[go: up one dir, main page]

JPS59218842A - Conductive high molecular shape and manufacture thereof - Google Patents

Conductive high molecular shape and manufacture thereof

Info

Publication number
JPS59218842A
JPS59218842A JP58092513A JP9251383A JPS59218842A JP S59218842 A JPS59218842 A JP S59218842A JP 58092513 A JP58092513 A JP 58092513A JP 9251383 A JP9251383 A JP 9251383A JP S59218842 A JPS59218842 A JP S59218842A
Authority
JP
Japan
Prior art keywords
conductive
inorganic particles
molded article
molded product
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58092513A
Other languages
Japanese (ja)
Other versions
JPS6365021B2 (en
Inventor
秀康 鳥居
和行 花田
進 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichiseika Color and Chemicals Mfg Co Ltd
Original Assignee
Dainichiseika Color and Chemicals Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichiseika Color and Chemicals Mfg Co Ltd filed Critical Dainichiseika Color and Chemicals Mfg Co Ltd
Priority to JP58092513A priority Critical patent/JPS59218842A/en
Publication of JPS59218842A publication Critical patent/JPS59218842A/en
Publication of JPS6365021B2 publication Critical patent/JPS6365021B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は導電性高分子成形物に関し、少なくとも1つの
面が高度に導電性であり、他の面は高度に絶縁性である
導電性高分子成形物の提供を目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a conductive polymer molded article, and an object thereof is to provide a conductive polymer molded article in which at least one surface is highly conductive and the other surface is highly insulating. shall be.

従来、電気的に絶縁性であるプラスチックに導電性を付
与する方法は多数提案されているが、それぞれが次の如
き欠点を有している。例えば、プラスチック成形物の表
面に金属その他の導電性シートを接着したり、また導電
性塗料等を塗布したシして導電性の層を形成する方法で
は、操作がゆ雑であるとともに、得られる製品の導電層
の機械的、物理的強度が劣り、外部や内部からの衝撃に
よシ導電性層の剥離や損傷を受は易いという欠点がある
。また、プラスチック中に金属粉末や導電性カーボンブ
ラックを機械的に分散させて成形する方法では、一般的
には高い導電性を付与することが不可能であり、高導電
性を付与すべく導電性材料の添加量を高めると、得られ
る成形物は各種の物性が低下し実用性が失われるという
欠点がある。
Conventionally, many methods have been proposed for imparting conductivity to electrically insulating plastics, but each method has the following drawbacks. For example, methods in which a conductive layer is formed by gluing a metal or other conductive sheet onto the surface of a plastic molded product, or by applying a conductive paint, etc., are complicated to operate and are difficult to obtain. The mechanical and physical strength of the conductive layer of the product is poor, and the conductive layer is easily peeled off or damaged by external or internal impact. In addition, with the method of mechanically dispersing metal powder or conductive carbon black in plastic and molding it, it is generally impossible to impart high conductivity. When the amount of added material is increased, various physical properties of the resulting molded product deteriorate, resulting in a loss of practicality.

本発明者は、上記の如き従来技術の欠点を解決すべく鋭
意研究の結果、高分子材料中に導電性無機粒子を特定の
状態に包含させることによって、従来の導電性プラスチ
ック成形物では得られ・ない高い導電性を有するととも
に、各種物性1全く問題のない導電性高分子成形物を得
ることに成功し、本発明を完成した。
As a result of intensive research in order to solve the above-mentioned drawbacks of the prior art, the present inventor has found that by incorporating conductive inorganic particles in a specific state into a polymer material, a method that cannot be obtained with conventional conductive plastic molded products.・We have succeeded in obtaining a conductive polymer molded product that has extremely high conductivity and has no problems with various physical properties, thereby completing the present invention.

すなわち、本発明は、高分子材料マトリックスおよび該
マトリックス中に包含された導電性無機粒子とから成る
成形物であって、該無機粒子が成形物の少なくとも1つ
の面方向に緻密に集合して導電性層を形成していること
を特徴とする導電性高分子成形物およびその製造方法で
ある。
That is, the present invention provides a molded article comprising a polymer material matrix and conductive inorganic particles included in the matrix, wherein the inorganic particles are densely aggregated in the direction of at least one surface of the molded article and are conductive. The present invention provides a conductive polymer molded article characterized by forming a conductive layer, and a method for producing the same.

次に、本発明を添附図面を参照して詳細に説明すると、
第1図は、本発明の成形物がシート状の形状である場合
の断面図であシ、図中の参照数字1はシート状成形物を
、2は高分子材料マトリックスを、3は導電性無機粒子
を、4は絶縁層を、5は導電層を示す。本発明の成形物
は第1図で例示する通り、一体的に成形された高分子材
料マトリックス2中に導電性無機粒子3が少なくとも1
つの面方向に緻密に集合して導電層5を形成し、導電性
粒子が実質的に存在しない絶縁層4が存在していること
を特徴としている。このような構成をとることによって
成形物1は導電性粒子を包含しない成形物と殆んど変わ
らない各種物理的、機械的性質を保持することができる
とともに、導電層は従来技術では達成し得ない程度の高
い導電性を発揮でき、しかもかかる導電層は、従来の導
電性塗料等による場合が粒子の脱落や層の剥離という欠
点を有するのに対し、高分子材料マトリックスと一体化
しているので従来技術における如き欠点は完全に解決さ
れているのである。
Next, the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view of the molded product of the present invention in the form of a sheet, where reference numeral 1 indicates the sheet-like molded product, 2 indicates the polymer material matrix, and 3 indicates the conductive material. 4 represents an insulating layer, and 5 represents a conductive layer. As illustrated in FIG. 1, the molded product of the present invention includes at least one conductive inorganic particle 3 in an integrally molded polymer material matrix 2.
It is characterized by the presence of an insulating layer 4 that is densely aggregated in two plane directions to form a conductive layer 5 and substantially free of conductive particles. By adopting such a configuration, the molded article 1 can maintain various physical and mechanical properties that are almost the same as those of a molded article that does not contain conductive particles, and the conductive layer can maintain properties that cannot be achieved with conventional techniques. Moreover, since the conductive layer is integrated with the polymer material matrix, unlike conventional conductive paints, which have the disadvantages of particle drop-off and layer peeling. The drawbacks as in the prior art are completely solved.

次に本発明において使用する各種材料について説明する
と、本発明において使用する高分子材料とは、ポリエチ
レン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル
、廖素化ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフ
ッ化ビニリデン、ポリ酢酸ビニル、ポリブタジェン、A
 B S 樹脂、As樹脂、ポリビニルアセタール、ポ
リウレタン、ポリアミド、ポリエチレンテレフタレート
、ポリエチレンテレフタレート、ポリエーテルサルフオ
ン、ポリサルフオン、ポリカポネート、ポリフェニレン
オキサイド、フェノール樹脂、シリコーン樹脂、エポキ
シ樹脂、メラミン樹脂、尿素樹脂等の如〈従来各種のプ
ラスチック成形物に使用されている高分子材料がいずれ
も使用できる。以上の如き高分子材料は本発明の成形物
の製造に際しては、加熱および/または適当な溶剤を使
用して液状にして使用するか、あるいはポリマーの前駆
体(プレボ+)−r−%オリゴマー、モノマー等)の状
態で使用し、必要な処理後に、冷却、溶剤の蒸発、重合
開始剤、硬化剤、架橋剤、加熱、エネルギー紳等によシ
固化あるいは硬化させることにより成形品とされる。
Next, various materials used in the present invention will be explained. The polymer materials used in the present invention include polyethylene, polypropylene, polystyrene, polyvinyl chloride, fluorinated polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, and polyvinylidene acetate. , polybutadiene, A
B S resin, As resin, polyvinyl acetal, polyurethane, polyamide, polyethylene terephthalate, polyethylene terephthalate, polyether sulfone, polysulfon, polycarbonate, polyphenylene oxide, phenol resin, silicone resin, epoxy resin, melamine resin, urea resin, etc. Any of the polymer materials conventionally used in various plastic molded products can be used. When producing the molded article of the present invention, the above-mentioned polymeric materials are used in the form of a liquid by heating and/or using an appropriate solvent, or a polymer precursor (prevo+)-r-% oligomer, They are used in the form of monomers, etc.) and, after necessary treatments, are solidified or hardened by cooling, evaporation of solvents, polymerization initiators, curing agents, crosslinking agents, heating, energy supply, etc. to form molded products.

本発明において使用する導電性無機粒子とは、周期率表
II島、■−1■a、■、Ib、Ilb、l[b、■b
族の元素またはこれらの酸化物、硫化物等の如き導電性
化合物あるいは合金の粒子、カーボンブラック、グラフ
ァイト等であり、具体的には、Zn、 AI、 Co、
Au、 Sn%Ag、 Ni5Fe、 W、 Mo、 
Be、 Ti、等の粒子、酸化物や硫化物としては、Z
 n O、F e 203、■n203、SnO□、C
oo、NiOlNlol、Cu2O、v205、PbS
、 ZnSの粒子、合金としては、ステンレススチール
、青銅、黄銅等の粒子、導電性カーボン、グラファイト
の粒子等である。なお、上記の如き導電性粒子は、その
平均粒径が約0.01ミクロンから約1,000ミクロ
ンの範囲のものが好ましく、また、上記の金属粒子のな
かには、酸化皮膜や酸化防止処理等が施されている場合
もあるので、使用にあたっては、溶剤清浄法、化学的方
法(例えば、酸洗い法、アルカリ洗い法等)等により清
浄化処理を施す必要がある場合もある。
The conductive inorganic particles used in the present invention include the periodic table II islands, ■-1■a, ■, Ib, Ilb, l[b, ■b
particles of conductive compounds or alloys such as elements of the group elements or their oxides, sulfides, etc., carbon black, graphite, etc. Specifically, Zn, AI, Co,
Au, Sn%Ag, Ni5Fe, W, Mo,
Be, Ti, etc. particles, oxides and sulfides include Z
n O, F e 203, ■n203, SnO□, C
oo, NiOlNlol, Cu2O, v205, PbS
Examples of ZnS particles and alloys include particles of stainless steel, bronze, brass, etc., particles of conductive carbon, and graphite. The above-mentioned conductive particles preferably have an average particle size in the range of about 0.01 micron to about 1,000 microns, and some of the above-mentioned metal particles have an oxidation film or anti-oxidation treatment. Therefore, before use, it may be necessary to perform a cleaning treatment using a solvent cleaning method, a chemical method (for example, a pickling method, an alkali washing method, etc.).

次に、本発明の成形品の製造方法を説明すると、まず、
何らかの手段により、高分子材料を液状化する必要があ
る。このような液状化の方法としては、加熱による溶融
、適当な溶剤による溶液化、高分子材料の前叱体の使用
あるいはそれらの組合せ等があり、いずれの方法でもよ
い。
Next, to explain the method for manufacturing a molded article of the present invention, first,
It is necessary to liquefy the polymer material by some means. Methods for such liquefaction include melting by heating, solution using an appropriate solvent, use of a polymeric material, or a combination thereof, and any method may be used.

次に、前記の導電性無機粒子を上記の液状高分子材料中
に必要量添加し、公知の任意の分散手段を用いて、導電
性無機粒子を系中に均一に分散させて分散液を調製する
。得られた分散液を目的とする型中に注入するか、ある
いは離型紙等の基体上に塗布した後、分散液中の導電性
無機粒子を成形物の磁力くとも1個の面方向に集合させ
る。
Next, the required amount of the conductive inorganic particles is added to the liquid polymer material, and a dispersion liquid is prepared by uniformly dispersing the conductive inorganic particles in the system using any known dispersion means. do. After the obtained dispersion is injected into the desired mold or coated on a substrate such as release paper, the conductive inorganic particles in the dispersion are collected in the direction of at least one surface of the molded object by the magnetic force of the dispersion. let

上記の粒子の集合方法としては、(り液状高分子材料と
導電性無機粒子との比重差を利用する方法および(2)
磁力を利用する方法等があシ、前者の方法は、静置して
重力により導電性無機粒子を下方面に緻密に集合させる
方法および遠心力を利用して任意の面方向に粒子を緻密
に集合させる方法がある。後者の方法は導電性無機粒子
が磁性体である場合に使用でき、成形物の任意の面方向
に粒子を緻密に集合させることができる。重力を使用す
る方法は、板状、グレート状、シート状あるいはフィル
ム等の板状の成形物の場合に有用で6D、遠心力を利用
する方法は他の成形物の場合によシ有用であシ、磁力を
利用する場合は、成形物を連続的に製造する場合に有用
である。
The methods for aggregating the above particles include (method using the difference in specific gravity between liquid polymer material and conductive inorganic particles; and (2)
There are methods that use magnetic force, etc., but the former method involves leaving the conductive inorganic particles standing still and using gravity to gather them densely in the downward direction, and using centrifugal force to gather the particles densely in any surface direction. There is a way to collect them. The latter method can be used when the conductive inorganic particles are magnetic, and the particles can be densely aggregated in any plane direction of the molded article. The method using gravity is useful for plate-shaped molded products such as plate, grate, sheet, or film, and the method using centrifugal force is useful for other molded products. When using magnetic force, it is useful when manufacturing molded products continuously.

導電性無機粒子を少なくとも1個の面方向に集合させた
後、粒子を含有する液状高分子材料を冷却、溶剤の蒸発
、加熱、エネルギー線の照射その他の固化あるいは硬化
手段によυ本発明の成形物が得られる。
After assembling the conductive inorganic particles in at least one plane direction, the liquid polymer material containing the particles is subjected to cooling, evaporation of a solvent, heating, irradiation with energy rays, or other solidification or curing means. A molded article is obtained.

以上の如き方法においては、高分子材料と導電性無機粒
子との使用比率は、目的とする成形物の使用目的、形状
等によって変化するが、一般的は前者/後者=9515
〜10/90の重量比率の範囲で使用する。例えば膜厚
の薄いフィルムやシートの場合は比較的多量の無機粒子
(例えば40/40〜20/80)を使用し、肉厚の大
なものは比較的少量の無機粒子(例えば、80/20〜
40/60)を使用するのが好ましい。また、比較的多
量の導電性無機粒子を使用する場合(例えば、20/8
0〜10/90 )は、別の実施態様の方法によっても
本発明の成形物を得ることができる。この実施態様は、
シート、フィルム、プレート等の板状体の成形物の製造
に有用であって、次の如く行われる◇すなわち、比較的
多量の無機粒子を含む分散体を型中に注入あるいは離型
紙等の基体に塗布し、前記の如く無機粒子を一方の面方
向に集合させ、次いで該シート状分散体を不完全に同化
あるいは硬化させ、表面が完全に硬化する前に別に調製
しておいた導電性無機粒子を含有しない液状高分子材料
を塗布し、次いで前記の如く全体を固化あるいは硬化さ
せることによって本発明の成形物を得ることができる。
In the above method, the ratio of the polymer material to the conductive inorganic particles varies depending on the intended use and shape of the molded product, but generally the former/the latter = 9515
It is used in a weight ratio of ~10/90. For example, for thin films or sheets, a relatively large amount of inorganic particles (e.g. 40/40 to 20/80) is used, and for thick films or sheets, a relatively small amount of inorganic particles (e.g. 80/20) is used. ~
40/60) is preferably used. Also, when using a relatively large amount of conductive inorganic particles (for example, 20/8
0 to 10/90), the molded product of the present invention can also be obtained by the method of another embodiment. This embodiment:
It is useful for producing plate-like molded products such as sheets, films, and plates, and is carried out as follows: In other words, a dispersion containing a relatively large amount of inorganic particles is injected into a mold or a substrate such as release paper is used. The inorganic particles are aggregated in one surface direction as described above, and then the sheet-like dispersion is incompletely assimilated or hardened, and before the surface is completely hardened, the conductive inorganic particles prepared separately are The molded article of the present invention can be obtained by applying a liquid polymeric material containing no particles and then solidifying or curing the entire body as described above.

本発明の必須の構成は以上の通りであるが、成形物の成
分としては、得られる成形物の導電性や物理的機械的性
質を害しない限り、各種の公知の添加剤、例えば、着色
剤、可塑剤等を必要に応じて包含せしめる仁とができる
。特に、従来の混練り方法で杖、導電性無機粒子が成形
物全体中に存在するため、無機粒子の色相以外の色相に
は着色困難であったが、本発明の成形物は、導電性無機
粒子が実質的に存在しない層が存在するため、その部分
は任意の着色が可能であるという利点を有する。
The essential components of the present invention are as described above, but various known additives, such as colorants, may be used as components of the molded product, as long as they do not impair the conductivity or physical and mechanical properties of the resulting molded product. , a plasticizer, etc. can be incorporated as necessary. In particular, in the conventional kneading method, conductive inorganic particles are present throughout the molded product, so it is difficult to color the molded product to a hue other than that of the inorganic particles. Since there is a layer substantially free of particles, this part has the advantage that it can be colored as desired.

製造方法の面においては、以上の如くして得られた成形
物の導電層は、従来の混線方法による成形物に比して、
すぐれた導電性(例えば、1oL−to’!Ω・Crr
L)を示すものであるが、成形物を形成後特定の処理を
施すことにより、その導電性が飛躍的に向上(例えば、
10−5〜10°Ω・cIrL)するとともに成形物の
物性も強化されることを知見した。このような処理方法
は得られた成形物の導電層を常温または加温下で加圧す
る方法である。このような加圧処理によって導電性層中
の無機粒子同士の接触がより強化されるために上記の如
き効果が得られるものと考えられる。加圧条件は、約り
5℃〜約300℃、好ましくは50−150℃の温度で
約5 Kg /lyA 〜200 Kg7’r、rlの
圧力である。このような加圧処理によって、導電層中の
導電性無機粒子は約80〜95重量係に緻密化する。な
お、このような加圧処理は成形物の固化または硬化後で
もよいし、成形物の固化または硬化と同時でもよい。特
に高分子拐料の前駆体を使用する場合は、硬化が完了す
る以前に加圧処理するのが望ましい。
In terms of the manufacturing method, the conductive layer of the molded product obtained as described above has a higher level of conductivity than the molded product produced by the conventional cross-wire method.
Excellent conductivity (e.g. 1oL-to'!Ω・Crr
L), but by subjecting the molded product to a specific treatment after forming, its conductivity can be dramatically improved (for example,
It was found that the physical properties of the molded product were also enhanced. Such a treatment method is a method of pressurizing the conductive layer of the obtained molded product at room temperature or under heating. It is thought that the above-mentioned effects are obtained because such pressure treatment further strengthens the contact between the inorganic particles in the conductive layer. The pressurizing conditions are a pressure of about 5 Kg/lyA to 200 Kg7'r, rl at a temperature of about 5°C to about 300°C, preferably 50-150°C. By such pressure treatment, the conductive inorganic particles in the conductive layer are densified to about 80-95% by weight. Note that such pressure treatment may be performed after the molded product has solidified or hardened, or may be performed simultaneously with the solidification or hardening of the molded product. Particularly when using a precursor of a polymeric material, it is desirable to carry out pressure treatment before curing is completed.

以上の如くして得られた本発明の導電性高分子成形物は
、従来の導電性高分子成形物(導電性層を付与せしめた
もの)に比してその導電性層の導電度が著しくすぐれて
いるとともに、導電性層の物理的、機械的強度が格段に
すぐれ、内外からの衝撃を受けても導電性材料の脱落や
層の剥離、損傷等の問題が生じることはない。また、従
来の混練りによる成形物に比較すると、その導電度は格
段に優れるとともに、物理的、機械的強度も格段にすぐ
れている。従って、本発明の導電性高分子成形物は導電
性シート、電萼、印刷式プリント配線、IC等の電磁波
按蔽体、面状発熱体、抵抗器、面状光導変換素子、面状
コンデンサー、電子写真帯電、トh止材、その他各種の
驚(償、重子部材として有用である。
The conductive polymer molded product of the present invention obtained as described above has a significantly higher conductivity of the conductive layer than conventional conductive polymer molded products (those provided with a conductive layer). Moreover, the physical and mechanical strength of the conductive layer is extremely excellent, and problems such as the conductive material falling off, layer peeling, and damage do not occur even when subjected to internal and external shocks. In addition, when compared with conventional molded products made by kneading, the electrical conductivity is much superior, and the physical and mechanical strength is also much superior. Therefore, the conductive polymer molded product of the present invention can be used as a conductive sheet, an electrocalyx, a printed circuit, an electromagnetic wave shielding body such as an IC, a sheet heating element, a resistor, a sheet photoconductive conversion element, a sheet capacitor, It is useful as a material for electrophotographic charging, as a stopper material, and for various other purposes.

次に実施例をあげて本発明を具体的に説明する0なお文
中部またはチとあるのは重量基準である。
Next, the present invention will be specifically explained with reference to Examples. References in the middle of the text and in the text are based on weight.

実施例1 メタクリル樹脂(ダイヤナールRB−801、三菱レー
ヨン)70部をテトラヒドロフラン280部中に溶解し
、この中に精子処理した200メツシユの錫粉末30部
を加え、ホモミキサーで均一に分散させ30 CrfL
X 30 CrrLX 5 mmの平たい型に注入し、
モのま寸の状態に10分間Pi′II装すると、錫粉末
が均一に完全に下層に沈澱し、上層には錫粉末は認めら
れなくなる゛。その後、平型から溶剤を然発させること
によって、錫粉末を含有しないアクリル樹脂層(絶縁層
)と樹脂中に錫粉末が緻密に集合した層(導電層)とが
一体となっている本発明のシート状導電性高分子成形物
(1−A)を得た。該成形物の全体の厚さは約0.8 
mwであり、導電層の厚さは約0.2期であり、導電層
中の錫粉末は60チであった。次いでこの成形物を14
0℃の温度で70KgA4の圧力で加圧処理して本発明
のシート状導電性高分子成形物(r−B)を得た。
Example 1 70 parts of methacrylic resin (Dianal RB-801, Mitsubishi Rayon) was dissolved in 280 parts of tetrahydrofuran, 30 parts of sperm-treated tin powder of 200 mesh was added thereto, and the mixture was uniformly dispersed with a homomixer. CrfL
Pour into a flat mold of 5 mm x 30 CrrL,
When the sample is exposed to Pi'II for 10 minutes, the tin powder is uniformly and completely precipitated in the lower layer, and no tin powder is observed in the upper layer. Thereafter, by spontaneously emitting a solvent from the flat mold, the acrylic resin layer (insulating layer) that does not contain tin powder and the layer (conductive layer) in which tin powder is densely aggregated in the resin are integrated. A sheet-like conductive polymer molded product (1-A) was obtained. The total thickness of the molded product is approximately 0.8
mw, the thickness of the conductive layer was about 0.2 cm, and the tin powder in the conductive layer was 60 cm. Next, this molded product was heated to 14
A sheet-like conductive polymer molded product (r-B) of the present invention was obtained by pressure treatment at a temperature of 0° C. and a pressure of 70 KgA4.

実施例2 ポリ塩化ビニル(ゼオン135J、日本ゼオン)60部
をテトラヒドロフラン340部中に溶解し、この中に粒
径約5ミクロンのニッケル粉末40部を加え、以下実施
例1と同様にして本発明のシート状導電性高分子成形物
(2−h)を得た。この成形物を130℃の温度と50
 Ky/lriの圧力で加圧処理して本発明のシート状
導電性高分子成形物(2−B )を得た。
Example 2 60 parts of polyvinyl chloride (Zeon 135J, Nippon Zeon) was dissolved in 340 parts of tetrahydrofuran, 40 parts of nickel powder with a particle size of about 5 microns was added thereto, and the present invention was prepared in the same manner as in Example 1. A sheet-like conductive polymer molded product (2-h) was obtained. This molded product was heated at a temperature of 130°C and
A sheet-like conductive polymer molded article (2-B) of the present invention was obtained by pressure treatment at a pressure of Ky/lri.

実施例3 ポリサルホン(ユーデルポリサルフオン、8産化学)5
0部をN−メチ背ピロリドン200部中に溶解し、この
中に粒径75ミクロンのグラファイト粉末(KS75、
ロンザ)50部を加え、ホモミキサーで均一に分散させ
、次いでガラス板上に約200〜300f/rr?の割
合で塗布し約20分間静置した。グラファイト粉末が下
方に沈澱した後、更に導電性粉末を含有しないポリサル
ホンのN−メチルピロリドン溶液(固形分約20係)を
、すでに塗布した層と混合しない様に約300〜400
 f /n?の割合で塗布し、次いで、ガラス板ととも
に水中にfilして凝固さぜ、更に50℃の温水中で水
洗し、乾燥して本発明のフィルム状導電性高分子成形物
(3−A)を待た。次いで該成形!/Iを15石℃およ
び50Kg/−の条件で加圧処理して本発明のフィルム
状導電性高分子成形物(a−B)を得た。
Example 3 Polysulfone (Udel Polysulfone, 8 San Kagaku) 5
0 parts of graphite powder (KS75,
50 parts of Lonza) were added, uniformly dispersed with a homomixer, and then placed on a glass plate at approximately 200 to 300 f/rr? It was applied at a ratio of 100 ml and left to stand for about 20 minutes. After the graphite powder has precipitated downward, a solution of polysulfone in N-methylpyrrolidone (solid content: about 20 parts) containing no conductive powder is added at a concentration of about 300 to 400%, taking care not to mix it with the already applied layer.
f/n? The film-like conductive polymer molded product (3-A) of the present invention is obtained by coating the film at a ratio of Wait. Next, the molding! /I was subjected to pressure treatment under the conditions of 15 Kg/- and 50 Kg/- to obtain a film-like conductive polymer molded product (a-B) of the present invention.

実施例4 ポリプロピレングリコール(水酸基価SS、O)とトリ
レンジイソシアネートよシ得られるウレタンプレポリマ
ー(NCOっ==6.o%)4o部とアミン系硬化剤(
MC−591、三井日看ウレタン)20部との混合物に
、清浄処理した100メツシユの銅粉末40部を加え、
ホモミキサーで均一に分散させ、一定形状の型に注入す
る。そのままの状態で1日間静置すると銅粉末はすべて
下方に均一に沈澱し、上方には銅粉末は認められなくな
る。その後成形物が完全に硬化する前に、成形物を型か
ら取出し、100℃、80 V4/crlの条件で加圧
処理して本発明の板状導電性高分子成形物(4−B)を
得た。
Example 4 Polypropylene glycol (hydroxyl value SS, O), 40 parts of urethane prepolymer (NCO==6.0%) obtained from tolylene diisocyanate, and amine curing agent (
Add 40 parts of cleaned 100 mesh copper powder to the mixture with 20 parts of MC-591 (Mitsui Nikkan Urethane),
Disperse it evenly with a homomixer and pour it into a mold of a certain shape. If it is left as it is for one day, all the copper powder will precipitate uniformly in the lower part, and no copper powder will be observed in the upper part. After that, before the molded product is completely cured, the molded product is taken out from the mold and subjected to pressure treatment at 100° C. and 80 V4/crl to obtain the plate-shaped conductive polymer molded product (4-B) of the present invention. Obtained.

実施例5 エポキシ樹脂(エピコート828、シェル石油)50部
、ジエチレントリアミン4部およびトリジメチルアミノ
メチルベンゼン0.05部からなる混合物に、清浄処理
した150メツシユの黄銅粉末40部を加え、ホモミキ
サーで均一に混合分散させ、一定形状の型に注入する。
Example 5 40 parts of cleaned brass powder of 150 mesh was added to a mixture of 50 parts of epoxy resin (Epicote 828, Shell Petroleum), 4 parts of diethylenetriamine, and 0.05 part of tridimethylaminomethylbenzene, and the mixture was homogenized using a homomixer. The mixture is mixed and dispersed and poured into a mold of a certain shape.

そのままの状態に1時間静置して黄銅粉末を下層に完全
沈澱させる。成型物が完全に硬化する前に成形物を型か
ら取出し、80℃、50〜/crAの条件で加圧処理し
て本発明の板状導電性高分子成形物(s−B)を得た。
Leave it as it is for 1 hour to completely precipitate the brass powder in the lower layer. Before the molded product was completely cured, the molded product was taken out from the mold and subjected to pressure treatment at 80° C. and 50 ~/crA to obtain a plate-shaped conductive polymer molded product (s-B) of the present invention. .

実施例6 ポリ塩化ビニル(ゼオン135 J、日本ゼオン)60
部をテトラヒドロフラン340部中に溶解し、この中に
75ミクロンのグラファイト粉末(KS75、ロンザ)
40部を加えホモミキサーで均一に分散させて分散液を
得た。この分散液を遠心力をかけることができる平たい
型中に注入し、700rpmの回転数で5分間遠心処理
を行い次いで溶剤を蒸発させて本発明の曲面シート状導
電性高分子成形物(6−A)を得た。該成形物を120
℃、50Kq/cdlの条件で加圧処理して本発明の曲
面シート状導電性高分子成形物(a−B)を得た。
Example 6 Polyvinyl chloride (Zeon 135 J, Nippon Zeon) 60
75 micron graphite powder (KS75, Lonza) was dissolved in 340 parts of tetrahydrofuran.
40 parts were added and uniformly dispersed using a homomixer to obtain a dispersion. This dispersion was poured into a flat mold capable of applying centrifugal force, centrifuged at a rotation speed of 700 rpm for 5 minutes, and then the solvent was evaporated to form a curved sheet-like conductive polymer mold of the present invention (6- A) was obtained. The molded product was heated to 120
A curved sheet-like conductive polymer molded product (a-B) of the present invention was obtained by pressure treatment under the conditions of 50 Kq/cdl and 50 Kq/cdl.

実施例7 ポリサルホン(ユ5−デルポリサルホン、日量化学)6
0部をN−メチルピロリドン240部中に溶解し、この
中に清浄処理した100メツシユの錫粉末40部を加え
、ホモミキサーで凡J−に分散させて分散液を得た。
Example 7 Polysulfone (U5-delpolysulfone, Nichido Kagaku) 6
0 part was dissolved in 240 parts of N-methylpyrrolidone, 40 parts of cleaned tin powder of 100 mesh was added thereto, and the mixture was dispersed in a homomixer to give a dispersion liquid.

該分散液を平たい型中に注入し、400 rpmで5分
間遠心処理を行った後、水中に浸漬して、成形物を凝固
させ、更に50℃の温水中で水洗し、乾燥して成形物を
得た。次に該成形物を150℃、70(祠の条件下で加
圧処理して本発明のシート状導電性高分子成形物(7−
B)を得た。
The dispersion was poured into a flat mold, centrifuged at 400 rpm for 5 minutes, immersed in water to solidify the molded product, further washed in warm water at 50°C, and dried to form the molded product. I got it. Next, the molded product was subjected to pressure treatment at 150°C and 70°C to produce the sheet-like conductive polymer molded product of the present invention (7-
B) was obtained.

実施例8 ポリプロピレングリコール(水酸基価55.0)と4,
4−ジフェニルメタンジイソシアネートよシ得られるウ
レタンプレポリマー(粘度78P/25℃、NGOチ=
 6.0 )40部、アミン系硬化剤(MC−591、
三井日曹ウレタン)20部および5ミクロンのニッケル
粉末40部をホモミキサーで均一に混合分散させ、平た
い型中に注入し、500 rpmで5分間遠心処理し、
その後110℃で3時間硬化させ、次いテ1oo℃、5
0 Ky/adの条件下で加圧処理して本発明のシート
状導電性高分子成形物(8−B)を得た。
Example 8 Polypropylene glycol (hydroxyl value 55.0) and 4,
Urethane prepolymer obtained from 4-diphenylmethane diisocyanate (viscosity 78P/25°C, NGO
6.0) 40 parts, amine curing agent (MC-591,
20 parts of Mitsui Nisso Urethane) and 40 parts of 5 micron nickel powder were uniformly mixed and dispersed using a homomixer, poured into a flat mold, centrifuged at 500 rpm for 5 minutes,
After that, it was cured at 110℃ for 3 hours, and then heated to 100℃ for 5 hours.
The sheet-like conductive polymer molded product (8-B) of the present invention was obtained by pressure treatment under the condition of 0 Ky/ad.

実施例9 実施例2における取方沈澱の代わシに、永久磁石を用い
てニッケル粉末を強制的に沈澱さ昼、他は実施例1と同
様にして加圧処理した本発明のシート状導電性高分子成
形物(9−B)を得た。
Example 9 Sheet-like conductive material of the present invention was subjected to pressure treatment in the same manner as in Example 1, except that instead of the precipitation in Example 2, nickel powder was forcibly precipitated using a permanent magnet. A polymer molded product (9-B) was obtained.

実施例10(N気持性等の測定) 実施例1〜9で44Jられた本発明の導電性高分子成形
物の性状は、下記第1表の通pであった。
Example 10 (Measurement of N receptivity, etc.) The properties of the conductive polymer molded products of the present invention obtained by 44J in Examples 1 to 9 were as shown in Table 1 below.

なお、電気特性は、温度24℃、相対湿度60%の条件
で日本ゴム協会標準規格(SRIS2301)に基づい
て測定したものである。
The electrical properties were measured under the conditions of a temperature of 24° C. and a relative humidity of 60% based on the Japan Rubber Institute standard (SRIS2301).

1−A  O,80,2604X10510151−B
  O,40,1902,5X10  10152−A
  1.2  0.4   60  2.5X10  
10”2−B  O,70,2905,0X10  1
03−A  2.0  0.5   70   6.2
X10  10153−13  1.2   0.3 
    90    3.2X10   104−B 
  5.0  1.0    B5   3.lX1O
−510j15−B   4.0   1.0    
90    7.2X10   106−A  1.0
  0.2   70   41X10  10”6−
B   O,60,1902,0X10   107−
B   1.0   0.1     90    1
.4X10   108−B   1.0   0.2
     ’!0    3.lX10   109−
B   O,60,1907,8X10   10また
、上記の本発明の成形物は、導電性材料を包含しない成
形物と殆ど同様な強度、柔軟性等のすぐれた物理的およ
び機械的強度を有しておシ、また、導?Fj層の内外の
衝撃による損傷や剥離は全く生じることがなかった。
1-A O,80,2604X10510151-B
O,40,1902,5X10 10152-A
1.2 0.4 60 2.5X10
10”2-B O,70,2905,0X10 1
03-A 2.0 0.5 70 6.2
X10 10153-13 1.2 0.3
90 3.2X10 104-B
5.0 1.0 B5 3. lX1O
-510j15-B 4.0 1.0
90 7.2X10 106-A 1.0
0.2 70 41X10 10”6-
B O,60,1902,0X10 107-
B 1.0 0.1 90 1
.. 4X10 108-B 1.0 0.2
'! 0 3. lX10 109-
B O,60,1907,8 Oshi, guide again? No damage or peeling occurred due to impact inside or outside the Fj layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施態様の成形物の断面図であシ、
1は成形物を、2は高分子材料マトリックスを、3は導
電性無機粒子を、4は絶縁層を、5は導電層を示す。
FIG. 1 is a sectional view of a molded product according to an embodiment of the present invention.
1 is a molded article, 2 is a polymer material matrix, 3 is a conductive inorganic particle, 4 is an insulating layer, and 5 is a conductive layer.

Claims (1)

【特許請求の範囲】 (1)高分子材料マトリックスおよび該マトリックス中
に包含された導電性無機粒子から成る成形物であって、
上記無機粒子が成形物の少なくとも1つの面方向に緻密
に集合して導電層を形成していることを特徴とする導電
性高分子成形物。 (2)導電性無機粒子が約o、oBクロン〜約i、oo
oミクロンの平均粒径を有する特許請求の範囲第(1)
項に記載の成形物。 (3)形状が板状、シート状、フィルム状等の平面形状
である特許請求の範囲第(1)項に記載の成形物0 (4)導電層が約60〜95重量%の導電性無機粒子を
含有している特許請求の範囲第(1)項に記載の成形物
◇ (5)導電層が約80〜95重量%の導電性無機粒子を
含有している特許請求の範囲第(1)項に記載の成形物
。 (6)導電層が約10〜10 Ω・αの固有抵抗値を有
する特許請求の範囲第(1)項に記載の成形物0゜(7
)液状の高分子材料若しくは高分子材料を形成し得る液
状の高分子形成性前駆体あるいはそれらの混合物中に導
電性無機粒子を混合し、且つ均一に分散させた後、該無
機粒子を少なくとも1つの面方向に集合させ、次いで該
混合物を同化あるいは硬化させることを特徴とする導電
性高分子成形物の製造方法。 (8)無機粒子の集合を高分子材料と導電性無機粒子と
の比重差を利用して行う特許請求の範囲第(7)項に記
載の製造方法。 (9)液状の高分子材料が高分子材料の有機溶剤溶液で
ある特許請求の範囲第(7)項に記載の製造方法0 (Jl混合物の固化あるいは硬化後、または同化あるい
は硬化と同時に成形物を特徴とする特許請求の範囲第(
7)〜(9)項のいずれかに記載の製造方法。
[Scope of Claims] (1) A molded article comprising a polymer material matrix and conductive inorganic particles contained in the matrix,
A conductive polymer molded article, characterized in that the inorganic particles are densely aggregated in the direction of at least one surface of the molded article to form a conductive layer. (2) Conductive inorganic particles range from about o, oB to about i, oo
Claim No. (1) having an average particle size of o microns.
The molded article described in section. (3) The molded product according to claim (1), which has a planar shape such as a plate, sheet, or film. (4) The conductive layer is a conductive inorganic material containing about 60 to 95% by weight. ◇ (5) The molded article according to claim 1, wherein the conductive layer contains about 80 to 95% by weight of conductive inorganic particles. ). (6) The molded article according to claim (1), wherein the conductive layer has a specific resistance value of about 10 to 10 Ω·α.
) After mixing and uniformly dispersing conductive inorganic particles in a liquid polymeric material, a liquid polymer-forming precursor capable of forming a polymeric material, or a mixture thereof, the inorganic particles are mixed with at least one 1. A method for producing a conductive polymer molded article, which comprises assembling the mixture in two plane directions, and then assimilating or hardening the mixture. (8) The manufacturing method according to claim (7), in which the inorganic particles are aggregated by utilizing the difference in specific gravity between the polymeric material and the conductive inorganic particles. (9) The manufacturing method according to claim (7), wherein the liquid polymeric material is a solution of a polymeric material in an organic solvent. Claim No. 1 characterized in (
The manufacturing method according to any one of items 7) to (9).
JP58092513A 1983-05-27 1983-05-27 Conductive high molecular shape and manufacture thereof Granted JPS59218842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58092513A JPS59218842A (en) 1983-05-27 1983-05-27 Conductive high molecular shape and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58092513A JPS59218842A (en) 1983-05-27 1983-05-27 Conductive high molecular shape and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS59218842A true JPS59218842A (en) 1984-12-10
JPS6365021B2 JPS6365021B2 (en) 1988-12-14

Family

ID=14056394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58092513A Granted JPS59218842A (en) 1983-05-27 1983-05-27 Conductive high molecular shape and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59218842A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002127170A (en) * 2000-10-23 2002-05-08 Nok Corp Method for producing magnetic rubber material
JP2005144849A (en) * 2003-11-14 2005-06-09 Sumitomo Osaka Cement Co Ltd Transparent conductive film and reflection preventing transparent conductive film
JP2005148376A (en) * 2003-11-14 2005-06-09 Sumitomo Osaka Cement Co Ltd Film and reflection preventing film
JP2017523311A (en) * 2014-05-09 2017-08-17 カウンスィル オブ サイエンティフィック アンド インダストリアル リサーチCouncil Of Scientific & Industrial Research Improved next generation off-site polymer tip electrode
WO2020022341A1 (en) * 2018-07-26 2020-01-30 住友化学株式会社 Thermoplastic resin structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554580A (en) * 1978-06-27 1980-01-14 Atsuko Hayashi Transfusion run-out detector
JPS57205145A (en) * 1981-06-11 1982-12-16 Denki Kagaku Kogyo Kk Composite plastic sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554580A (en) * 1978-06-27 1980-01-14 Atsuko Hayashi Transfusion run-out detector
JPS57205145A (en) * 1981-06-11 1982-12-16 Denki Kagaku Kogyo Kk Composite plastic sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002127170A (en) * 2000-10-23 2002-05-08 Nok Corp Method for producing magnetic rubber material
JP2005144849A (en) * 2003-11-14 2005-06-09 Sumitomo Osaka Cement Co Ltd Transparent conductive film and reflection preventing transparent conductive film
JP2005148376A (en) * 2003-11-14 2005-06-09 Sumitomo Osaka Cement Co Ltd Film and reflection preventing film
JP2017523311A (en) * 2014-05-09 2017-08-17 カウンスィル オブ サイエンティフィック アンド インダストリアル リサーチCouncil Of Scientific & Industrial Research Improved next generation off-site polymer tip electrode
WO2020022341A1 (en) * 2018-07-26 2020-01-30 住友化学株式会社 Thermoplastic resin structure

Also Published As

Publication number Publication date
JPS6365021B2 (en) 1988-12-14

Similar Documents

Publication Publication Date Title
US3146125A (en) Method of making printed circuits
CA1122143A (en) Polyester ribbon for non-impact printing
KR20110027727A (en) Dispersions for application to metal layers
JPS61147593A (en) Flexible circuit board with conducting adhesive layer and manufacture thereof
JPS60150508A (en) Method of producing transparent electrode board
CN110804365A (en) Dielectric material with high dielectric constant and preparation method and application thereof
JPS59218842A (en) Conductive high molecular shape and manufacture thereof
KR100821044B1 (en) Electrodeposited aqueous dispersions, high dielectric constant films and electronic components
CN113077942A (en) Intelligent flexible conductive film prepared based on power ultrasound and application thereof
JPS58191722A (en) Polymer granules with a metal layer, their production method and their use
JPH046241B2 (en)
TWI786257B (en) Conductive paste, cured product, conductive pattern, clothes and stretchable paste
DE3901029A1 (en) METHOD FOR METALLIZING MOLDED BODIES FROM POLYARYL SULFIDES
JP4020111B2 (en) Method for producing laminated particles with plating layer
JPH03504060A (en) electrically conductive structures
JPS55157660A (en) Automobile glass run
JPS6272749A (en) Electrically conductive paste
JPS624761A (en) Coating composition
HU194288B (en) Process for preparing macromolecular material which is conductive on its surface
KR102230885B1 (en) Conductive Adhesive Composition and Conductive Adhesive Film Using the Same
KR102670450B1 (en) Stretching Electrode And Stretching Module Including The Same
JPS60177031A (en) Electrically conductive casting film
JP4196480B2 (en) Film production method
JPS58223152A (en) Electrostatic recording material
JPH02153321A (en) Composition for liquid crystal elements and conductive organic compound films