されるときに、形成される数字を表わすの
に周囲光線の強さが十)分でない場合には、第2,3図
に示される様にランプ68,70を液晶セル38の縁近
くに設けることができる。
Therefore, under such a situation, the polarizing plate 48 blocks light, and the part that crosses the part on which the potential is applied appears dark on the white background. The number 2'' is shown in FIG. 2, which means that a potential of one polarity is applied to conductive strip 36A, thereby applying a potential of one polarity to conductive material patch 16 of transparent plate 12. The strip 56 of the strip set 24 has an electrical potential and
, 58, 60, 62, 64 by applying potentials of opposite polarity to the conductors connected to them. Similarly,
Other digits are made to appear by selectively energizing each strip of each strip set 26-30 while simultaneously energizing the conductive patches 16-22 on the opposite side of the liquid crystal material. be able to. In assembling a liquid crystal cell, transparent conductive films are provided on transparent plates 10 and 12 and rubbed perpendicularly to each other as described above. A gasket 14 is then provided and a drop of liquid crystal material is introduced into the area surrounded by the gasket 14. Transparent plate 10 is then moved into engagement with gasket 14 and adhered, thereby spreading the drop of liquid crystal material into a thin film. Polarizing plates 46, 48
In addition, a transparent plate 5 having a scattering surface 52 and a metallized surface 54
A reflection device consisting of 0 is provided. The complete device is as seen in FIG. 2 and can be placed in a housing 66 as shown in FIG. If the intensity of the ambient light is not sufficient to represent the digits formed when selected portions of the transparent conductive membrane are energized, lamp 68 is activated as shown in FIGS. , 70 can be provided near the edge of the liquid crystal cell 38.

これらランプ68,70は透明板50に光を向けており
、この光の少くとも一部が金属化裏当てされた面54に
て反射され、液晶物質と偏光板とを通つて、明るい背景
にて暗く数字が再び現われるようなす。上に説明した様
に、金属化面54は優れた反射特性をもたらし、透明V
i.lOを通つて反射されて再び散乱面52を通る様に
増大された散乱角度で反射装置の散乱面52は光を散乱
する。
These lamps 68, 70 direct light onto the transparent plate 50, at least a portion of which is reflected off the metallized backing surface 54 and transmitted through the liquid crystal material and polarizer to a bright background. Then, the numbers appear again in the dark. As explained above, the metallized surface 54 provides excellent reflective properties and the transparent V
i. The scattering surface 52 of the reflector scatters the light with an increased scattering angle such that it is reflected through the 1O and passes through the scattering surface 52 again.

結果的に、2度散乱される光は見る角度を実際に大きく
するが、偏光損失はもたらさない。従つて、前か見ると
きに、上に説明した様に活性化されたり、また活性化さ
れない透明伝導材料区分を通る光線の量に大きな明暗の
差がある。平行な偏光器が横偏光器以上に用いられる先
の特開昭47−41290号(特願昭47−23252
号)明細書に説明される様に、活性区分は暗い背景に対
して区別される光を通す。ネマチツク液晶装置において
は、観察角度すなわち表示される情報図形が観察できる
垂線に対する角度は入射光線の方向、すなわち入射光線
と垂線とにより形成される角度にもとづいている。
Consequently, light that is scattered twice actually increases the viewing angle, but does not result in any polarization loss. Therefore, when looking forward, there is a large difference in the amount of light that passes through the transparent conductive material sections that are activated and unactivated as explained above. A parallel polarizer is used more than a horizontal polarizer in Japanese Patent Application Laid-Open No. 47-41290 (Japanese Patent Application No. 47-23252).
As described in the specification, the active section transmits light that is differentiated against a dark background. In nematic liquid crystal devices, the viewing angle, ie, the angle with respect to the normal at which the displayed information figure can be observed, is based on the direction of the incident light ray, ie, the angle formed by the incident ray and the normal.

散乱反射器を用いれば、或る角度をもつてデイスプレイ
を見る観察者は反射の法則にもとづいて反射される光だ
けでなく他の方向からの光も見ることができる。従つて
、鏡状反射器では見ることのできない大きな角度でデイ
スプレイが見られる。また、コントラスト比すなわち明
暗度は散乱反射器を用いることにより改善される。すな
わち、散乱反射器の使用によつて、反射は周囲の光線状
態とは実質的に無関係で、コントラストは実際に常に同
じである。更に、散乱反射器の均一な灰色光線は人間の
眼に一層従順で、生理的見地から鏡状反射に対して好適
である。この発明を特定の実施例に就いて図示説明した
が、この発明の精神と範囲から逸脱することなく必要に
適うよう各部分の形状および構成を変更できることが当
業者には容易に明らかであろう。
Using a scattering reflector allows a viewer looking at the display at an angle to see not only light that is reflected according to the laws of reflection, but also light from other directions. Therefore, the display can be viewed at large angles that cannot be viewed with a specular reflector. Also, the contrast ratio, or brightness, is improved by using a scattering reflector. That is, by using a diffuse reflector, the reflection is virtually independent of the surrounding light conditions and the contrast is practically always the same. Furthermore, the uniform gray light beam of the diffuse reflector is more amenable to the human eye and is preferred from a physiological point of view to specular reflection. Although the invention has been illustrated and described with reference to particular embodiments, it will be readily apparent to those skilled in the art that the shape and arrangement of parts may be changed as necessary without departing from the spirit and scope of the invention. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の液晶セルの分解図、第2図はこの発
明の組立てられた液晶セルの端面図で、液晶セルにより
表示される数字または他の像を照らすため液晶セルの背
側にて反射装置に光源を向けることができる手段を示す
図、第3図は適宜なハウジング内に設けられたこの発明
の液晶デイスプレイの斜視図である。 図中、10,12:透明板、14:ガスケツト、16,
18,20,22,24,26,28,30:透明伝導
材、36:透明伝導材条片、44:開口、46,48:
偏光板、50:透明板、56,58,60,62,64
:伝導電条片、66:ハウジング、68,70:ランプ
FIG. 1 is an exploded view of the liquid crystal cell of the present invention, and FIG. 2 is an end view of the assembled liquid crystal cell of the present invention, with the rear side of the liquid crystal cell used to illuminate numbers or other images displayed by the liquid crystal cell. FIG. 3 is a perspective view of a liquid crystal display of the invention mounted in a suitable housing. In the figure, 10, 12: transparent plate, 14: gasket, 16,
18, 20, 22, 24, 26, 28, 30: transparent conductive material, 36: transparent conductive material strip, 44: opening, 46, 48:
Polarizing plate, 50: Transparent plate, 56, 58, 60, 62, 64
: Conductive electric strip, 66: Housing, 68, 70: Lamp.

Claims (1)

【特許請求の範囲】[Claims] 1 透明伝導材料の膜によつて選ばれた部分だけが被覆
された第1、第2の透明な平行板の間に設けられるねじ
れネマチック液晶物質の層と、この液晶物質の層の両側
にあつて入口側から入つた光線が出口側へと通過できる
サンドイッチ構造を形成するよう該板と大体平行に延び
る偏光器と、該サンドイッチ構造の一部が光を通して他
の部分が光を通さずに光学的な像を形成するように該各
板上の膜間に電位差を設定する装置と、該サンドイッチ
構造の出口側に設けられて液晶物質を通る光が入口側に
戻されるように反射できる反射装置とを備え、該反射装
置は該サンドイッチ構造と向い合う側に散乱面を、他方
の側に反射面を有する第3の透明板から成つている液晶
ディスプレイ。
1 a layer of twisted nematic liquid crystal material provided between first and second transparent parallel plates covered only in selected areas by a film of transparent conductive material; and an inlet on each side of the layer of liquid crystal material; a polarizer extending generally parallel to the plate to form a sandwich structure through which light rays entering from the side can pass to the exit side; a device for establishing a potential difference between the membranes on each plate to form an image; and a reflecting device provided at the exit side of the sandwich structure to reflect light passing through the liquid crystal material back to the entrance side. A liquid crystal display, wherein the reflective device comprises a third transparent plate having a scattering surface on the side facing the sandwich structure and a reflective surface on the other side.
JP48027207A 1972-03-10 1973-03-09 lcd display reflector Expired JPS5922210B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US23367872A 1972-03-10 1972-03-10
US233678 1988-08-18

Publications (2)

Publication Number Publication Date
JPS491253A JPS491253A (en) 1974-01-08
JPS5922210B2 true JPS5922210B2 (en) 1984-05-25

Family

ID=22878250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP48027207A Expired JPS5922210B2 (en) 1972-03-10 1973-03-09 lcd display reflector

Country Status (5)

Country Link
JP (1) JPS5922210B2 (en)
CA (1) CA1002642A (en)
DE (1) DE2310219C2 (en)
FR (1) FR2176396A5 (en)
GB (1) GB1430391A (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4895795A (en) * 1972-03-17 1973-12-07
JPS49130757A (en) * 1973-04-18 1974-12-14
JPS49130758A (en) * 1973-04-19 1974-12-14
JPS5616917B2 (en) * 1973-08-03 1981-04-18
JPS5041485U (en) * 1973-08-13 1975-04-26
JPS5348608Y2 (en) * 1973-09-21 1978-11-21
JPS5051698A (en) * 1973-09-07 1975-05-08
JPS5422387Y2 (en) * 1974-02-08 1979-08-04
JPS5757710B2 (en) * 1974-04-10 1982-12-06 Canon Kk
JPS518897A (en) * 1974-07-09 1976-01-24 Canon Kk EKISHOHYOJISOCHI
JPS5110797A (en) * 1974-07-09 1976-01-28 Canon Kk EKISHOHYOJISOCHI
JPS5131198A (en) * 1974-09-10 1976-03-17 Suwa Seikosha Kk HYOJISOCHI
JPS5137885U (en) * 1974-09-13 1976-03-22
JPS5194687U (en) * 1975-01-29 1976-07-29
JPS5817957B2 (en) * 1975-01-30 1983-04-11 日本電産コパル株式会社 Hikarikaku Sansouchi
JPS6015196Y2 (en) * 1975-03-08 1985-05-14 カシオ計算機株式会社 Structure of LCD clock display
JPS567538Y2 (en) * 1975-04-30 1981-02-19
JPS52104389U (en) * 1976-02-06 1977-08-08
US4042294A (en) * 1976-03-17 1977-08-16 Micro Display Systems Inc Illuminated electro-optical display apparatus
JPS52145788U (en) * 1976-04-28 1977-11-04
JPS5744361Y2 (en) * 1976-08-18 1982-09-30
JPS5355493U (en) * 1976-10-13 1978-05-12
JPS52103994A (en) * 1976-11-01 1977-08-31 Seiko Epson Corp Display unit
JPS53152585U (en) * 1978-03-30 1978-12-01
JPS53166391U (en) * 1978-06-06 1978-12-26
JPS551276U (en) * 1979-04-26 1980-01-07
GB2056739B (en) * 1979-07-30 1984-03-21 Sharp Kk Segmented type liquid crystal display and driving method thereof
JPS5694386A (en) * 1979-12-27 1981-07-30 Suwa Seikosha Kk Liquiddcrystal display unit
JPS5843001Y2 (en) * 1980-01-18 1983-09-29 カシオ計算機株式会社 Structure of the display section of an electronic watch
JPS55105471U (en) * 1980-02-21 1980-07-23
JPS57197588A (en) * 1982-04-12 1982-12-03 Canon Kk Light diffusing reflection plate
JPS5981625A (en) * 1983-09-05 1984-05-11 Canon Inc Light diffusing reflector
DE3627134A1 (en) * 1986-08-09 1988-02-11 Philips Patentverwaltung METHOD AND CIRCUIT FOR THE BRIGHTNESS AND TEMPERATURE DEPENDENT CONTROL OF A LAMP, ESPECIALLY FOR THE ILLUMINATION OF A LCD DISPLAY

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2028089A1 (en) * 1969-06-11 1971-01-28 Kabushiki Kaisha Suwa Seikosha, Tokio Electronic screen device
US3625591A (en) * 1969-11-10 1971-12-07 Ibm Liquid crystal display element
US3731986A (en) * 1971-04-22 1973-05-08 Int Liquid Xtal Co Display devices utilizing liquid crystal light modulation
JPH04330797A (en) * 1991-04-25 1992-11-18 Fujitsu Ltd Solder coating method and device

Also Published As

Publication number Publication date
DE2310219A1 (en) 1973-09-20
GB1430391A (en) 1976-03-31
DE2310219C2 (en) 1984-01-26
JPS491253A (en) 1974-01-08
CA1002642A (en) 1976-12-28
FR2176396A5 (en) 1973-10-26

Similar Documents

Publication Publication Date Title
JPS5922210B2 (en) lcd display reflector
US3881809A (en) Reflection system for liquid crystal displays
JP2857159B2 (en) Gain reflector and liquid crystal display
JP3183856B2 (en) Reflective liquid crystal display
IE841105L (en) Liquid crystal display device
GB2306229A (en) Diffusely reflective display cell
US3837729A (en) Liquid crystal display
JPH08505716A (en) Liquid crystal display consisting of reflective holographic optical element
JPH0254530B2 (en)
JPH01501255A (en) double layer display
JPH10282491A (en) Liquid crystal display
US3963312A (en) Controllable liquid-crystal display device
JPS59107380A (en) Liquid crystal display
JP3498763B2 (en) Light reflection plate, light reflection plate for reflection type liquid crystal display device, and light reflection electrode plate for reflection type liquid crystal display device
JPH11194359A (en) Liquid crystal display
CN113267927A (en) Display panel and display device
JP2002090773A (en) Liquid crystal display
JP2002203411A (en) Surface light source and liquid crystal display device using the same
JP3030900B2 (en) PROJECTION TYPE LIQUID CRYSTAL DISPLAY AND PROCESS FOR PRODUCING POLYMER DISPERSION LIQUID CRYSTAL DISPLAY ELEMENT
JPH02829A (en) Liquid crystal display device
JPH11202785A (en) Reflection type display device
JP3134555B2 (en) Liquid crystal display device
TW594214B (en) Liquid crystal display apparatus
JP3446013B2 (en) Liquid crystal display
JPS59116613A (en) Color display device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19810526