[go: up one dir, main page]

JPS59213735A - Method for plasma treatment - Google Patents

Method for plasma treatment

Info

Publication number
JPS59213735A
JPS59213735A JP8829383A JP8829383A JPS59213735A JP S59213735 A JPS59213735 A JP S59213735A JP 8829383 A JP8829383 A JP 8829383A JP 8829383 A JP8829383 A JP 8829383A JP S59213735 A JPS59213735 A JP S59213735A
Authority
JP
Japan
Prior art keywords
side electrode
etching
high voltage
electrode
voltage side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8829383A
Other languages
Japanese (ja)
Inventor
Takao Akagi
赤木 孝夫
Shinji Yamaguchi
新司 山口
Motoyasu Koyama
小山 元靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP8829383A priority Critical patent/JPS59213735A/en
Publication of JPS59213735A publication Critical patent/JPS59213735A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/14Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は高分子シート状物質を低温プラズマにてエツチ
ングする方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of etching a polymeric sheet material using low temperature plasma.

高分子ソート状物質の表面をエツチングすることにより
粗面を形成し、接着性の改良、染色物の濃色化、風合の
改質、光沢の改良あるいはブロッキングの防止等を行な
う研究は従来より行なわれてきたが、高分子シート状物
質を低温プラズマ処理によりエツチングし粗面化を形成
させる研究例は少なく、゛ましてや非対称の内部電極間
に発生する低温プラズマにて連続的にエツチング処理す
る方法に関する研究例は皆無であると言っても過言では
ない。低温プラズマを利用して物質をエツチングする手
法は、半導体等電子材料部品の分野で近年盛んに行なわ
れているが、これらの場合は主としてCF4等のガスを
使用し、Sl(シリコン)と反応させてガス化し、エツ
チングを行なうものである。これらの場合の処理方法は
被処理物を電極上で回転させる場合も1部あるが、大部
分は電極上に固定するもので、連続的に電極上を移動す
るものはない。また電極形状は円板平行平板が主で、対
称電極である。なぜなら被処理物が電極上に固定されて
いるため、非対称電極では電界に分布が生じ、均質なプ
ラズマが生じないためエツチングのレベルに差を生じる
ためである。すなわち非対称電極によって均質なエツチ
ング処理が可能となるのは被処理物が電極間を連続的に
移動できる場合に限定される。
Previous research has focused on forming a rough surface by etching the surface of polymer sort materials to improve adhesion, darken the color of dyed products, improve texture, improve gloss, or prevent blocking. However, there are few research examples of etching a polymer sheet-like material by low-temperature plasma treatment to form a rough surface, and even more so, there is no method of continuous etching treatment using low-temperature plasma generated between asymmetric internal electrodes. It is no exaggeration to say that there are no research examples regarding this. The method of etching materials using low-temperature plasma has been widely used in the field of electronic material parts such as semiconductors in recent years, but in these cases, gases such as CF4 are mainly used to react with Sl (silicon). It is used to gasify and perform etching. In some of the processing methods in these cases, the object to be processed is rotated on the electrode, but in most cases the object is fixed on the electrode, and there is no method in which the object is continuously moved on the electrode. The electrode shape is mainly a circular parallel plate, and is a symmetrical electrode. This is because, since the object to be processed is fixed on the electrode, an asymmetrical electrode causes a distribution in the electric field and does not produce homogeneous plasma, resulting in differences in the etching level. That is, homogeneous etching with asymmetric electrodes is possible only when the object to be processed can be continuously moved between the electrodes.

本発明者らは高分子ソート状物質を非対称の内部電極方
式で発生する低温プラズマによりエツチングする方法に
ついて長年鋭意検討した。
The inventors of the present invention have conducted extensive research for many years on a method for etching polymer sorted materials using low-temperature plasma generated by an asymmetric internal electrode system.

本発明は、 1、高分子7−ト状物を高電圧側電極の1本の放電表面
積が接地側電極全表面積に比べ11500〜1/10の
比となる非対称電極で、かつ高電圧側電極の全表面積が
接地側電極の全表面積の01倍以上2.5倍以下である
内部電極間に発生する低温プラズマにて処理することを
特徴とするプラズマ処理方法。
The present invention provides: 1. An asymmetrical electrode in which the discharge surface area of one of the high voltage side electrodes is 11500 to 1/10 of the total surface area of the ground side electrode, and the high voltage side electrode A plasma processing method characterized in that the treatment is performed using low-temperature plasma generated between internal electrodes whose total surface area is 01 times or more and 2.5 times or less the total surface area of the ground side electrode.

2、低温プラズマ放電時のガスが酸素あるいは酸素を含
む混合ガスであって、真空度Pが0.05〜1. OT
orr 、高電圧側電極と接地側電極との電極間距離d
が1crn以上ioz以下であり、0.05< P−d
 < 5 (Torr xan)であることを特徴とす
る特許請求の範囲第1項記載のプラズマ処理方法。
2. The gas during low-temperature plasma discharge is oxygen or a mixed gas containing oxygen, and the degree of vacuum P is 0.05 to 1. O.T.
orr, inter-electrode distance d between the high voltage side electrode and the ground side electrode
is 1 crn or more and ioz or less, and 0.05 < P-d
5. The plasma processing method according to claim 1, wherein < 5 (Torr xan).

に関するものである0 本発明で15高分子シート状物とは、合成高分子、天然
高分子等からなる樹脂、成型品、フィルム、布等のシー
ト状物を言うが、必ずしも一種類の高分子からなってい
る必要はなく、複合、ノクイメタル、はりあわせ、ブレ
ンド、共重合、交撚、交編、交織、混繊等であってもよ
く、さらには内部に適尚な可塑剤、練込物、艶消し剤等
を含むものでもよい。またシート状物表面に他の高分子
物質、崩機物、無機物、あるいはこれらの混合されたも
のが付着していてもかまわない。
In the present invention, 15 polymer sheet-like materials refer to sheet-like materials such as resins, molded products, films, cloth, etc. made of synthetic polymers, natural polymers, etc., but they do not necessarily include one type of polymer sheet. It does not necessarily have to be made of composite, nokuimetal, glued, blended, copolymerized, twisted, mixed knitted, mixed woven, mixed fiber, etc., and may also contain a suitable plasticizer or kneaded material inside. , a matting agent, etc. may be included. Further, other polymeric substances, decomposed substances, inorganic substances, or a mixture thereof may be attached to the surface of the sheet-like article.

プラズマは高温プラズマと低温プラズマの2つに分類さ
れるが、本発明で言うプラズマは低温プラズマをさす。
Plasma is classified into two types: high-temperature plasma and low-temperature plasma, and the term "plasma" used in the present invention refers to low-temperature plasma.

低温プラズマは放電中で生成されるプラズマが平均電子
エネルギー10 eV(104〜106K)、電子密度
109〜1012crII−3で特徴づけられると同時
に、電子温度とガス温度との間に平衡が成立しない由に
、非平衡プラズマとも言われるO放電では生成されるプ
ラズマ甲には電子、イオン、原子、分子等が混在してい
る。
Low-temperature plasma is characterized by the plasma generated during discharge having an average electron energy of 10 eV (104-106 K) and an electron density of 109-1012 crII-3, and at the same time, there is a reason why no equilibrium is established between the electron temperature and the gas temperature. In addition, in an O discharge, which is also called a non-equilibrium plasma, the plasma layer A generated is a mixture of electrons, ions, atoms, molecules, etc.

低温プラズマは、真空度0,01〜10 Torrの系
の中にガスとしてアルゴン、チッ素、水素、酸素、空気
、−酸化炭素、二酸化炭素等を連続的に系内に導入し、
電極間に電圧をかけることにより生ずる。電圧をかける
電源としては任意の周波数のものが使用できる。放電の
持続性及び均一性から言うとI KHz −、: l 
Q Gt(zが望ましい。また電極の巾方向のプラズマ
均一性から言うと、IKHz〜I MHzが好ましく、
1MHz以、ヒになると電極の長さが1mをこえると長
さ方向に処理斑が生じやすい。また1 00 Hz以下
はエッヂ効果が生じやすく、エッヂ部分でアーク放電が
生じやすい。また電流としては交流、直流、バイアスを
かけた交流、パルス波等が使用できるが、エツチングの
効率から言うと、直流はあまり望ましくない。電極は真
空系内に配置された内部電極方式と真空系外に配置され
た外部電極方式とにわかれるが、外部電極方式は、被処
理表面にプラズマが移動している間に活性を失なったり
、濃度が希釈されてエツチング効果が少ないため、エツ
チングには不向きであり、本発明者等は内部電極方式に
よる処理方法を検討した0先に述べたように連続的に被
処理物が移動する場合は、電極形状は必ずしも対称であ
る必要はない。処理中が大きく、従って大きな電極が必
要となる大型のプラズマ処理装置の場合はかえって対称
電極の方がデメリットが多い。例えば、大きな電極間に
ガスを均一に流すことはほとんど不可能に近く、さらに
大きな電極の端部が電界が乱れたりして、エツチングの
斑が生じやすい。そのため大型のプラズマ処理装置の場
合は、非対称電極、特に高電圧側電極の1本の放電表面
積が接地側電極全表面積に比較して小さいタイプが好ま
しいことがわかった。
Low-temperature plasma involves continuously introducing gases such as argon, nitrogen, hydrogen, oxygen, air, carbon oxide, carbon dioxide, etc. into a system with a vacuum degree of 0.01 to 10 Torr.
Produced by applying voltage between electrodes. Any frequency power source can be used to apply the voltage. In terms of continuity and uniformity of discharge, I KHz -: l
Q Gt (z is desirable. Also, from the viewpoint of plasma uniformity in the width direction of the electrode, IKHz to I MHz is preferable,
When the frequency is higher than 1 MHz, if the length of the electrode exceeds 1 m, processing spots are likely to occur in the length direction. Furthermore, at frequencies below 100 Hz, edge effects tend to occur, and arc discharge tends to occur at edge portions. Further, as the current, alternating current, direct current, biased alternating current, pulse waves, etc. can be used, but direct current is not very desirable in terms of etching efficiency. There are two types of electrodes: internal electrodes placed inside the vacuum system and external electrodes placed outside the vacuum system. Since the concentration is diluted and the etching effect is small, it is not suitable for etching, and the present inventors have investigated a processing method using an internal electrode method. In this case, the electrode shape does not necessarily have to be symmetrical. In the case of a large plasma processing apparatus where the processing area is large and therefore a large electrode is required, symmetrical electrodes have more disadvantages. For example, it is almost impossible to flow gas uniformly between large electrodes, and the electric field is likely to be disturbed at the ends of large electrodes, resulting in uneven etching. Therefore, in the case of a large-scale plasma processing apparatus, it has been found that an asymmetrical electrode, particularly a type in which the discharge surface area of one high voltage side electrode is smaller than the total surface area of the ground side electrode, is preferable.

第1図および第2図に示すように高電圧側電極の1本の
放電表面積とは、両端面の表面積を除いた残りの部分を
さし、第1.2図ともπr!で表わされる。次に接地側
電極全表面積とは、上記と同じく端面の表面積を除いた
残りの部分をさし、第1図ではπRL、第2図では8x
RLをさす。また高電圧11!l電極の全表面積とは、
高電圧側電極の1本の放電表面積に高電圧側電極本数を
乗じた値であり、第1図の場合は12Xπrl、第2図
の場合も12 x yrrlとなる。
As shown in FIGS. 1 and 2, the discharge surface area of one high voltage side electrode refers to the remaining area excluding the surface area of both end faces, and in both FIGS. 1 and 2, πr! It is expressed as Next, the total surface area of the ground side electrode refers to the remaining area excluding the surface area of the end surface as above, and is πRL in Figure 1 and 8x in Figure 2.
Point to RL. High voltage 11 again! l What is the total surface area of the electrode?
It is a value obtained by multiplying the discharge surface area of one high voltage side electrode by the number of high voltage side electrodes, and is 12Xπrl in the case of FIG. 1 and 12 x yrrl in the case of FIG. 2.

本発明者等の検討結果によると、高電圧側電極の1本の
放電表面積は接地側電極全表面積に比べ11500−1
/10がエツチングの効率がよく、均一なプラズマが形
成される。好ましくは1./20〜1/1(10である
。この比率が11500以下となると非常に細い(薄い
)電極となり、発熱が犬きく、しかも冷却しにくい[K
となり、温度コントロールが困難で、温度変化によるエ
ツチングの斑が処理長さ方向に生じやすい。IAO以上
の場合は高電圧側電極の被処理物に面していない部分が
大きくなるため、放電効率が悪くなると同時に、ガスの
流れが不均一となりやすい。
According to the study results of the present inventors, the discharge surface area of one high voltage side electrode is 11500-1% compared to the total surface area of the ground side electrode.
/10 has good etching efficiency and uniform plasma is formed. Preferably 1. /20 to 1/1 (10. If this ratio is less than 11,500, the electrode becomes very thin (thin), generates a lot of heat, and is difficult to cool [K
Therefore, temperature control is difficult, and etching spots are likely to occur in the length direction due to temperature changes. If the voltage is higher than IAO, the portion of the high-voltage side electrode that does not face the object to be treated becomes large, resulting in poor discharge efficiency and a tendency for gas flow to become uneven.

しかし上記を満足する高電圧側電極1本のみでは接地側
電極に及ぼす電界が不均一で弱く、そのためエツチング
の効果が十分に発揮できない。そこで接地側電極から一
定の距離をへだてて数本から数百本の高電圧電極を配置
すると、電界の分布が均一になると同時にプラズマも均
一となり被処理物表面にプラズマが有効に広がりエツチ
ング効率が著しく向上する。
However, if only one high-voltage side electrode satisfies the above conditions, the electric field exerted on the ground side electrode is uneven and weak, and therefore the etching effect cannot be sufficiently exerted. Therefore, by arranging several to several hundred high voltage electrodes at a certain distance from the grounded electrode, the distribution of the electric field becomes uniform, and at the same time, the plasma becomes uniform, effectively spreading the plasma over the surface of the workpiece and increasing the etching efficiency. Significantly improved.

高電圧側電極全表面積は接地側電極全表面積の0.1〜
2.5倍が好ましい。0,1以下の場合接地側電極上の
電界が不均一で弱く、プラズマも不均一分布となりエツ
チング効率が悪い。2.5倍以上になるとガスの流れを
不均一にするためエツチング斑を生じさせやすくなる。
The total surface area of the high voltage side electrode is 0.1 to 0.1 of the total surface area of the ground side electrode.
2.5 times is preferable. If it is less than 0.1, the electric field on the ground side electrode is non-uniform and weak, and the plasma is also non-uniformly distributed, resulting in poor etching efficiency. When it is 2.5 times or more, the gas flow becomes non-uniform, which tends to cause etching spots.

好ましくは0.5〜1.0倍である。Preferably it is 0.5 to 1.0 times.

高電圧側電極の形状としては円柱状のもの、あるいは鋭
角な断面を有する断面多角形の棒状のもの等を選定でき
るが、円柱状のものが好ましい。
The shape of the high voltage side electrode may be a cylinder or a rod with a polygonal cross section having an acute angle, but a cylinder is preferred.

まだ接地側電極の形状としては、ドラム状のもの、ある
いは板状のものあるいはそれら変形形状のもの等を用い
ることができる。要は両電極は前記のような条件を満足
する限りにおいて、共にその形状もその組合わせも限定
されるものではない。
As for the shape of the ground side electrode, it is possible to use a drum shape, a plate shape, or a modified shape thereof. In short, the shapes and combinations of both electrodes are not limited as long as they satisfy the above conditions.

次に真空糸に導入するガスは、真空ポンプによる排気口
より、なるべく遠くに供給口をつけて導入すべきである
。これは真空系内でのガスのンヨートバスをさける意味
で重要であると同時に、被処理物のエツチング斑を生じ
させないためにも重要である。ガス種類としてエツチン
グ効率が良好であったのは酸素及び酸素を含む混合ガス
であった。このことから高分子の低温プラズマによるエ
ツチングの粗面化機構は酸化分解をよむ反応と推定され
る。
Next, the gas to be introduced into the vacuum thread should be introduced with a supply port as far away as possible from the exhaust port of the vacuum pump. This is important in order to avoid a gas bath in the vacuum system, and is also important in order to prevent etching spots on the object to be processed. The types of gases that had good etching efficiency were oxygen and a mixed gas containing oxygen. From this, it is presumed that the surface roughening mechanism of polymer etching by low-temperature plasma is a reaction involving oxidative decomposition.

低温プラズマを生じさせる真空度としては、通常0,0
1〜I Q ’f’orrが用いられるが、本発明者等
の検討結果によると0.05〜1. □ Torrが望
ましい。
The degree of vacuum that generates low-temperature plasma is usually 0.0.
1 to IQ'f'orr is used, but according to the study results of the present inventors, it is 0.05 to 1. □ Torr is preferable.

真空度がQ、Q 5 Torr以下になるとイオン、電
子の平均自由工程は大きくなり加速粒子のエネルギーは
増大するが、被処理物へ到達する加速粒子個数の総数が
少なく、エツチング効ぷはよくない。し−かも大型の処
理室をガスを導入しながら0.05Torr以下に保つ
には非常に排気量の大きい真空ポンプが必要となり、設
備コストから考えても望ましいものでない。真空度がl
 Torr以上になると、イオン、電子等の平均自由工
程は小さくなり、加速粒子のエネルギーは小さくなり、
加速粒子個数の総数は多いにもかかわらずエツチング効
率は悪くなる。
When the degree of vacuum is below Q, Q 5 Torr, the mean free path of ions and electrons increases and the energy of accelerated particles increases, but the total number of accelerated particles that reach the object to be processed is small and the etching effect is not good. . Furthermore, in order to maintain the temperature of a large processing chamber at 0.05 Torr or less while introducing gas, a vacuum pump with a very large displacement is required, which is not desirable in terms of equipment cost. The degree of vacuum is l
When the temperature exceeds Torr, the mean free path of ions, electrons, etc. becomes smaller, and the energy of accelerated particles becomes smaller.
Although the total number of accelerated particles is large, the etching efficiency deteriorates.

このように考えていくと、加速粒子の平均自由工程、言
いかえると荷電粒子が電界によって加速さ;hる距離及
び加速粒子の個数を決定する真空度Pと加速粒子がその
エネルギーあるいは活性を失なうことなく被処理的に到
達できる確率を決定する高電圧側電極と接地側電極の電
極間距離dとの間には何らかの最適な関係が存在するこ
とが考えられる。この点について検討した結果、1≦d
≦10(ci)で、かつ0.05 < P4 < 5 
(Torrxcm)を満足する真空度と電極間距離にお
いて、もつともエツチングの効系が良いことが判明した
。つまり圧力の隔い場合はdを小さく、圧力が低くなる
とdを大きくとるとエツチングの効率は良好であつた。
Thinking in this way, the mean free path of an accelerated particle, in other words, the degree of vacuum P that determines the distance over which a charged particle is accelerated by an electric field and the number of accelerated particles, and the degree of vacuum P that determines the number of accelerated particles, and the accelerated particle loses its energy or activity. It is conceivable that some optimal relationship exists between the inter-electrode distance d between the high voltage side electrode and the ground side electrode, which determines the probability that the process can be reached without any damage. As a result of considering this point, 1≦d
≦10 (ci) and 0.05 < P4 < 5
It has been found that the etching efficiency is particularly good when the degree of vacuum and the distance between the electrodes satisfies (Torrxcm). In other words, the etching efficiency was good when d was set small when the pressure was high, and when d was set large when the pressure was low.

さらに電極間に配置する布の相対的な位置については篩
篭圧側電極に接して配置させるか、接地側電極に接しで
配置させるかの場合がもつともエツチング効率が良い。
Furthermore, regarding the relative position of the cloth placed between the electrodes, the etching efficiency can be improved regardless of whether the cloth is placed in contact with the sieve pressure side electrode or in contact with the ground side electrode.

当然これらの場合はエツチングを受けるのはシート状物
の電極に接していない部分に限定される。
Naturally, in these cases, etching is limited to the portions of the sheet that are not in contact with the electrodes.

高電圧側電極と接地側電極の中間的位置にシート状物を
配置させる場合は、エツチング面はシート状物の画面と
なるが、エツチング効率は良くない。この現象を放電特
性から考えてみると、両電極間の電圧降下特性で説明て
きる。両電極間の電圧降下特性は、接地側電極付近がも
つとも大きく、次いで高電圧側であり、両電極の中間付
近の電圧降下は少ないと言われており、この電圧降fが
すなわち電界の強さに比例しており、電圧降下の大きい
部分の方が荷電粒子により大きなエネルギーを与えるこ
とかできるからであろう。
When a sheet-like material is disposed at an intermediate position between the high-voltage side electrode and the ground-side electrode, the etching surface becomes a screen of the sheet-like material, but the etching efficiency is not good. Considering this phenomenon from the discharge characteristics, it can be explained by the voltage drop characteristics between the two electrodes. It is said that the voltage drop characteristics between the two electrodes are the largest near the ground side electrode, followed by the high voltage side, and the voltage drop near the middle of the two electrodes is small, and this voltage drop f is the strength of the electric field. This is probably because the part with the larger voltage drop can give more energy to the charged particles.

次に布は高電圧側電極に接するように配置すべきか、接
地側電極に接するように配置すべきかの点であるが、先
に述べた電圧降下特性及び電極の発熱特性から考えると
接地側電極に接する方力5望ましい0 発熱に関して言うと高電圧側電極の方が発熱が大きく、
このためにシート状物の硬化防止、あるいは風合変化の
点から接地側電極に接してシート状物を配置する方が望
ましい。もちろん電極を冷却することは可能であるが、
装置的に考えるとやや複雑となる。また高電圧側電極に
接してシート状物を連続的に移動させる装置は、接地側
電極に接してシート状物を移動させる装置より複雑にな
ることは言うまでもない。なぜなら缶体は接地した方が
安定性より好寸しく、高電圧側は缶体より絶縁されなけ
ればならないためそれを駆動させることは装置的に複雑
になる。
Next, the question is whether the cloth should be placed in contact with the high voltage side electrode or the ground side electrode. Directional force in contact with 5 Desired 0 Regarding heat generation, the high voltage side electrode generates more heat;
For this reason, it is desirable to arrange the sheet-like material in contact with the ground-side electrode in order to prevent the sheet-like material from hardening or to change its texture. Of course, it is possible to cool the electrode, but
If you think about it from a device standpoint, it's a little complicated. Further, it goes without saying that a device that continuously moves a sheet-like object in contact with a high-voltage side electrode is more complicated than a device that moves a sheet-like object in contact with a ground-side electrode. This is because it is better to ground the can body for stability, and since the high voltage side must be insulated from the can body, driving it becomes complicated in terms of equipment.

次にエツチングの均一性の面から言うと、高電圧側電極
は接地側電極と平行に保持される必要があり、シかも被
処理高分子シート状物質の進行方向に直角に配置されな
ければならない0この条件が満足されないと、シート状
物の中方向に工、ツチングの斑を生じさせることになる
。さらに高電圧側電極は被処理高分子シート状物の巾よ
り少なくとも5tyn以上長くしておく必要がある。こ
れは高電圧側電極の端部の電界不均一性を除くためであ
る。この長さが5CrIT以下になるとシート状物の巾
方向、特に両サイドが中央付近と比較してエツチング程
度が異なり好ましくない。
Next, in terms of etching uniformity, the high voltage side electrode must be held parallel to the ground side electrode, and must also be placed at right angles to the direction of movement of the polymer sheet material to be processed. 0 If this condition is not satisfied, unevenness due to cutting and pinching will occur in the middle direction of the sheet-like material. Furthermore, the high voltage side electrode must be at least 5 tyn longer than the width of the polymer sheet to be treated. This is to eliminate electric field non-uniformity at the end of the high voltage side electrode. If this length is less than 5 CrIT, the degree of etching in the width direction of the sheet-like material, particularly on both sides, will be different from that near the center, which is undesirable.

本発明で言うシート状物が接地側電極に接して移動する
ということは、この装置が連続的に大気にある高分子ソ
ート状物を真空系内に移動し処理できるもの及び高分子
シート状物が予備真空系内に配置され処理室に移動でき
るもの、さらには処理室内に高分子シート状物が間仕切
りして配置されてるもの等を言うが、要するに接地側電
極上をシート状物が連続的に移動できるものであればよ
い。
In the present invention, the sheet-shaped material moves in contact with the grounded electrode, which means that this device can continuously move and process polymer sorted materials in the atmosphere into a vacuum system, and polymer sheet-like materials These include those that are placed in the preliminary vacuum system and can be moved to the processing chamber, and those that have a polymer sheet-like material placed as a partition in the processing chamber. Anything that can be moved is fine.

これらのエツチング処理によって得られる高分子シート
状物の表面形態は、高分子の種類、内部微細構造、配向
度、配向方向、エツチング時間等により異なる。例えば
、ポリエステルについて述べると、二軸延伸フィルムの
場合は走査型電子顕微鏡観察によるとハチの巣状のいわ
ゆるハニカム構造となり、−@延伸フィルムあるいは繊
維のように一軸方向に強く配向しているものは、その配
向方向に直角のラネ状凹凸となる。
The surface morphology of the polymer sheet obtained by these etching treatments varies depending on the type of polymer, internal fine structure, degree of orientation, direction of orientation, etching time, etc. For example, in the case of polyester, when observed with a scanning electron microscope, a biaxially stretched film has a so-called honeycomb structure. , resulting in ridge-like irregularities perpendicular to the orientation direction.

これらのエツチング処理を受けたフィルムは接着性が良
好で特に接着強度が著しく向上する。さらに繊維の場合
はきしみ感のある風合が得られ、特に染色物をエツチン
グすると著しい濃色化効果が得られ、さらに光沢の改質
にもなる。またシート状物の摩擦特性や透明性(すけ性
)等も改良できる。
Films subjected to these etching treatments have good adhesive properties, and in particular, adhesive strength is significantly improved. Furthermore, in the case of fibers, a squeaky feel can be obtained, and especially when etching dyed materials, a remarkable color deepening effect can be obtained, and furthermore, the gloss can be improved. It is also possible to improve the frictional properties, transparency, etc. of the sheet-like material.

また、高電圧側電極を接地側電極でおおうような電極配
置にすると、高電圧側電極と缶体(接地)との放電がな
くなり非常に有効に高電圧側電極と接地側電極で放電が
生じエツチングの効率は約2倍相度向上することがわか
った。このタイプの装置例として第2図のようなものが
考えられる。
In addition, if the electrodes are arranged so that the high voltage side electrode is covered with the ground side electrode, there will be no discharge between the high voltage side electrode and the can body (grounded), and a discharge will occur between the high voltage side electrode and the ground side electrode very effectively. It was found that the etching efficiency was improved approximately twice. An example of this type of device is shown in FIG.

以下実施例にしたがって説明する。This will be explained below based on an example.

実施例及び比較例 ポリエチレンテレフタレートの二軸延伸フィルムを表1
の各柚乗件下でプラズマ処理し、走査型電子顕微鏡及び
超薄切片の透過型電子顕微鏡にて表1nj状悪を観察し
た。電源周波数は150 Kfiz 、出力10KW’
、 5o=7200 mA、放電時間3分間、布速度0
.33m/分 S+:4電圧側電極1本の表面積(===’l)S:高
電圧fl11電極の全表面積(crA)SO:接地側電
極の全光面積(CIA)P:真空度(Torr ) d:高電圧側電極と接地側電極との距離(画)a:高電
圧側電極の長さく巾)−高分子シート状物の1〕(cr
n) 以下余白 実施例1.2及び比較例1.2より高電圧側電極の1本
の表面積Slは接地側電接の全表面積SOに比べ”15
00〜”/ioがエツチング効率が良いことがわかる。
Examples and Comparative Examples Biaxially stretched films of polyethylene terephthalate are shown in Table 1.
Plasma treatment was performed under each of the following conditions, and defects in Table 1nj were observed using a scanning electron microscope and an ultrathin section transmission electron microscope. Power frequency is 150 Kfiz, output 10KW'
, 5o=7200 mA, discharge time 3 minutes, cloth speed 0
.. 33 m/min S+: Surface area of one 4 voltage side electrode (==='l) S: Total surface area of high voltage fl11 electrode (crA) SO: Total optical area of ground side electrode (CIA) P: Degree of vacuum (Torr ) d: Distance (picture) between high voltage side electrode and ground side electrode a: Length and width of high voltage side electrode) - Polymer sheet-like material 1] (cr
n) From Example 1.2 and Comparative Example 1.2, the surface area Sl of one high voltage side electrode is 15% compared to the total surface area SO of the ground side electrode.
It can be seen that the etching efficiency is good for values from 00 to "/io".

実施例3,4.5及び比較例3.4により高電圧側電極
の全表面litが接地側電極の全表面積の0.1〜2.
5倍の場合がエツチング効率が良いことがわかる。
According to Examples 3 and 4.5 and Comparative Example 3.4, the total surface area of the high voltage side electrode is 0.1 to 2.0% of the total surface area of the ground side electrode.
It can be seen that the etching efficiency is good when the ratio is 5 times.

実施例4.6と比較例5.6,7よりガスとしては酸素
又は酸素を含むものが望ましいことがわかる。
It can be seen from Example 4.6 and Comparative Examples 5.6 and 7 that oxygen or a gas containing oxygen is desirable.

実施例7.8.9.10と比較例8.9よりエツチング
効率上望ましい東件としては真空度■゛が0、05〜1
. OTorr、電極間距離dが1〜10crn1かつ
P−dの値が0.05〜5 Torr、crnテあるこ
とがわかるO 実施例11と比較例10より高電圧側電極の長さく巾)
は被処理高分子シート巾より少なくとも5m以上長くな
いと端部効果によりンート両端がエツチング斑となるこ
とがわかる。
From Example 7.8.9.10 and Comparative Example 8.9, the preferred condition for etching efficiency is a vacuum degree of 0.05 to 1.
.. It can be seen that the distance d between the electrodes is 1 to 10 crn1 and the value of P-d is 0.05 to 5 Torr, crnte (from Example 11 and Comparative Example 10, the length and width of the high voltage side electrode)
It can be seen that unless the width is at least 5 m or more longer than the width of the polymer sheet to be treated, etching spots will occur at both ends of the cartridge due to the edge effect.

実施例12に高電圧側電極を接地側電極でおおったタイ
プの装置(第2図)にてエツチング処理した場合を示す
が、実施例4(第1図の装置で実施した場合)に比較し
て約2倍のエツチング動部が得られていることがわかる
。またこれらの実施例及び比較例で得られたフィルムの
表面状態は走査型電子顕微鏡によりノ・ニカム構造とな
っていた0
Example 12 shows the case where the etching process was performed using an apparatus (Fig. 2) in which the high-voltage side electrode was covered with the ground side electrode, but compared to Example 4 (when the etching was carried out using the apparatus shown in Fig. 1). It can be seen that approximately twice as many etched moving parts were obtained. Furthermore, the surface condition of the films obtained in these Examples and Comparative Examples was determined by scanning electron microscopy to be a non-nicum structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)および第2図(a)は本発明方法を実施す
る装置例の概略図であり、第1図(b)および第2図(
b)は、各々第1図(a)あるいは第2図(a)の側面
からみた高電圧側電極と接地側電極とを説明するための
概略図である。また第3図は電極間の電圧降下特性を説
明した図である。 1・・・・・高分子シート状物  3・・・・・高電圧
側電極2・・・・・接地側電極    4・・・・・電
 源特許出願人株式会社り ラ し 代理人弁理士本多 堅
1(a) and 2(a) are schematic diagrams of an example of an apparatus for carrying out the method of the present invention, and FIG. 1(b) and FIG.
b) is a schematic diagram for explaining the high voltage side electrode and the ground side electrode as seen from the side of FIG. 1(a) or FIG. 2(a), respectively. Further, FIG. 3 is a diagram illustrating voltage drop characteristics between electrodes. 1...Polymer sheet-like material 3...High voltage side electrode 2...Grounding side electrode 4...Power supply patent applicant Rira Co., Ltd. Representative patent attorney Ken Honda

Claims (1)

【特許請求の範囲】 1、 高分子シート状物を高電圧側電極の1本の放電表
面積が接地側電極全表面積に比べ11500〜1/10
の比となる非対称電極で、かつ高電圧側電極の全表面積
が接地側電極の全表面積の01倍以上2.5倍以下であ
る内部電極間に発生する低温プラズマにて処理すること
を特徴とするプラズマ処理方法。 2、低温プラズマ放電時のガスが酸素あるいは酸素を含
む混合ガスであって、真空度Pが0.05〜1.□ T
orr、高電圧側電極と接地側電極との電極間距離dが
1m−以1:1 (lcnn以下であり、0.05< 
p−a(5(Torrxcm)であることを特徴とする
特許請求の範囲第1項記載のプラズマ処理方法。
[Claims] 1. The discharge surface area of one high voltage side electrode of the polymer sheet-like material is 11500 to 1/10 of the total surface area of the ground side electrode.
The treatment is performed with low-temperature plasma generated between the internal electrodes, which are asymmetric electrodes having a ratio of plasma treatment method. 2. The gas during low-temperature plasma discharge is oxygen or a mixed gas containing oxygen, and the degree of vacuum P is 0.05 to 1. □T
orr, the distance d between the high voltage side electrode and the ground side electrode is 1 m or more 1:1 (lcnn or less, 0.05 <
The plasma processing method according to claim 1, characterized in that p-a (5 (Torrxcm)).
JP8829383A 1983-05-18 1983-05-18 Method for plasma treatment Pending JPS59213735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8829383A JPS59213735A (en) 1983-05-18 1983-05-18 Method for plasma treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8829383A JPS59213735A (en) 1983-05-18 1983-05-18 Method for plasma treatment

Publications (1)

Publication Number Publication Date
JPS59213735A true JPS59213735A (en) 1984-12-03

Family

ID=13938861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8829383A Pending JPS59213735A (en) 1983-05-18 1983-05-18 Method for plasma treatment

Country Status (1)

Country Link
JP (1) JPS59213735A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169418A (en) * 1986-01-22 1987-07-25 Toshiba Corp Dry etching unit
US5224441A (en) * 1991-09-27 1993-07-06 The Boc Group, Inc. Apparatus for rapid plasma treatments and method
US5300189A (en) * 1986-05-21 1994-04-05 Hitachi, Ltd. Plasma surface treatment method and apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169418A (en) * 1986-01-22 1987-07-25 Toshiba Corp Dry etching unit
US5300189A (en) * 1986-05-21 1994-04-05 Hitachi, Ltd. Plasma surface treatment method and apparatus
US5224441A (en) * 1991-09-27 1993-07-06 The Boc Group, Inc. Apparatus for rapid plasma treatments and method

Similar Documents

Publication Publication Date Title
Černák et al. Generation of a high-density highly non-equilibrium air plasma for high-speed large-area flat surface processing
US9255330B2 (en) Method and device for atmospheric pressure plasma treatment
Morent et al. Study of the ageing behaviour of polymer films treated with a dielectric barrier discharge in air, helium and argon at medium pressure
DE3786840T2 (en) Device and method for surface treatment with plasma.
US6528947B1 (en) Hollow cathode array for plasma generation
US3291712A (en) Surface treatment of shaped organic polymeric structures
JPH0959777A (en) Discharge plasma treatment and discharge plasma treating device
JP2002532828A (en) Array of hollow cathodes for plasma generation
US5558843A (en) Near atmospheric pressure treatment of polymers using helium discharges
JPS59213735A (en) Method for plasma treatment
JP2000353698A (en) Continuous plasma surface treatment method and apparatus
JP2524942B2 (en) Plasma surface treatment equipment
JPH04212842A (en) vapor deposited film
JPS62235339A (en) Modification of plastic surface
JP2003133291A (en) Discharge plasma treatment apparatus and discharge plasma treatment method using it
JPH08192044A (en) Continuous surface treatment of sheet and device therefor
JPH07119021A (en) Electric discharge treatment and apparatus therefor
JPH037209B2 (en)
EP0761726A2 (en) Process for corona discharge treatment of plastic surface
JPH07233463A (en) Production of metal oxide vapor-deposited film
JP2004244759A (en) Method for carrying out hydrophilization treatment of material surface
JPS61186578A (en) Sheet like structure and its production
JP2003301370A (en) Method for corona discharge treatment of synthetic fiber
JPH0680807A (en) Continuous surface treatment of web
JPS5991130A (en) Surface treatment of polymeric substrate