[go: up one dir, main page]

JPS59221035A - Radio transmitting and receiving device - Google Patents

Radio transmitting and receiving device

Info

Publication number
JPS59221035A
JPS59221035A JP58094915A JP9491583A JPS59221035A JP S59221035 A JPS59221035 A JP S59221035A JP 58094915 A JP58094915 A JP 58094915A JP 9491583 A JP9491583 A JP 9491583A JP S59221035 A JPS59221035 A JP S59221035A
Authority
JP
Japan
Prior art keywords
frequency
local oscillation
circuit
oscillation frequency
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58094915A
Other languages
Japanese (ja)
Inventor
Yoshikazu Noritake
則武 良和
Kazunori Sato
和憲 佐藤
Hitoshi Hachiga
仁 八賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUNIDEN KK
Uniden Corp
Original Assignee
YUNIDEN KK
Uniden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUNIDEN KK, Uniden Corp filed Critical YUNIDEN KK
Priority to JP58094915A priority Critical patent/JPS59221035A/en
Priority to DE19843420338 priority patent/DE3420338A1/en
Publication of JPS59221035A publication Critical patent/JPS59221035A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/403Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency
    • H04B1/408Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency the transmitter oscillator frequency being identical to the receiver local oscillator frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

PURPOSE:To decrease the number of necessary crystal oscillators by using the same crystal oscillator to obtain the 1st local transmission frequency of a reception system and the wave to be modulated of a transmission system. CONSTITUTION:The 1st local oscillation frequency F1 of a superheterodyne reception system is modulated by the information to be transmitted and radiated through an antenna. While the modulation of the same degree as that applied to the frequency F1 is also applied to the 2nd local oscillation frequency F3. Then the modulation components of transmission information mixed into the frequency F1 are offset by the 2nd mixing circuit 3. As a result, a crystal oscillator can be shared. This can decrease rationally the number of crystal oscilators.

Description

【発明の詳細な説明】 本発明は、受信系にスーパ・ヘテロダイン方式を用いた
無線送受信装置の改良に関し、殊に、送信用に必黄な氷
晶発振子と受信系における第1局部発振周波数用に必要
な氷晶発振子とを兼用できる構成とした無線送受信装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a wireless transmitter/receiver using a super-heterodyne method in a receiving system, and in particular to an ice crystal oscillator that is essential for transmitting and a first local oscillation frequency in the receiving system. The present invention relates to a wireless transmitting/receiving device configured so that it can also be used as an ice crystal oscillator necessary for the application.

送信系ど受信系とを併せ有し、殊にその受信系にスーパ
・ヘテロダイン方式を採用した無線送受信装置は従来か
らも様々有るが、とれにも共通する基本的な構成を取出
すと第1図示のようになる。この従来例の基本構成に就
き先ず簡単に説明すると、アンテナから入力した受信周
波数Frは第1混合回路乃至第1ミクサ1に人力され、
第1局部発振発振周波IFIとビートを取られ、一般に
そのビート−タウン成分が第1中間周波数フィルタ回路
2を介して取出される。尚、図中、中間周波数はIFと
略し、高周波はRF、低周波乃至オーディオ帯域波はA
Fと略して記している。
There have been various wireless transmitting and receiving devices that have both a transmitting system and a receiving system, and in particular employ a super-heterodyne system for the receiving system, but the basic configuration that is common to all of them is shown in Figure 1. become that way. To briefly explain the basic configuration of this conventional example, the reception frequency Fr input from the antenna is manually input to the first mixing circuit or the first mixer 1.
The beat is removed from the first local oscillation frequency IFI, and generally its beat-town component is extracted via the first intermediate frequency filter circuit 2. In the figure, the intermediate frequency is abbreviated as IF, the high frequency is RF, and the low frequency to audio band wave is A.
It is abbreviated as F.

第1中間周波数フィルタll71路2を出た第1中間周
波数F2は第2混合回路乃至第2ミクサ3に人力され、
第2局部発振周波数F3との間でビートを取られて第2
中間周波数フィルタ回路4に人力される。第2中間周波
数フィルタ回路4も一般には肉周波数F2.F3の差を
取るものであって、その結果としての第2中間周波数乃
至最終固定周波@F4は信号情報の復調を受けるために
検波回路7に人力される。この検波出力は適当な低周波
増幅回路9を介した後、情報の再生端末としての電気−
音響変換手段、一般にスピーカIOからOf聴情報信号
として輻射されて行く。
The first intermediate frequency F2 output from the first intermediate frequency filter 71 path 2 is manually inputted to the second mixing circuit or the second mixer 3,
The second local oscillation frequency F3 and the second local oscillation frequency F3 are
The intermediate frequency filter circuit 4 is manually powered. The second intermediate frequency filter circuit 4 also generally has a frequency F2. The difference between F3 and the resulting second intermediate frequency to final fixed frequency @F4 is inputted to the detection circuit 7 in order to demodulate the signal information. After this detection output passes through a suitable low frequency amplification circuit 9, it is used as an electric terminal for reproducing information.
The sound is radiated from the acoustic converting means, generally a speaker IO, as an Of auditory information signal.

而して、このような従来からのスーパ・ヘテロダイン受
信系において、殊に連用周波数がかなり高い領域での安
定な受信を図るためには、第1局部発振周波fiF1を
作るための第1局部発振回路8、第2局部発振周波数F
2を作るための第2局部発振回路6内に夫々、基準周波
数用として安定度の高い専用の水晶発振子XI、X2を
設けなければならない。尚、−・般に第1局部発振周波
数はかなり高い値のため、第1局部発振回路8と第1混
合回路1の間には逓倍回路5が必要に応じて挿入される
。いづれにしても、先ず、こうしたスーパ・ヘテロタイ
ン受信系においては、高価な水晶発振子を−、つ要する
ことが理解される。
In such a conventional super-heterodyne receiving system, in order to achieve stable reception especially in a region where the continuous frequency is quite high, the first local oscillation frequency fiF1 is Circuit 8, second local oscillation frequency F
In the second local oscillation circuit 6 for producing the reference frequency, highly stable dedicated crystal oscillators XI and X2 must be provided, respectively, for the reference frequency. Note that since the first local oscillation frequency is generally a fairly high value, a multiplier circuit 5 is inserted between the first local oscillation circuit 8 and the first mixing circuit 1 as necessary. In any case, it is first understood that such a super-heterotine receiving system requires an expensive crystal oscillator.

次いで、送信系に就いて考えて見ると、マイク15から
入力された一般に音声等の情報信号は1.適当な低周波
増幅回路16を介して変調回路13に変調信号としてI
j−えられ、発振回路14の発生する搬送波周波数を変
調する。最も、一般にはこの被変調波は連用周波数その
ものではなく、適当な逓倍回路I2にて!5倍されて搬
送波周波数がFtとなった後、高周波増幅回路11にて
電力出力を増強されてアンテナから輻射されて行く。然
して、こうした送信系においても、同様にその送信周波
数Ftを安定化しようとすれば、被変調波形成用の発振
回路14内に周波数安定度の高い水晶発振子Xtを必要
とする。
Next, if we consider the transmission system, information signals such as voice input from the microphone 15 are generally 1. I is sent as a modulation signal to the modulation circuit 13 via a suitable low frequency amplification circuit 16.
j- and modulates the carrier wave frequency generated by the oscillation circuit 14. Most generally, this modulated wave is not at the continuous frequency itself, but at an appropriate multiplier circuit I2! After being multiplied by 5 to make the carrier frequency Ft, the power output is amplified in the high frequency amplifier circuit 11 and radiated from the antenna. However, in such a transmission system, if the transmission frequency Ft is to be similarly stabilized, a crystal oscillator Xt with high frequency stability is required in the oscillation circuit 14 for forming a modulated wave.

以上から、こうした従来構成の無線送受信装置において
は、最低でも三つの水晶発振子を要することか分るが、
良く知られているように、この種の水晶発振子は極めて
高価であり、コスト低廉化の重大な障害となるものであ
る。
From the above, it can be seen that at least three crystal oscillators are required in a wireless transmitter/receiver with such a conventional configuration.
As is well known, this type of crystal oscillator is extremely expensive, which is a serious obstacle to reducing costs.

本発明は、このような実情に鑑みて為されたもので、基
本的には五つを要する筈の水晶発振f−個数を合理的に
低減することを目的としたものである。逆に汀えば、機
能的には従来の三つの水晶発振−rを用いたと全く同様
の機能を営めるにも係らす、水晶発振子の実際の個数は
少なくなっている回路装置を提供せんとしたものである
The present invention has been made in view of the above circumstances, and is aimed at rationally reducing the number of crystal oscillations, which should basically be five. On the other hand, we would like to provide a circuit device with fewer crystal oscillators, although functionally it can perform exactly the same function as using three conventional crystal oscillators. This is what I did.

このような1−1的に沿った結果、本発明においてはト
°記の実施例に即しての説明から顕かなように、第1局
部発振周波数形成用と送信系の被変調波形成用の水晶発
振子を一個で流用できるものとなった。
As a result of following the above 1-1 principle, in the present invention, as will be clear from the explanation based on the embodiment described above, the first local oscillation frequency formation and the modulated wave formation of the transmission system are provided. This makes it possible to use a single crystal oscillator.

第2図は、本発明の比較的基本的な−・実施例を;t1
シている。第1図示の従来例の構成における各構成fに
対応する構成子には第1図中と同一の符りを伺し、説明
を省略するものもあるが、先ずもって特徴的なのは、マ
イク15を介して電気信号に変換され、適当な低周波増
幅回路16を介して増幅された送信用低周波情報信号は
、受信系における第1局部発振周波数Flを変調するよ
うになっていることである。即ち、第1局部発振回路8
から第t VL合回路lへの線路中に第1変調回路17
が挿入され、低周波増幅回路16からの送信用情報信−
う1;Iこの第1変調回路17に与えられるようになっ
ているのである。結局、受信系にとっては第1局部発振
周波数となる周波数Flは本発明においては送信用搬送
波周波数Ftとして利用され、高周波増幅回路11を介
してアンテナから放射されて行く。このように′せると
、先ず第一に、従来構成では別途に必要であった第1図
中の送信用被変調波形成用の発振回路1411体が不要
となり、従って勿論、高価な水晶発振r−Xtが一つ不
要になってくる。
FIG. 2 shows a relatively basic embodiment of the invention; t1
It's happening. The components corresponding to each configuration f in the conventional configuration shown in FIG. 1 have the same reference numerals as in FIG. The low frequency information signal for transmission, which is converted into an electrical signal through the transmitter and amplified through the appropriate low frequency amplification circuit 16, modulates the first local oscillation frequency Fl in the receiving system. That is, the first local oscillation circuit 8
The first modulation circuit 17 is connected in the line from
is inserted, and the transmission information signal from the low frequency amplifier circuit 16 is transmitted.
1;I is applied to the first modulation circuit 17. In the end, the frequency Fl, which is the first local oscillation frequency for the receiving system, is used as the transmission carrier frequency Ft in the present invention, and is radiated from the antenna via the high frequency amplification circuit 11. In this way, first of all, the oscillation circuit 1411 for forming the modulated wave for transmission shown in FIG. -One Xt becomes unnecessary.

然し、このようにすると、マイク15からの伝達性は情
報による変調成分は当然に第1混合回路lにも加えられ
ることになる。従って、これに対する対策を何も施して
♂1かないと、これが第1中間周波数F2中に乗り、受
信信号として受信系におい−1・)止されてり、まう。
However, if this is done, the modulation component due to the information transmitted from the microphone 15 will naturally be added to the first mixing circuit l. Therefore, if no countermeasures are taken to prevent this, this signal will ride on the first intermediate frequency F2 and will be stopped as a received signal in the receiving system.

そこで、本発明においては、受信系における第2局部発
振回路6から第2混合回路3に至る線路中にも、第1変
調回路17と同等の変調度の第2変調回路18を挿入す
るようにしている。このようにすれば、当該第2混合回
路3において、F2.F3中に介在する送信系における
変調波成分は相殺的に除去されることになる。同程度の
変調度にすることは筒中なポテンショ・メータにょる゛
等して極めて容易である。また、既述のように、第2混
合回路3においては一般には画周波数信号F2.F3の
差成分を取るのが汁通であるが、和成分を取る場合には
一方の変調成分を逆相化せねば相殺効果は期待できない
。然し、このような逆相化処理も既存の技術で極めて容
易且つ廉価に行なえる。
Therefore, in the present invention, a second modulation circuit 18 having the same modulation degree as the first modulation circuit 17 is also inserted in the line from the second local oscillation circuit 6 to the second mixing circuit 3 in the receiving system. ing. By doing this, in the second mixing circuit 3, F2. Modulated wave components in the transmission system intervening in F3 are canceled out. It is extremely easy to achieve the same degree of modulation by using a potentiometer in the cylinder. Further, as described above, in the second mixing circuit 3, generally the image frequency signal F2. It is convenient to take the difference component of F3, but when taking the sum component, a cancellation effect cannot be expected unless one modulation component is reversed in phase. However, such reverse phase processing can be performed extremely easily and inexpensively using existing techniques.

以1−のように、本発明によれば、送信専用の発振回路
を省略でき、従って極めて高価な水晶発振fの数を−・
つ減らすことができる。その代わりに第2局部発振系に
もう一つ変調回路18を要したり、第2逓倍回路18を
要するが、これらの構成自体は極めて筒中なもので足り
、これらに要するコストも水晶発振子−個の値段に比べ
たら極めて僅かなものである。
As described in 1- below, according to the present invention, it is possible to omit a transmission-only oscillation circuit, and therefore the number of extremely expensive crystal oscillations f can be reduced.
can be reduced by one. Instead, another modulation circuit 18 and a second multiplier circuit 18 are required in the second local oscillation system, but these structures themselves are quite simple, and the cost required for them is also the same as that of a crystal oscillator. This is extremely small compared to the price of the item.

この実施例から推して本発明の思想乃至要旨を考えると
、スーパ・ヘテロタイン受信系用の第1局部発振周波数
を送信したい情報で変調し、これをアンテナから輻射す
る一方で、スーパ・ヘテロタイン受信系用の第2局部発
振周波数にも」−記情報で第1局部発振周波数に掛けた
と同様の変調度の変調を掛け、送信情報変調成分の再生
系への漏れ出しを防ぐようにしたものである二 こうした要旨構成を満足する構成であれば外の回路構成
は任?1;であり、例えば各局部発振周波数がフェーズ
・ロックド−ループ(PLL)回路により形成されてい
るような場合にも本発明は勿論適用できる。尚、当然の
ことながら、第2図示回路構成においては、送信周波数
Ft、受信周波数Fr、第1局部発振周波数F1.第1
中間周波数F2の相関関係は次のようになる。
Considering the idea or gist of the present invention based on this embodiment, the first local oscillation frequency for the super-heterotine reception system is modulated with information to be transmitted, and while this is radiated from the antenna, the super-heterotine reception system The second local oscillation frequency for the second local oscillation frequency is also modulated with the same modulation degree as that applied to the first local oscillation frequency, to prevent the transmission information modulation component from leaking into the reproduction system. 2.As long as the configuration satisfies these gist configurations, is the other circuit configuration optional? 1; and the present invention is of course applicable to a case where, for example, each local oscillation frequency is formed by a phase-locked loop (PLL) circuit. It should be noted that, as a matter of course, in the second illustrated circuit configuration, the transmission frequency Ft, the reception frequency Fr, the first local oscillation frequency F1 . 1st
The correlation of intermediate frequency F2 is as follows.

Ft=Fl=Fr+F2       HH+ (1)
以上詳記のように、本発明によれば、受信系にスーパ・
ヘテロタイン方式を採用する無線送受信装置において、
水晶発振子の個数を低減することができ、製品の低廉価
に大きな寄与をすることができる。
Ft=Fl=Fr+F2HH+ (1)
As described in detail above, according to the present invention, the receiving system has a super
In a wireless transmitter/receiver that uses a heterotine system,
The number of crystal oscillators can be reduced, which can greatly contribute to lower product prices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は受信系にスーパ・ヘテロタイン方式を採用する
無線送受信装置の従来がらの基本的な構成図、第2図は
本発明は一実施例の概略構成図、である。 図中、lは第17Iii合回路、3はft52 混合回
路、6は第2局部発振回路、7は検波回路、8は第1局
部発振回路、13は変調回路、14は発振回路、17は
第1変調回路、18は第2変調回路、XI、X2.Xt
は水晶発振f−1である。
FIG. 1 is a basic configuration diagram of a conventional wireless transmitter/receiver that employs a super-heterotine system in its receiving system, and FIG. 2 is a schematic configuration diagram of an embodiment of the present invention. In the figure, l is the 17th III combiner circuit, 3 is the FT52 mixing circuit, 6 is the second local oscillation circuit, 7 is the detection circuit, 8 is the first local oscillation circuit, 13 is the modulation circuit, 14 is the oscillation circuit, and 17 is the ft52 mixer circuit. 1 modulation circuit, 18 a second modulation circuit, XI, X2 . Xt
is crystal oscillation f-1.

Claims (1)

【特許請求の範囲】 受信周波数とfiS1局部発振周波数とを第1混合回路
に加えて第1中間周波数を作り、該第1中間周波数と第
2局部発振周波数とを第2混合回路に加えて第2中間周
波数を作るスーパ・ヘテロタイン方式を受信系に採用し
た無線送受信装置において、 一1コ記スーパ・ヘテロダイン受信系用の第1局部発振
周波数を送信したい情報で変調し、これをアンテナから
幅用する一方で、に記受信系の第2局部発振周波数にも
J、記情報で第1局部発振周波数に掛けたと同様や変調
度の変調を掛け、もって上記第2混合回路においてI−
記第1局部発振周波数中に混在するに記送信PJ報によ
る変調成分を相殺することを特徴とする無線送・受信装
置。
[Claims] The reception frequency and the fiS1 local oscillation frequency are added to a first mixing circuit to create a first intermediate frequency, and the first intermediate frequency and the second local oscillation frequency are added to a second mixing circuit to create a first intermediate frequency. In a wireless transmitting/receiving device that employs a super-heterodyne system for the reception system that creates two intermediate frequencies, the first local oscillation frequency for the super-heterodyne reception system described in item 11 is modulated with the information to be transmitted, and this is transmitted from the antenna to the width frequency. On the other hand, the second local oscillation frequency of the receiving system described above is also modulated by the same modulation factor as that applied to the first local oscillation frequency by the information J, and thereby the I-
A wireless transmitting/receiving device characterized in that a modulation component caused by the transmitted PJ report mixed in the first local oscillation frequency is canceled out.
JP58094915A 1983-05-31 1983-05-31 Radio transmitting and receiving device Pending JPS59221035A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58094915A JPS59221035A (en) 1983-05-31 1983-05-31 Radio transmitting and receiving device
DE19843420338 DE3420338A1 (en) 1983-05-31 1984-05-30 Superheterodyne radio transmitting and receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58094915A JPS59221035A (en) 1983-05-31 1983-05-31 Radio transmitting and receiving device

Publications (1)

Publication Number Publication Date
JPS59221035A true JPS59221035A (en) 1984-12-12

Family

ID=14123293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58094915A Pending JPS59221035A (en) 1983-05-31 1983-05-31 Radio transmitting and receiving device

Country Status (2)

Country Link
JP (1) JPS59221035A (en)
DE (1) DE3420338A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910005602A (en) * 1989-08-12 1991-03-30 강진구 RF transmission / reception circuit of mobile communication equipment
TW314291U (en) 1995-08-30 1997-08-21 Cirocomm Technology Corp Microwave frequency modulation audio/video transmitting and receiving device
DE19852676A1 (en) * 1998-11-16 2000-05-25 Bosch Gmbh Robert Device for frequency synchronization in a communication system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55161429A (en) * 1979-06-01 1980-12-16 Nippon Telegr & Teleph Corp <Ntt> Signal transmitting and receiving system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1023434A (en) * 1973-03-02 1977-12-27 Salvatore Amoroso (Jr.) Single oscillator microwave transceiver
JPS5380906A (en) * 1976-12-27 1978-07-17 Oki Electric Ind Co Ltd Frequency converter
DE3114597A1 (en) * 1981-04-10 1982-11-04 Licentia Gmbh Portable millimetre-wavelength radio device for simplex speech transmission

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55161429A (en) * 1979-06-01 1980-12-16 Nippon Telegr & Teleph Corp <Ntt> Signal transmitting and receiving system

Also Published As

Publication number Publication date
DE3420338A1 (en) 1984-12-06

Similar Documents

Publication Publication Date Title
US3908090A (en) Compatible AM stereophonic transmission system
US2281982A (en) Arrangement for transmitting and receiving wireless messages
GB551472A (en) Improvements in modulated high frequency carrier wave signalling systems
US2583484A (en) Combined angular velocity and pulse modulation system
US2358382A (en) Frequency modulation signal system
JPS59221035A (en) Radio transmitting and receiving device
US3311833A (en) Method and apparatus for increasing the readability of amplitude modulated waves
GB1048328A (en) Radio communication system
JP2803114B2 (en) Frequency converter
US1984451A (en) Short wave radio signaling
US1849884A (en) Side band selector receiver
US1885009A (en) Method and means for electrical signaling and control
JPH0516748Y2 (en)
JPS601787B2 (en) Wireless transmission method
JPS6340925Y2 (en)
US2201554A (en) Method and system for television transmission
JPS61220528A (en) Radio equipment with simultaneous transmission and reception
CA1296389C (en) Duplex communication wireless
JP3253897B2 (en) FM transmitter
JPS62245730A (en) Duplex transmitter-receiver
JPH071868Y2 (en) Space station transceiver
JPH0221822Y2 (en)
JPS5880934A (en) Frequency conversion controlling method of communication equipment
JPH03196719A (en) Radio transmitter-receiver
JPS5919442A (en) Wireless communication method