[go: up one dir, main page]

JPS59215514A - Drying and transporting facility for particulate fuel for boiler - Google Patents

Drying and transporting facility for particulate fuel for boiler

Info

Publication number
JPS59215514A
JPS59215514A JP8970183A JP8970183A JPS59215514A JP S59215514 A JPS59215514 A JP S59215514A JP 8970183 A JP8970183 A JP 8970183A JP 8970183 A JP8970183 A JP 8970183A JP S59215514 A JPS59215514 A JP S59215514A
Authority
JP
Japan
Prior art keywords
temperature
drying
line
boiler
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8970183A
Other languages
Japanese (ja)
Inventor
Kenjiro Motonaga
元永 謙二郎
Takumi Mizokawa
巧 溝河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP8970183A priority Critical patent/JPS59215514A/en
Publication of JPS59215514A publication Critical patent/JPS59215514A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

PURPOSE:To save a fuel consumption in a hot furnace and to prevent an explosion of coal dust in the system in advance by a method wherein a held calory of the burnt and discharged gas of the boiler and the characteristic of inert are effectively utilized. CONSTITUTION:A temperature control system is employed and performed in a drying processing device 2 and the lines L4 and L5 of hot gas induced by the blower 3 are connected, a collection and separator 7 is arranged at the upstream side of the blower 3 in the line L5, a flow rate control part composed of a flow rate sensor 60, flow rate indicating and adjusting meter 61 and an adjusting valve 62 is arranged in the line L7 between the collection and separator 7, a flow rate of gas passing in the drying processing device 2 is adjusted to make a stable classification function in the drying and processing device 2 and at the same time the transporting speed of the particulate is kept to accumulate the particulate fuel in the line L5. In the midway of the line L4 are arranged a temperature stabilization device 15, temperature decreasing device 16 and temperature increasing device 17 in an order of flow of discharged gas of boiler. Therefore, it is possible to save the fuel consumption in the temperature increasing furnace 6 and to prevent the explosion in the system.

Description

【発明の詳細な説明】 本発明は、ボイラ用粉粒体燃料となるべき原料の乾燥・
輸送設備の改良に関し、特に燃料経済性と操業安全性の
両面に優れた当該設備に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to drying and
This article relates to the improvement of transportation equipment, and in particular to equipment that is superior in terms of both fuel economy and operational safety.

ボイラ操業における燃料としては、これまで重油等の石
油系燃料が主流であったが、オイルショック以降の重油
価格の高騰及びそれに伴なう高カロリーガスの高騰を受
け、各火力発電所の大型ボイラ、及びその他一般産業に
おける中小型ボイラーにいたるまで重油等に代替できる
ものが探求され、粉粒体燃料(例えば微粉炭、コークス
粉等)を燃料として使用することが、経済性や操業の柔
軟性等の観点からして非常に有効と考えられ、各方面で
積極的に採用される様になっている。
Up until now, petroleum-based fuels such as heavy oil have been the mainstream fuel for boiler operation, but due to the sharp rise in the price of heavy oil after the oil crisis and the accompanying rise in the price of high-calorie gas, large-scale boilers at various thermal power plants have been , and other small and medium-sized boilers in general industry, alternatives to heavy oil, etc. are being explored, and the use of granular fuels (e.g. pulverized coal, coke powder, etc.) as fuel is becoming more economical and operationally flexible. It is considered to be very effective from these points of view, and is being actively adopted in various fields.

こうした粉粒体燃料をボイラの燃料供給口まで供給する
に当っては、従来はこれを乾燥した後気体輸送し、粉粒
体燃料捕集分離装置を経由させて該気体と分離して所定
の部位に一時貯留し、更にこれをボイラの燃料供給口(
以下給炭口ということもある)まで気体輸送する。即ち
その形態を第1図に示す乾燥・輸送設備の線図的系統図
に基づいて説明すれば、1は原料供給装置で、原料は乾
燥処理装置2に供給され、目標とする水分率(例えば3
%)まで乾燥される。又乾燥処理装置2には、温度制御
されつつプロワ3によって誘引される高温気体のライン
L4+L5が接続され、更にラインL4には昇温炉6が
配設され、一方ラインL、におけるブロワ3の入口側に
は粉粒体燃料捕集・分離処理装置7が配設されている。
In order to supply such granular fuel to the fuel supply port of a boiler, conventionally, it is dried and then transported as a gas, passed through a granular fuel collection and separation device to be separated from the gas, and then It is temporarily stored in the boiler fuel supply port (
(hereinafter also referred to as coal feed port). That is, if its form is explained based on the diagrammatic system diagram of the drying and transportation equipment shown in FIG. 3
%). Furthermore, lines L4+L5 of high-temperature gas induced by the blower 3 under temperature control are connected to the drying processing apparatus 2, and a temperature raising furnace 6 is further disposed in the line L4, while the inlet of the blower 3 in the line L A granular fuel collection/separation processing device 7 is disposed on the side.

そして昇温炉6には軽油、都市ガス等の燃料A、!:燃
焼用空気Bが夫々ラインL、、L2より送り込まれて混
合・燃焼され、高温(iooo〜1300’C)の燃焼
排ガスを発生させる。Cは空気でラインL3よυ昇温炉
6に供給され、上記燃焼排ガスと混合された後、乾燥処
理装置2に供給される。乾燥処理装置2に送られた混合
ガスは、該装置2内を通過する間に原料を目標とする水
分率(例えば3係)まで乾燥しながら捕集・分離処理装
置7まで気体輸送する。該装置7により分離・捕集され
た粉粒体燃料はコールビン11に供給・貯留される一方
、混合7’/ スB ブロワ3よシ系外に放出される。
The heating furnace 6 is filled with fuel A such as light oil and city gas! : Combustion air B is sent through lines L, L2, respectively, and mixed and combusted to generate high temperature (iooo~1300'C) combustion exhaust gas. C is supplied as air through the line L3 to the heating furnace 6, mixed with the combustion exhaust gas, and then supplied to the drying device 2. The mixed gas sent to the drying processing device 2 is transported to the collection/separation processing device 7 while drying the raw material to a target moisture content (for example, 3 parts) while passing through the device 2. The granular fuel separated and collected by the device 7 is supplied to and stored in the coal bin 11, while being discharged to the outside of the mixing system 7'/subB blower 3.

こうしてコールビン11に供給・貯留された粉粒体燃料
は例えば分配装置12を介して輸送用空気ラインL、へ
入りボイラ13の給炭口14へ送給される。
The granular fuel thus supplied and stored in the coal bin 11 enters the transportation air line L via the distribution device 12, for example, and is fed to the coal feed port 14 of the boiler 13.

しかしこのような設備において粉粒体燃料の乾燥・輸送
に用いられる高温気体としては、前述の如く昇温炉6で
軽油等の燃料を燃焼させて得られる燃焼排ガスを大量に
利用するので、燃料消費量が過大でランニングコストが
非常に高くなるという欠点がある。しかも上記燃焼排ガ
スの温度は1000℃以上の高温にも達するので、これ
を空気によシ希釈・冷却して使用する必要があり、該混
合ガス中の02濃度が高くなって炭m爆発の恐れを伴う
。そこでとのような炭塵爆発に対処しなければならず、
炭塵爆発の初期状態を急激な圧力上昇又はCO濃度上昇
等にょシ検知し、これに呼応して系内に消火剤を吹込む
ことのできるような装置を上記設備に組み入れざるを得
す、設備の構成が複雑となって設備費及びメンテナンス
コストが高くなる。しかし上記装置は炭塵爆発を未然に
防止するだめのものではないので操業の安全性を確保す
る上で信頼性に欠けるという難点がある。
However, as mentioned above, a large amount of combustion exhaust gas obtained by burning fuel such as light oil in the heating furnace 6 is used as the high-temperature gas used for drying and transporting the powdered fuel in such equipment. The drawback is that the consumption is excessive and running costs are extremely high. Moreover, since the temperature of the combustion exhaust gas reaches a high temperature of over 1000℃, it is necessary to dilute and cool it with air before use, and the concentration of 02 in the mixed gas increases, raising the risk of a coal explosion. accompanied by. There, they had to deal with coal dust explosions like
It is necessary to incorporate into the above equipment a device that can detect the initial state of a coal dust explosion, such as a sudden rise in pressure or a rise in CO concentration, and inject extinguishing agent into the system in response to this. The equipment configuration becomes complicated, which increases equipment costs and maintenance costs. However, since the above-mentioned device is not capable of preventing coal dust explosions, it has the drawback of lacking reliability in ensuring operational safety.

そこで上述の如き従来の設備においては、■燃料消費量
の節約、■設備及びメンテナンスの簡素化、■炭塵爆発
に対する安全性の確保、という3つの観点からの改善策
が求められている。
Therefore, in the conventional equipment as described above, improvement measures are required from three viewpoints: (1) saving fuel consumption, (2) simplifying equipment and maintenance, and (2) ensuring safety against coal dust explosions.

本発明者等もこうした要求を十分満足することができる
技術を開発すべく種々検討を重ねてきたが、下記する様
にボイラ燃焼排ガス(以下単にボイラ排ガスという)の
特性を上手に利用することのできる簡単な制御手段を採
用すれば上記要求を全て満足できるという知見を得、更
に研究を進めることによりその成果を確認できたもので
ある。
The inventors of the present invention have also conducted various studies in order to develop a technology that can fully satisfy these requirements. We obtained the knowledge that all of the above requirements could be satisfied by adopting a simple control means, and we were able to confirm this result through further research.

即ち本発明者等が利用しようと考えているボイラ排ガス
は比較的高温(約120〜360℃)であるが、従来は
燃焼用空気や燃料の予熱に利用されている程度に過ぎず
、十分に活用されているとは言い難い。又利用後のボイ
ラ排ガスは依然として100℃以上の顕熱を保有してい
るにもかかわらずそのまま大気中に放散されているとい
うのが現状である。そこで本発明者等は上記ボイラ排ガ
スが比較的高温でしかも該排ガス中の酸素濃度が比較的
低い(約3チ前後又はそれ以下)という特性〔イナート
(Incrt )性〕に着目する一方、同排ガスはボイ
ラの稼動に伴なって常に安定して得られるという事実を
重視し、とのボイラ排ガスを粉粒体燃料の乾燥・輸送媒
体として使用すると共にこれを適切に温度制御できる装
置を採用することを企画し、本発明を完成するに至った
In other words, the boiler exhaust gas that the present inventors intend to use has a relatively high temperature (approximately 120 to 360 degrees Celsius), but conventionally it has only been used to preheat combustion air and fuel, and it has not been fully utilized. It is hard to say that it is being utilized. In addition, the current situation is that the boiler exhaust gas after use still has sensible heat of 100° C. or more, but is dissipated into the atmosphere as it is. Therefore, the present inventors focused on the characteristic (Incrt property) that the boiler exhaust gas is relatively high temperature and the oxygen concentration in the exhaust gas is relatively low (approximately 3 inches or less). Emphasis is placed on the fact that is always stably obtained as the boiler operates, and the boiler exhaust gas is used as a drying and transport medium for granular fuel, and a device that can appropriately control the temperature of this is adopted. They planned this and completed the present invention.

しかしてこの様な本発明の設備とは、乾燥処理装置の高
温気体入口側における高温気体ラインをボイラ燃焼排ガ
ス導入ラインで形成すると共に、該ラインの途中、下流
側であって前記乾燥処理装置の近傍には昇温装置を配置
し、更に該昇温装置よりも上流側の前記ラインには温度
安定化装置と降温装置とを任意の順序で配設するか又は
降温装置のみを配置してなる点に要旨が存在し、設備の
運転に際しては乾燥処理装置出口における気体の温度が
一定になるように、即ち原料中の水分が確実に乾燥され
るように、乾燥処理装置へ送給されるボイラ燃焼排ガス
の送給温度を、■昇温装置、温度安定化装置及び降温装
置の3つの装置、又は■昇温装置及び降温装置の2つの
装置(ライン中においてはどちらが上流側にあってもよ
い)のいずれかの組合わせにより適当に制御するもので
ある。
However, in the equipment of the present invention, the high-temperature gas line on the high-temperature gas inlet side of the drying treatment apparatus is formed with a boiler combustion exhaust gas introduction line, and the high-temperature gas line on the high-temperature gas inlet side of the drying treatment apparatus is formed with a boiler combustion exhaust gas introduction line, and a line is formed on the downstream side of the drying treatment apparatus. A temperature raising device is arranged nearby, and a temperature stabilizing device and a temperature lowering device are arranged in any order in the line upstream of the temperature raising device, or only a temperature lowering device is arranged. The main point is that when operating the equipment, the temperature of the gas at the outlet of the drying process is kept constant, that is, the boiler that is fed to the drying process is designed to ensure that the moisture in the raw material is dried. The feeding temperature of the combustion exhaust gas can be controlled by three devices: a temperature increase device, a temperature stabilization device, and a temperature decrease device, or by two devices, a temperature increase device and a temperature decrease device (whichever is located on the upstream side in the line is fine). ) is appropriately controlled by any combination of the following.

この様に本発明ではボイラ燃焼排ガス(以下単にボイラ
排ガスという)の保有熱量とイナート性を有効に利用す
るものであるから、昇温炉での燃料消費量が節約でき、
且つ系内の炭塵爆発を未然に防止することができる。
As described above, since the present invention effectively utilizes the retained heat capacity and inertness of boiler combustion exhaust gas (hereinafter simply referred to as boiler exhaust gas), it is possible to save fuel consumption in the heating furnace.
Moreover, coal dust explosion within the system can be prevented.

以下実施例図面に基づき本発明のtrrt成及び作用効
果を説明するが、下記実施例は単に一代表例を示すもの
であって本発明を限定する性質のものではなく、前・後
記の趣旨に沿って適宜設計変更することは全て本発明の
技術的範囲に含まれる。
The trrt configuration and effects of the present invention will be explained below based on the drawings of the embodiments. However, the following embodiments are merely representative examples and are not intended to limit the present invention. Any appropriate design changes along these lines are within the technical scope of the present invention.

第2図は本発明に係るボイラ用粉粒体燃料の乾燥・輸送
設備を例示する線図的系統図で、この図において】は原
料供給装置、2は該装置1から供給される原料を目標水
分率(例えば、3チ程度)まで乾燥するだめの乾燥処理
装置である。又乾燥処理装置2には後述の如き温度制御
方式(スプリット制御方式)を採用・実施しつつブロワ
3によって誘引される高温気体のラインL、、L、が接
続されており、ラインL4はボイラ排ガスを導入するだ
めの経路とし、一方ラインL、は粉粒体燃料を輸送する
ための流路としてい−る。又該ラインL。
FIG. 2 is a diagrammatic system diagram illustrating the drying and transportation equipment for boiler granular fuel according to the present invention. This is a drying device for drying to a moisture content (for example, about 3%). Further, the drying processing device 2 is connected to lines L, , L of high-temperature gas induced by a blower 3 while adopting and implementing a temperature control method (split control method) as described below, and a line L4 is connected to the boiler exhaust gas. Line L is used as a flow path for transporting granular fuel. Also, the line L.

におけるブロワ3の上流側には捕集・分離tlJA7が
配設され、更に該捕集・分離機7とブロワ3の間のライ
ンL7には流量検出端60.流ボ:指示調節計61及び
調節弁62で構成される流量制御部が設けられている。
A collection/separator tlJA7 is disposed upstream of the blower 3, and a flow rate detection end 60. Flow rate: A flow rate control unit consisting of an indicating controller 61 and a control valve 62 is provided.

該流量制御部は、ブロワ3の誘引によって乾燥処理装置
2内を通過する高温気体流量(即ち乾燥処理装置2出口
における該流量)を調節することによシ、乾燥処理装置
2内における分級機能を安定に行なわせると共に粉粒体
燃料の輸送速度を一定以上に確保してラインL5内に粉
粒体燃料を堆積させないようにする役割を果たすもので
ある。尚捕集・分離機7と接続するコールビン11以後
の構成については第1図に示す構成と同一である。
The flow rate control unit performs the classification function in the drying device 2 by regulating the flow rate of high temperature gas passing through the drying device 2 (that is, the flow rate at the outlet of the drying device 2) by the blower 3. This serves to ensure stable transportation and to ensure that the transportation speed of the granular fuel is above a certain level, thereby preventing the granular fuel from accumulating in the line L5. The structure after the cole bin 11 connected to the collector/separator 7 is the same as that shown in FIG.

更にラインL4の途中にはボイラ排ガスの流れ方向順に
温度安定化装置15、降温装置16及び昇温装置17が
配設されている。
Furthermore, a temperature stabilizing device 15, a temperature decreasing device 16, and a temperature increasing device 17 are arranged in the flow direction of the boiler exhaust gas in the middle of the line L4.

温度安定化装置15は、ボイラ排ガス温度の変化特性を
ならしてほぼ一定の温度にすることを目的として設置す
るものである。即ちボイラ排ガスの温度はボイラに供給
される石炭の負荷量変動によりおよそ120〜360℃
の温度幅で非周期的に変化するものであるが、この様な
温度変化は後述する様に降温装置16と昇温装置17の
温度制御を実施するに際していわゆる制御動作の外乱と
なって好ましくない。従って温度安定化装置15によっ
てボイラ排ガスの温度をほぼ一定にした上で乾燥処理装
置2への送給を行なう。その具体的構成例を説明すると
、図示の如くラインL、に熱交換器18を設けて該熱交
換器18内にボイラ燃焼用空気を導入し、ボイラ排ガス
との熱交換により一部熱回収を図る一方、熱交換器18
の前後をハイハスラインL+3で連通し、ボイラ排ガス
のバイパス量を制御することによって熱交換器18出口
のボイラ排ガス温度を11 ?了一定とする。尚2゜は
開閉弁、21は温度検出端、22は温度指示調節計を示
す。
The temperature stabilizing device 15 is installed for the purpose of smoothing out the change characteristics of the boiler exhaust gas temperature to maintain a substantially constant temperature. In other words, the temperature of the boiler exhaust gas varies from approximately 120 to 360 degrees Celsius due to fluctuations in the amount of coal supplied to the boiler.
The temperature changes non-periodically within a temperature range of . Therefore, the temperature of the boiler exhaust gas is kept approximately constant by the temperature stabilizing device 15 before being fed to the drying device 2. To explain a specific configuration example, as shown in the figure, a heat exchanger 18 is provided in the line L, boiler combustion air is introduced into the heat exchanger 18, and a portion of the heat is recovered by heat exchange with the boiler exhaust gas. Meanwhile, the heat exchanger 18
The front and back of the heat exchanger 18 are connected by a high-speed line L+3, and the boiler exhaust gas temperature at the outlet of the heat exchanger 18 is controlled to 11? Assumed to be fixed. 2° is an on-off valve, 21 is a temperature detection end, and 22 is a temperature indicating controller.

又降温装置16はブロワ3からの放出ラインL。Further, the temperature lowering device 16 is a discharge line L from the blower 3.

とラインL4をバイパスラインL0で接続すると共に、
該接続点よシ下流のラインL、。には調節弁25aを設
け、更にバイパスラインL、には開閉弁25bを設けた
もので、これらの弁25a125bを操作して放出ライ
ンL8内の比較的温度の下がった排ガスの一部をライン
L、ヘバイパスさせてラインL、内のボイラ排ガスと混
合することによりラインL4内のボイラ排ガス温度を低
下させる。尚調節弁25a及び開閉弁25bの操作は、
後記制御装置37の指令により行なう。
and line L4 are connected by bypass line L0,
A line L downstream from the connection point. A control valve 25a is provided in the bypass line L, and an on-off valve 25b is provided in the bypass line L. By operating these valves 25a and 125b, a portion of the exhaust gas whose temperature has decreased relatively in the discharge line L8 is transferred to the line L. , and mixes with the boiler exhaust gas in line L4 to lower the temperature of the boiler exhaust gas in line L4. The operation of the control valve 25a and the on-off valve 25b is as follows:
This is done according to a command from a control device 37, which will be described later.

更に昇温装置17はラインL4に昇温炉6を設けると共
に、該昇温炉6には軽油又は都市ガス等の燃料Aを供給
するためのラインLl 1と、燃料Aの燃焼用空気Bを
供給するだめのラインI−+ 2を接続し、更に各ライ
ンLI I I Ll□には調節弁30゜31及び渡世
検出端32.33が夫々流量指示調節計34.35を介
して連結されている。更にとれらの流お:指示調節計3
4.35は空燃比制御回路36を介して制御装置37と
連結されている。
Furthermore, the temperature raising device 17 is provided with a temperature raising furnace 6 in the line L4, and the temperature raising furnace 6 is provided with a line Ll 1 for supplying fuel A such as light oil or city gas, and a line Ll 1 for supplying fuel A such as light oil or city gas, and air B for combustion of the fuel A. A supply line I-+ 2 is connected to each line LI I I Ll□, and control valves 30, 31 and passing detection ends 32,33 are connected via flow rate indicating controllers 34,35, respectively. There is. In addition, Torera's stream: Indication controller 3
4.35 is connected to a control device 37 via an air-fuel ratio control circuit 36.

まだラインL、の乾燥処理装置2に近い部位にはライン
L、内のガス温度を測定するための温度検出端38を取
υ付け、更に該検出端38は温度指示調節計39を介し
て制御装置37と連結されている。制御装置37内には
いわゆるスプリット制御回路が組み込まれておシ、温度
検出端38からの検出温度をほぼ一定とするために、即
ち原料中の水分を確実に乾燥させるために乾燥処理装置
2の出口温度に応じて降温装置16の弁25aと25b
および昇温装置17の弁3oと31を夫々同時に調節し
つつ降温装置16と昇温装置17の切替えを行なうため
の指令発信をつかさどる制御機能を発揮する。即ちライ
ンL4から乾燥処理装置2へ送給されるボイラ排ガスの
温度は、原料中の水分含有率及び乾燥処理装置ゑへの原
料供給量によって変化させる必要があって、例えば原料
中の水分含有率が増加したとき又は原料供給量が増加し
たときには、ボイラ排ガスの保有熱量だけでは水分の乾
燥が不十分となる。このような状態に至ったことは温度
検出端38における温度低下によって検知され、増加す
べき温度割合が温度指示調節計39から制御装置37に
伝えられた後、高温燃焼排ガスの生成増加指令が該制御
装置37がら空燃比制御回路3Gを介して昇温装置17
に伝達される。具体的には新たな燃料量と空気量の設定
に応じて調節弁30.31の開度調節が行なわれる。と
うしてボイラ排ガスは昇温炉6内で燃焼した41Fガス
と混合され、熱量を大きくした後乾燥処理装置2へ供給
されるので、十分な乾燥が行なえるようになる。しかも
昇温炉6では空燃比制御によって常に完全燃焼するよう
に運転されるため、燃焼排ガスはイナートガスとなって
おり、ボイラ排ガスと混合しても′、これらの混合ガス
全体のイナート性が損なわれることはない。
A temperature detection end 38 for measuring the gas temperature in line L is attached to a portion of line L near the drying processing device 2, and furthermore, this detection end 38 is controlled via a temperature indicating controller 39. It is connected to device 37. A so-called split control circuit is incorporated in the control device 37, and in order to keep the detected temperature from the temperature detection terminal 38 almost constant, that is, to ensure that the moisture in the raw material is dried, the drying processing device 2 is operated. Valve 25a and 25b of temperature lowering device 16 depending on the outlet temperature.
It also performs a control function of issuing a command for switching between the temperature decreasing device 16 and the temperature increasing device 17 while simultaneously adjusting the valves 3o and 31 of the temperature increasing device 17, respectively. That is, the temperature of the boiler exhaust gas sent from the line L4 to the drying device 2 needs to be changed depending on the moisture content in the raw material and the amount of raw material supplied to the drying device 2. When the amount of water increases or when the amount of raw material supplied increases, the amount of heat held in the boiler exhaust gas alone is insufficient to dry the moisture. The occurrence of such a state is detected by a temperature drop at the temperature detection end 38, and after the temperature rate to be increased is transmitted from the temperature indicator controller 39 to the control device 37, a command to increase the generation of high temperature combustion exhaust gas is issued. The temperature increasing device 17 is connected to the control device 37 via the air-fuel ratio control circuit 3G.
transmitted to. Specifically, the opening degree of the control valves 30, 31 is adjusted in accordance with the new settings of the fuel amount and air amount. As a result, the boiler exhaust gas is mixed with the 41F gas combusted in the heating furnace 6 to increase the amount of heat before being supplied to the drying processing device 2, so that sufficient drying can be performed. Moreover, since the heating furnace 6 is operated to always achieve complete combustion by controlling the air-fuel ratio, the combustion exhaust gas is an inert gas, and even if it is mixed with the boiler exhaust gas, the inertness of the entire mixed gas will be impaired. Never.

こうして昇温装置」7が十分に能力を発揮している状態
、即ち調節弁so、siの開度が大きく開いて多量の燃
料と空気とが昇温炉6内へ入って燃焼している状態にお
いて、原料中の水分含有率の減少又は原料供給量の減少
によって温度検出端38の温度上昇、従って減少すべき
温度割合が温度指示調節frt39から制御装置37に
伝えられると、高温燃焼排ガスの生成減少指令が該制御
装置37がら空燃比制御回路36を介して昇温装置17
に伝達される。その場合前述と反対に調節弁30゜31
の開度が小さくなり、昇温炉6内で燃焼した高温排ガス
量が減少し、最終的に温度検出端38における温度が所
定の温度(約80℃前後)に復帰する。更に原料中の水
分含有率が減少し又は原料供給量が減少することによシ
、所要高温燃焼排ガス量が減少して、昇温炉6の最小運
転可能容量(最小バーナ容量)以下になった場合、昇温
炉6゜はその最小バーナ容量で運転し橙がら降温装置1
6の開閉弁25bを全開して降温装置の運転を行なう。
In this way, the temperature raising device 7 is fully functioning, that is, the control valves so and si are wide open, and a large amount of fuel and air enters the temperature raising furnace 6 and is combusted. In this case, when the temperature of the temperature detection end 38 increases due to a decrease in the moisture content in the raw material or the decrease in the amount of raw material supplied, and therefore the temperature ratio to be decreased is transmitted from the temperature indication adjustment frt 39 to the control device 37, high temperature combustion exhaust gas is generated. The decrease command is sent to the temperature increasing device 17 via the air-fuel ratio control circuit 36 from the control device 37.
transmitted to. In that case, contrary to the above, the control valve 30°31
The degree of opening becomes smaller, the amount of high-temperature exhaust gas burned in the heating furnace 6 decreases, and the temperature at the temperature detection end 38 eventually returns to a predetermined temperature (about 80° C.). Furthermore, due to a decrease in the moisture content in the raw material or a decrease in the amount of raw material supplied, the required amount of high-temperature combustion exhaust gas decreased and became below the minimum operable capacity (minimum burner capacity) of the heating furnace 6. In this case, the heating furnace 6° is operated at its minimum burner capacity and the temperature cooling device 1 is
The temperature lowering device is operated by fully opening the on-off valve 25b of No. 6.

即ち最小高温燃焼排ガス量とボイラ排ガス量との混合ガ
ス量のもつ保有熱量は粉粒体燃料の乾燥にとって多量す
ぎることになって、熱エネルギーの浪費につながる。こ
うした状態変化は温度検出端38における温度上昇によ
って検知され、減少すべき温度割合が温度指示調節計3
9から制御装置37に伝えられた後、制御装置37から
降温装置16に対してバイパス排ガス量増加指令が伝達
される。具体的には調節弁25aの開度を小さくして放
出ラインL8内における温度の下がった排ガスをライン
L、へより多くバイパスさせてラインL4内のボイラ排
ガスの熱量を減少させる。
That is, the amount of heat held by the mixed gas amount of the minimum high-temperature combustion exhaust gas amount and the boiler exhaust gas amount is too large for drying the granular fuel, leading to waste of thermal energy. Such a change in state is detected by a temperature rise at the temperature sensing terminal 38, and the temperature rate to be decreased is determined by the temperature indicating controller 3.
9 to the control device 37 , the bypass exhaust gas amount increase command is transmitted from the control device 37 to the temperature lowering device 16 . Specifically, the opening degree of the control valve 25a is reduced to allow more of the exhaust gas whose temperature has decreased in the discharge line L8 to bypass the line L, thereby reducing the amount of heat of the boiler exhaust gas in the line L4.

この場合においてもバイパスされる排ガスはイナート性
ガスであるからボイラ排ガスと混合しても、これらの混
合排ガス全体のイナート性が損なわhることはない。
Even in this case, since the bypassed exhaust gas is an inert gas, even if it is mixed with the boiler exhaust gas, the inertness of the entire mixed exhaust gas will not be impaired.

上記の如く本発明では原料の乾燥・輸送に当り、ボイラ
排ガスの保有熱量とイナート性を十分に利用するもので
あるから、昇温炉6での燃料量’Fc 量が大巾に削減
され、ランニングコストの低減を図ることができ、更に
乾燥・輸送系内での炭塵爆発を未然に防止でき、従来の
様な複雑で高価力防爆機器の設置は不要となる。
As described above, in the present invention, when drying and transporting raw materials, the retained heat capacity and inertness of the boiler exhaust gas are fully utilized, so the amount of fuel 'Fc in the heating furnace 6 is greatly reduced. Running costs can be reduced, coal dust explosions can be prevented in the drying and transportation system, and there is no need to install complicated and expensive explosion-proof equipment as in the past.

尚上述した様に原料の良好な乾燥を行なう為には、ライ
ンL4から乾燥処理装置2へ送給される高温気体の温度
を、原料温度と乾燥処理装H2への原料供給量によって
変化させる必要があることを説明したが、実施例では第
1表の如き結果が得られた。第1表において横棚は原料
温度Mc(修)を、網棚は原料供給量p (dry−k
g/hr )を夫々表わし、又McとFとの交差欄は乾
燥処理装置2の高温気体入口側温度(℃)を表わす。尚
乾燥は乾燥処理装置2出口におけるガス温度が80℃、
粉粒体燃料中の水分が1チになるような糸外で行なった
As mentioned above, in order to properly dry the raw material, it is necessary to change the temperature of the high-temperature gas fed from the line L4 to the drying equipment 2 depending on the raw material temperature and the amount of raw material supplied to the drying equipment H2. However, in the Examples, results as shown in Table 1 were obtained. In Table 1, the horizontal shelf indicates the raw material temperature Mc (modified), and the net shelf indicates the raw material supply amount p (dry-k
g/hr) respectively, and the intersection column between Mc and F represents the temperature (°C) on the high temperature gas inlet side of the drying processing apparatus 2. For drying, the gas temperature at the outlet of the drying processing device 2 is 80°C.
The test was carried out outside the thread so that the water content in the granular fuel was 1 liter.

第1表 又前述の如き昇温炉6での燃料消費量の低減効果を実験
(乾燥条件は上記実験と同一)で確認した結果の一例を
示せば下記の通りである。即ち湿度10%の石炭を乾燥
処理装置2に13,000(d r y−k g、41
r)の割合で供給し、本発明設備においてボイラ排ガス
を使用した場合(即ち本発明設備の運転による場合)、
全く使用しない場合(即ち従来設備の運転による場合)
の夫々について昇温炉6でのCOGガス燃料消費量を比
較した所、ボイラ排ガスを使用した場合には使用しない
場合に比べて実に約50%以上も節約できることが確認
できたものである。
Table 1 shows an example of the results of experiments to confirm the effect of reducing fuel consumption in the heating furnace 6 as described above (drying conditions were the same as in the above experiments). That is, 13,000 (dry-kg, 41
r) and when boiler exhaust gas is used in the equipment of the present invention (i.e., when the equipment of the present invention is operated),
When not used at all (i.e. when operating conventional equipment)
When comparing the COG gas fuel consumption in the heating furnace 6 for each of the above, it was confirmed that when boiler exhaust gas is used, savings of about 50% or more can be achieved compared to when it is not used.

尚上記実施例では昇温装置17に示す昇温炉6をそのま
ま使用したが、例えば第3図に示す様にボイラ排ガスに
燃焼排ガスを混合せずに他の熱媒体により熱交換器50
を介して加熱することもできる。
In the above embodiment, the temperature raising furnace 6 shown in the temperature raising device 17 was used as is, but for example, as shown in FIG.
It can also be heated through.

更に降温装置16としては実施例の如きバイパス方式に
よることなく、第4図に示す様に熱交換器51でボイラ
排ガスを直接又は間接冷却する方式あるいはファン冷却
方式を採用することも可能である。尚酸素濃度の安全許
容限界内であれば、大気をライン内に直接流入させて混
合冷却することも可能である。
Furthermore, as for the temperature lowering device 16, instead of using the bypass method as in the embodiment, it is also possible to adopt a method in which the boiler exhaust gas is directly or indirectly cooled by a heat exchanger 51 or a fan cooling method as shown in FIG. If the oxygen concentration is within the safe limits, it is also possible to directly introduce atmospheric air into the line for mixed cooling.

又実施例では温度安定化装置15としてバイパス方式の
ものを示しだが、例えば第5図に示す様に熱交換器18
内に冷却媒体又は加熱媒体を直接流し、熱交換器18出
口部におけるラインL4内のボイラ排ガス温度がほぼ一
定となるように温度指示調節計52を介して調節弁53
の開度を調節し、冷却媒体又は加熱媒体の流量を制御す
ることによって行なってもよく、更には第6図に示す様
にボイラ排ガスと混合しても該排ガスのイナート性を損
なわないような加熱媒体又は冷却媒体を直接混合して、
下流側におけるボイラ排ガスの温度がほぼ一定になる様
に調節してもよい。
Further, in the embodiment, a bypass type is shown as the temperature stabilizing device 15, but for example, as shown in FIG.
A cooling medium or a heating medium is directly flowed into the control valve 53 via the temperature indicating controller 52 so that the temperature of the boiler exhaust gas in the line L4 at the outlet of the heat exchanger 18 is approximately constant.
This may be done by adjusting the opening degree of the cooling medium or the heating medium and controlling the flow rate of the cooling medium or heating medium. Furthermore, as shown in FIG. By directly mixing the heating or cooling medium,
The temperature of the boiler exhaust gas on the downstream side may be adjusted to be approximately constant.

又上記の実施例では温度安定化装置と降温装置が夫々独
立して配置されているものを示したが、温度安定化機能
と冷却機能を兼備するような温度安定化装置を使用する
場合には、降温装置は必要ではない。例えば第7図に示
す様にラインL4に温度安定化装置15′として通風量
調節自在のエアフィン型熱交換器54を配置した場合に
は、第2図に示す実施例のようなバイパス方式の温度安
定化装置15及び同方式の降温装置16をラインL4か
ら両方共排除することができるので、プロセスが簡略化
され、設備コストの低減化を図ることも可能である。
Furthermore, in the above embodiment, the temperature stabilizing device and the temperature lowering device are arranged independently, but when using a temperature stabilizing device that has both a temperature stabilizing function and a cooling function, , no cooling device is required. For example, as shown in FIG. 7, when an air fin type heat exchanger 54 with adjustable ventilation rate is disposed as a temperature stabilizing device 15' in the line L4, the temperature of the bypass system as shown in the embodiment shown in FIG. Since both the stabilizing device 15 and the temperature lowering device 16 of the same type can be removed from the line L4, the process is simplified and it is also possible to reduce equipment costs.

本発明に係る原料の乾燥・輸送設備は以上の如く構成さ
れるが、要はボイラ排ガスの保有熱量とイナート性を有
効に利用して原料の乾燥・輸送を行々う様にしたので、
従来における昇温炉での燃料消費量が節約でき、且つ系
内での炭塵爆発を完全に予防することができることにな
り、当該設備の燃料経済性と操業安全性を大きく向上で
きることになった。
The equipment for drying and transporting raw materials according to the present invention is configured as described above, but the point is that the raw material is dried and transported by effectively utilizing the heat capacity and inertness of the boiler exhaust gas.
The fuel consumption of conventional heating furnaces can be reduced, and coal dust explosions within the system can be completely prevented, greatly improving the fuel economy and operational safety of the equipment. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来設備を示す線図的系統図、第2図は本発明
設備を例示する線図的系統図、第3図は本発明に係る昇
温装置の変形例、第4図は本発明に係る降温装置の変形
例、第5図及び第6図は本発明に係る温度安定化装置の
変形例、第7図は本発明設備の他の実施例を示す線図的
系統図、である。 1・・・原料供給装置  2・・・乾繰処理装置3・・
・プロワ     6・・・昇温炉7・・・捕集・分離
機  13・・・ボイラ15.15’・・・温度安定化
装置 16・・・降温装置    17・・・昇温装置18.
50.51・・・熱交換器 36・・・空燃比制御回路
37・・・制御装首 出願人  株式会社神戸製鋼所 第3図 第5図 第4図 第6図
Fig. 1 is a diagrammatic system diagram showing conventional equipment, Fig. 2 is a diagrammatic system diagram illustrating the equipment of the present invention, Fig. 3 is a modification of the heating device according to the invention, and Fig. 4 is the present invention. FIGS. 5 and 6 show a modification of the temperature lowering device according to the invention, and FIG. 7 is a diagrammatic system diagram showing another embodiment of the equipment of the invention. be. 1... Raw material supply device 2... Drying treatment device 3...
・Prower 6...Temperature raising furnace 7...Collection/separator 13...Boiler 15.15'...Temperature stabilizing device 16...Temperature lowering device 17...Temperature increasing device 18.
50.51 Heat exchanger 36 Air-fuel ratio control circuit 37 Control head Applicant: Kobe Steel, Ltd. Figure 3 Figure 5 Figure 4 Figure 6

Claims (1)

【特許請求の範囲】[Claims] (])ボイラ用粉粒体燃料となるべき原料を該原料供給
装置から乾燥処理装置に導入すると共に、該乾燥処理装
置に温度制御された高温気体を誘引することによって前
記粉粒体燃料を乾燥しつつ該乾燥処理装置から排出し、
別途設けた粉粒体燃料捕集・分離処理装置まで輸送する
ようにしてなるボイラ用粉粒体燃料の乾燥・輸送設備に
おいて、前記乾燥処理装置の高温気体入口側における高
温気体ラインをボイラ燃焼排ガス導入ラインで形成する
と共に、該ラインの下流側であって前記乾燥処理装置の
近傍には昇温装置を配置し、更に該昇温装置よりも上流
側の前記ラインには温度安定化装置と降温装置とを任意
の順序で配設するか又は降温装置のみを配置してなるこ
とを特徴とするボイラ用粉粒体燃料の乾燥・輸送設備。
(]) Introducing the raw material to be powdered fuel for a boiler from the raw material supply device to the drying processing device, and drying the powdered fuel by introducing temperature-controlled high-temperature gas into the drying processing device. while discharging from the drying treatment equipment,
In drying and transport equipment for boiler powder and granular fuel that is transported to a separately provided powder and granular fuel collection and separation processing device, the high temperature gas line on the high temperature gas inlet side of the drying processing device is connected to the boiler combustion exhaust gas. At the same time, a temperature raising device is arranged downstream of the line and near the drying processing device, and a temperature stabilizing device and a temperature lowering device are arranged in the line upstream of the temperature raising device. 1. Equipment for drying and transporting granular fuel for boilers, characterized in that the equipment is arranged in any order, or only the temperature lowering equipment is arranged.
JP8970183A 1983-05-20 1983-05-20 Drying and transporting facility for particulate fuel for boiler Pending JPS59215514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8970183A JPS59215514A (en) 1983-05-20 1983-05-20 Drying and transporting facility for particulate fuel for boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8970183A JPS59215514A (en) 1983-05-20 1983-05-20 Drying and transporting facility for particulate fuel for boiler

Publications (1)

Publication Number Publication Date
JPS59215514A true JPS59215514A (en) 1984-12-05

Family

ID=13978074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8970183A Pending JPS59215514A (en) 1983-05-20 1983-05-20 Drying and transporting facility for particulate fuel for boiler

Country Status (1)

Country Link
JP (1) JPS59215514A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH043806A (en) * 1990-04-17 1992-01-08 Babcock Hitachi Kk Pulverized coal supplying device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH043806A (en) * 1990-04-17 1992-01-08 Babcock Hitachi Kk Pulverized coal supplying device

Similar Documents

Publication Publication Date Title
CA2537514C (en) Process for combusting fuels, in particular waste
EP2261558B1 (en) Method and apparatus of controlling exhaust gas in oxyfuel combustion boiler
US9429315B2 (en) Method and apparatus of controlling oxygen supply in oxyfuel combustion boiler
US9186625B2 (en) Method and apparatus for pre-heating recirculated flue gas to a dry scrubber during periods of low temperature
JPS58106319A (en) Method of burning powdered fuel
EP2267366B1 (en) Method and apparatus of controlling combustion in oxyfuel combustion boiler
EP2251598B1 (en) Method and apparatus of controlling flow rate of primary recirculating exhaust gas in oxyfuel combustion boiler
JP6218448B2 (en) Vertical crushing and classifying equipment
BR112018011252B1 (en) METHOD FOR PRODUCING COMMINUTED DRY MATERIAL, MILLING AND DRYING PLANT
US4541572A (en) Pulverizing, drying and transporting system for injecting a pulverized fuel into a blast furnace
JP2010002079A (en) Boiler and control method of boiler
JP2019095174A (en) Boiler system and operating method for boiler system
TWI480493B (en) Operation method of pulverized coal - fired boiler equipment and equipment for pulverized coal - fired boiler
JPS5949422A (en) Combustion device and its operating method
JPS6262123A (en) Method for controlling temperatures of primary air at outlet of coal pulverizer for boiler
US4008042A (en) Coal heating temperature control
JPH0560304A (en) Petroleum/coke burning boiler
JPS59215514A (en) Drying and transporting facility for particulate fuel for boiler
JP2002243110A (en) Pulverized coal boiler
PL97850B1 (en) KEEPING COAL HEATING DEVICES AT A SET TEMPERATURE
CN214664549U (en) A supercritical unit fan mill control system
JP3806250B2 (en) Pulverized coal combustion equipment
CN109268866B (en) Medium speed pulverizer directly blows formula buggy combustion system suitable for high moisture coal type
JPH0675719B2 (en) Sludge heating and drying equipment
CN113154430A (en) Supercritical unit fan mill control system and method