[go: up one dir, main page]

JPS59213435A - Downflow controlling method in fluidized bed of powder and particulate body - Google Patents

Downflow controlling method in fluidized bed of powder and particulate body

Info

Publication number
JPS59213435A
JPS59213435A JP7788283A JP7788283A JPS59213435A JP S59213435 A JPS59213435 A JP S59213435A JP 7788283 A JP7788283 A JP 7788283A JP 7788283 A JP7788283 A JP 7788283A JP S59213435 A JPS59213435 A JP S59213435A
Authority
JP
Japan
Prior art keywords
powder
transport pipe
pipe
granular material
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7788283A
Other languages
Japanese (ja)
Inventor
Takashi Moriyama
森山 峻
Keiichi Achinami
阿知波 啓一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Consultant and Engineering Co Ltd
Original Assignee
Denka Consultant and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Consultant and Engineering Co Ltd filed Critical Denka Consultant and Engineering Co Ltd
Priority to JP7788283A priority Critical patent/JPS59213435A/en
Priority to DE19843416236 priority patent/DE3416236A1/en
Publication of JPS59213435A publication Critical patent/JPS59213435A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/34Details
    • B65G53/66Use of indicator or control devices, e.g. for controlling gas pressure, for controlling proportions of material and gas, for indicating or preventing jamming of material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air Transport Of Granular Materials (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

PURPOSE:To control the flow rate of a powder and particulate body by controlling the amt. of feed by providing a weir, etc. to the bottom part of a transporting pipe, increasing the density of the downflow of the powder and particulate body which is fluidized in the transporting pipe, and supplying gas to the midway of the transporting pipe. CONSTITUTION:In a process for transporting a powder and particulate body P in a transporting pipe 6 in the fluidized state of P as it is fluidized in a closed tank 1, the P is flowed downward by the gravity by extending the transporting pipe 6 almost vertically; and a bent pipe, horizontal pipe, inclined pipe, stationary reduced pipe, and a weir, etc. are provided to the bottom part of the transporting pipe 6 to increase the density of the downflow of P. Further, gas is fed from gas feeding pipes 8-10 to the midway of the transporting pipe 6, and the flow rate of P is controlled by controlling the amt. of the feed of the gas. In this way, the flow rate of the downflow of P of high density is controlled.

Description

【発明の詳細な説明】 〔発明の利用分野〕 この発明は粉粒体輸送方法に係り特に流動層設備により
流動化された粉粒体を重力下降流により、流動層設備内
と同程度の充填密度で輸送する際の下降流制御方法に関
する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for transporting powder and granular materials, and in particular, the present invention relates to a method for transporting powder and granular materials, and in particular, the present invention relates to a method for transporting powder and granular materials, and in particular, to fill the powder and granular materials fluidized by fluidized bed equipment to the same degree as in the fluidized bed equipment by gravity downward flow. This invention relates to a downward flow control method when transporting at a high density.

〔発明の背景〕[Background of the invention]

高温高圧ガス化炉や鉄鉱石予備還元炉等において、粉粒
体は流動床を有する加圧タンク等により流動化され、高
温度、高濃度の状態で分配輸送される。粉粒体が高温、
例えば1000℃以上の領域にある場合には粉粒体の凝
集ツバ付Ifツバ流動性が常温域でのそれに比較して変
化し2、捷だ、従来技術による粉粒体の流量制御手段は
その材質、熱膨張係数、物理的および化学的耐久性等の
制約を受け、従って従来粉粒体の流量検IJjやその制
御は非常に困難であった。ここで、粉粒体が高圧下で輸
送される場合に粉粒体の高濃度を維持するためには、前
記力ロ圧タンクから粉粒体を重力を利用して下降排出し
て輸送するしか方法がない。
In high-temperature, high-pressure gasification furnaces, iron ore pre-reduction furnaces, etc., powder and granules are fluidized in a pressurized tank having a fluidized bed, and distributed and transported in a high-temperature, high-concentration state. Powder is at high temperature,
For example, in the temperature range of 1000°C or higher, the flowability of the powder or granular material with agglomerated brim changes compared to that at room temperature2. Due to constraints such as material, thermal expansion coefficient, physical and chemical durability, etc., it has been extremely difficult to conventionally measure and control the flow rate of powder and granular materials. Here, in order to maintain a high concentration of powder and granules when they are transported under high pressure, the only way to maintain a high concentration of the powder and granules is to transport the powder and granules by descending and discharging them from the pressure tank using gravity. There's no way.

即ち、水平才たけ垂直上昇輸送の場合は、粉粒体の浮遊
速度を上まわるカス流速が必要となるが、高圧の場合絶
対圧力に比例してガス使用量が増大する。しかし重力下
降流の場合は、密充填粉粒体粒子間充填カス量で足りる
。この−例として、粉鉱溶融精錬炉における予備還元炉
から粉粒体を溶融還元炉に下降管を介して原料を供給す
る場合とか微粉炭を加圧タンクから高圧ガス化炉に供給
する場合、当該粉粒体の下降流の流量検出ならびにその
制御は従来においては全くなされていない。
That is, in the case of horizontal transport and vertical upward transport, a waste flow rate exceeding the floating speed of the powder is required, but in the case of high pressure, the amount of gas used increases in proportion to the absolute pressure. However, in the case of gravity downward flow, the amount of scum filling between the particles of the tightly packed powder and granules is sufficient. Examples of this include when feeding raw material from the pre-reduction furnace in a fine ore melting and refining furnace to a melting and reducing furnace via a downcomer, or when feeding pulverized coal from a pressurized tank to a high-pressure gasification furnace. Detection of the flow rate of the downward flow of the powder and granular material and control thereof have not been performed at all in the past.

〔発明の目的〕[Purpose of the invention]

この発明はこのような従来技術の問題点に鑑みなされた
もので、流動化された粉粒体を路上下方向に延在する輸
送管内を密充填で重力下降輸送するにあたり、粉粒体の
質量流量を制御し得る粉粒体輸送方法を提供することを
目的とする。
This invention was made in view of the problems of the prior art, and it is possible to reduce the mass of the powder or granule when transporting the fluidized powder or granule by gravity in a tightly packed transport pipe extending below the road. It is an object of the present invention to provide a method for transporting powder and granular material that can control the flow rate.

〔発明の概要〕[Summary of the invention]

この発明に係る粉粒体輸送方法は、路上下に延びる重力
下降輸送管の下部に曲p管、水平管、傾斜管、固定絞り
、柵などを設け、これらによって輸送管内での流動化し
た粉粒体下降流の密度を流動層設備内と同程度に維持し
、さらに輸送管の中途にガスを供給するとともにこのガ
スの供給量を制御することによって重力下降輸送管の二
次側における粉粒体の摩擦力を減少させ粉粒体の下降質
量流量を制御するものである。
The method for transporting powder and granular material according to the present invention includes a curved pipe, a horizontal pipe, an inclined pipe, a fixed throttle, a fence, etc., provided at the lower part of a gravity descending transport pipe that extends below the road, and these are used to transport the fluidized powder in the transport pipe. By maintaining the density of the downflow of granules at the same level as in the fluidized bed equipment, and by supplying gas to the middle of the transport pipe and controlling the amount of gas supplied, the density of the powder on the secondary side of the gravity down transport pipe is reduced. This is to reduce the frictional force of the body and control the downward mass flow rate of the granular material.

そしてこの制御に際しては、輸送管の所定区間の圧力損
失、輸送管内の騒音または圧力振動などのゆらぎ現象、
あるいは輸送管下端部の圧力と輸送管下端に接続された
合流本管との差圧に基づいて粉粒体の流量を測定すれば
、粉粒体流量のフィードバック制御が可能になる。
In this control, fluctuation phenomena such as pressure loss in a predetermined section of the transport pipe, noise or pressure vibration inside the transport pipe,
Alternatively, by measuring the flow rate of the powder based on the pressure difference between the pressure at the lower end of the transport pipe and the merging main pipe connected to the lower end of the transport pipe, feedback control of the flow rate of the powder becomes possible.

〔発明の実施例〕[Embodiments of the invention]

次にこの発明に係る粉粒体輸送方法に用いる粉粒体輸送
装置の一実施例を図面に基づいて説明する。
Next, an embodiment of a powder transport device used in the powder transport method according to the present invention will be described based on the drawings.

第1図において、粉粒体輸送装置は、粉粒体Pを貯蔵し
流動化させる流動層設備としてのタンク1を備え、この
タンクlの側面には粉粒体Pを排出するための複数の切
出ノズル2.2′が設けられている。図においては切出
しノズルを2本記載してはいるが、これに限定する必要
はなく、該ノズルは1本でも又は2本以上でもよい。タ
ンク1の底部には流動床3が設けられ、タンク1内には
ガス圧源4から流動床3の下側にガスGが供給されてい
る。これによって夕/り1内の粉粒体Pは流動化され、
流動化された粉粒体PがガスGとともに切出ノズル2.
2′  から排出される。切出ノズル2.2′  には
オンオフパルプ5を介して輸送管6が接続され、輸送管
6は略下方に延在する下降管であシ、この下降管から湾
曲部等を介して水平な合流本管7に接続されている。こ
の構成によって粉粒体は密充填の状態で下降管を重力下
降輸送される。
In FIG. 1, the powder transport device is equipped with a tank 1 serving as a fluidized bed facility for storing and fluidizing powder P, and on the side of tank 1 there are a plurality of holes for discharging powder P. A cutting nozzle 2.2' is provided. Although two cutting nozzles are shown in the figure, there is no need to limit the number to this, and the number of the nozzles may be one or two or more. A fluidized bed 3 is provided at the bottom of the tank 1, and gas G is supplied to the lower side of the fluidized bed 3 from a gas pressure source 4 inside the tank 1. As a result, the powder P in the tank 1 is fluidized,
The fluidized powder P and the gas G pass through the cutting nozzle 2.
It is discharged from 2'. A transport pipe 6 is connected to the cutting nozzle 2.2' via an on-off pulp 5, and the transport pipe 6 is a descending pipe that extends approximately downward. It is connected to the confluence main pipe 7. With this configuration, the powder and granules are transported down the downcomer by gravity in a tightly packed state.

輸送管6の上下に延びた部分すなわち下降管の上下端部
および、輸送管6が上下方向から水平方向に移り変る湾
曲部には、ガス供給管8.9.10がそれぞれ接続され
、各ガス供給管s、9.10には、制御弁11,12.
13をそれぞれ介してガス圧源14.15.16が接続
されている。また輸送管6の水平部分には水平部の管路
抵抗を低減することにより重力下降流の排出量を制御す
る散気装置17が設けられ、この散気装置17には、制
御弁18を介してガス圧源19が接続されている。
Gas supply pipes 8, 9, and 10 are connected to the vertically extending portions of the transport pipe 6, that is, the upper and lower ends of the downcomer pipe, and the curved parts where the transport pipe 6 changes from the vertical direction to the horizontal direction. The supply pipes s, 9.10 have control valves 11, 12 .
Gas pressure sources 14, 15, 16 are connected via 13 respectively. Further, an aeration device 17 is provided in the horizontal portion of the transport pipe 6 to control the amount of discharge due to gravity downward flow by reducing the pipe resistance in the horizontal portion. A gas pressure source 19 is connected thereto.

輸送管6の下降管の上下端部ン傷力検出伝送舘20.2
1が設けられ、内圧力検出伝送器20.21は差圧伝送
器22に接続されている。差圧伝送器22は圧力検出伝
送器20.21の検出圧力の差を演算し、この検出圧力
の差は切換スイッチ23を介して質量流量調節計24に
入力されている。
Damage force detection transmission tube 20.2 at the upper and lower ends of the downcomer pipe of the transport pipe 6
1 is provided, and the internal pressure detection transmitter 20.21 is connected to the differential pressure transmitter 22. The differential pressure transmitter 22 calculates the difference between the detected pressures of the pressure detection transmitters 20 and 21, and this detected pressure difference is inputted to the mass flow controller 24 via the changeover switch 23.

輸送管6の下降管には、さらにゆらぎ現象検出器25が
設けられ、このゆらぎ現象検出器25はスペクトル密度
検出器26に接続されている。
The downcomer of the transport pipe 6 is further provided with a fluctuation phenomenon detector 25 , which fluctuation phenomenon detector 25 is connected to a spectral density detector 26 .

ゆらぎ現象検出器25は輸送管6内の騒音または圧力振
動などのゆらぎ現象を検出するものであシ、このゆらぎ
現象は粉粒体流量と相関関係を有し、スペクトル密度検
出器26は、ゆらぎ現象検出器25で検出されたゆらぎ
現象のスペクトル密度を演算する。スペクトル密度検出
器26も切換スイッチ23を介して質量流量調節計24
に接続され、質量流量調節計24は、前記差圧伝送器2
2から出力された差圧または前記スペクトル密度検出器
26から出力されたゆらぎ現象の特定周波数におけるス
ペクトル密度に基づいて、輸送管6内における粉粒体P
の質量流量を求める質量流量調節計である。
The fluctuation phenomenon detector 25 detects fluctuation phenomena such as noise or pressure vibration in the transport pipe 6, and this fluctuation phenomenon has a correlation with the flow rate of powder and granular material. The spectral density of the fluctuation phenomenon detected by the phenomenon detector 25 is calculated. The spectral density detector 26 is also connected to the mass flow controller 24 via the changeover switch 23.
The mass flow controller 24 is connected to the differential pressure transmitter 2
Based on the differential pressure output from 2 or the spectral density at a specific frequency of the fluctuation phenomenon output from the spectral density detector 26, the granular material P in the transport pipe 6 is
This is a mass flow controller that determines the mass flow rate of .

輸送管6の水平部分と、合流本管7の輸送管6との接続
部近傍には、圧力検出伝送器27.28が設けられ、こ
れらの圧力検出伝送器27.28は差圧伝送器29に接
続されている。差圧伝送器29も切換スイッチ23を介
して質量流量調節計24に接続され、質量流量調節計2
4は、圧力検出伝送器27.28の伝送圧力の差に基づ
いて、輸送管6から合流本管7に流入する粉粒体Pの質
量流量を演算する。
Pressure detection transmitters 27 and 28 are provided near the horizontal portion of the transport pipe 6 and the junction between the transport pipe 6 and the confluence main pipe 7, and these pressure detection transmitters 27 and 28 are connected to a differential pressure transmitter 29. It is connected to the. The differential pressure transmitter 29 is also connected to the mass flow controller 24 via the changeover switch 23.
4 calculates the mass flow rate of the powder P flowing into the merging main pipe 7 from the transport pipe 6 based on the difference in the transmission pressures of the pressure detection transmitters 27 and 28.

質量流量調節計24は切換スイッチ30を介して前記制
御弁11.12.13.18に接続され、流量調節計2
4は、差圧計22.29およびスペクトル密度検出器2
5からの流量を示すフィードバック信号に基づいて、制
御弁11.12,13.18をフィードバック制御して
いる。
The mass flow controller 24 is connected to the control valve 11.12.13.18 via a changeover switch 30, and the mass flow controller 24 is connected to the control valve 11.12.13.
4 is a differential pressure gauge 22.29 and a spectral density detector 2
The control valves 11.12, 13.18 are feedback-controlled based on the feedback signal indicating the flow rate from the control valve 5.

輸送管6の水平部は輸送管6内の粉粒体Pの流動に対す
る局部的な流動抵抗部となり、一方ガス供給管8.9.
10および散気装置17から輸送管6内に供給されるガ
スの増大は、粉粒体Pの質量流量を増大させるように作
用する。従って制御弁11.12,13.18の制御に
よって粉粒体Pの質量流量を制御し得るとともに、輸送
管6の水平部によって粉粒体Pの流量制御範囲が充分拡
大されている。
The horizontal part of the transport pipe 6 serves as a local flow resistance part against the flow of the powder P in the transport pipe 6, while the gas supply pipes 8.9.
An increase in the gas supplied into the transport pipe 6 from the air diffuser 10 and the air diffuser 17 acts to increase the mass flow rate of the powder P. Therefore, the mass flow rate of the powder P can be controlled by controlling the control valves 11.12 and 13.18, and the flow rate control range of the powder P is sufficiently expanded by the horizontal portion of the transport pipe 6.

合流本管7内には本管供給ガスG′が供給され、これに
よって、輸送管6から合流本管7内に流入した粉粒体P
は、合流本管7内で円滑に輸送される。
The main supply gas G' is supplied into the confluence main pipe 7, whereby the powder and granular material P that has flowed into the confluence main pipe 7 from the transport pipe 6 is
are transported smoothly within the confluence main pipe 7.

輸送管6はほぼ全体が上下に渡って延在し、かつ下端部
に水平管部が存在するので、輸送管6内では、粉粒体P
は高密度の状態で輸送され得る。
Almost the whole of the transport pipe 6 extends vertically, and there is a horizontal pipe part at the lower end, so that the powder and granular material P inside the transport pipe 6 is
can be transported in high density.

散気装置17としては種々の構成を採用し得るが、例え
ば第2図や第3図に示す構成が好ましい。
Although various configurations can be adopted as the air diffuser 17, the configurations shown in FIGS. 2 and 3 are preferable, for example.

第2図においては、散気状態17は、輸送管6の水平部
50に環状の散気板風箱31を形成し、この風箱31の
内側端部を環状または窓状の多孔質散気板32によって
塞いだものである。風箱31の外周には、前記制御弁1
8よシ管路33が接続され、管路33から風箱31内に
ガスGが供給される。風箱31内のガスGは多孔質散気
板32を透過して輸送管6内に流入する。
In FIG. 2, the air diffusion state 17 is such that an annular air diffuser plate wind box 31 is formed on the horizontal portion 50 of the transport pipe 6, and an annular or window-shaped porous air diffuser is formed at the inner end of this wind box 31. It is closed by a plate 32. The control valve 1 is installed on the outer periphery of the wind box 31.
A pipe line 33 is connected to the pipe line 33, and gas G is supplied from the pipe line 33 into the wind box 31. Gas G in the wind box 31 passes through the porous diffuser plate 32 and flows into the transport pipe 6.

第3図においては、散気装置17は、輸送管6の水平部
50に多条螺線状の貫通溝34を穿設し、貫通溝34の
周囲を、内部空間35を有する風箱36によって包囲し
たものである。風箱36の外周には、前記制御弁18よ
り管路37が接続され、管路37から風箱36の内部空
間35内にガスGが供給される。風箱の内部空間35内
のガスGは貫通溝34を通って水平部50内に流入する
。ここに貫通溝34は螺線状に形成されているので、貫
通溝34を通過したガスGは粉粒体Pを周方向に旅回さ
せるように作用し、これによって粉粒体Pの流動化が著
しく促進され、水平部の粉粒体の管壁摩擦抵抗が減少し
、質量流量が増大する。
In FIG. 3, the air diffuser 17 has a multi-spiral through groove 34 bored in the horizontal part 50 of the transport pipe 6, and the through groove 34 is surrounded by a wind box 36 having an internal space 35. It is surrounded. A conduit 37 is connected to the outer periphery of the wind box 36 from the control valve 18, and gas G is supplied from the conduit 37 into the internal space 35 of the wind box 36. Gas G in the internal space 35 of the wind box flows into the horizontal portion 50 through the through groove 34. Since the through groove 34 is formed in a spiral shape, the gas G passing through the through groove 34 acts to cause the powder P to travel in the circumferential direction, thereby fluidizing the powder P. is significantly promoted, the pipe wall frictional resistance of the granular material in the horizontal section is reduced, and the mass flow rate is increased.

なおこの発明は以上の実施例に限定されるものではなく
、局部的流体抵抗部として、水平部にかえて、屈曲部、
固定絞シ、sなどを用い得る。
Note that the present invention is not limited to the above embodiments, and instead of the horizontal portion, the local fluid resistance portion may include a bent portion,
A fixed diaphragm, s, etc. can be used.

また以上の構成は一本または複数の他の切出ノズル6′
 における質量流量制御にも適用し得る。
Furthermore, the above configuration may be performed using one or more other cutting nozzles 6'.
It can also be applied to mass flow control in

そして粉粒体Pは各切出ノズル6.6′  から重力下
降流で送られるため、流量制御に関して輸送管相互の干
渉が生じることはない。
Since the powder P is sent by gravity downward flow from each cutting nozzle 6,6', there will be no interference between the transport pipes regarding flow rate control.

前記切換スイッチ23は、差圧伝送器22.29または
スペクトル密度検出器26のいずれかの信号を流量調節
計24に入力し、切換スイッチ30は、制御弁11.1
2.13.18のうちの一個、二個または三個の流量調
節計24による制御を選択的に行わせる。
The changeover switch 23 inputs a signal from either the differential pressure transmitter 22.29 or the spectral density detector 26 to the flow rate controller 24, and the changeover switch 30 inputs the signal from the differential pressure transmitter 22.29 or the spectral density detector 26 to the flow rate controller 24.
2. Selectively control one, two or three of the flow rate controllers 24 out of 13.18.

〔発明の効果〕〔Effect of the invention〕

前述のとおシ、この発明に係る粉粒体輸送方法は、輸送
管の下部に曲p管、傾斜管、固定絞り、櫃などを設け、
これらによって輸送管内での流動化した粉粒体下降流の
密度を高め得るようにし、さらに輸送管の中途にガスを
供給するとともにこのガスの供給量を制御することによ
って粉粒体の流量を制御するので、下降流の高密度の粉
粒体の流量を制御し得る。
As mentioned above, the method for transporting powder and granular material according to the present invention includes providing a bent P pipe, an inclined pipe, a fixed throttle, a box, etc. at the lower part of the transport pipe,
These make it possible to increase the density of the fluidized powder descending flow in the transport pipe, and further control the flow rate of the powder by supplying gas to the middle of the transport pipe and controlling the supply amount of this gas. Therefore, the flow rate of the descending high-density powder and granular material can be controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る粉粒体輸送方法青の一実施例を
示すブロック図、第2図は同実施例におけるブースタの
一例を示す縦断面図、第3図はブースタの他の例を示す
縦断面図である。 1・・・流動層設備、  6・・・輸送管、  7・・
・合流本管、  81.92.10・・・ガス供給管、
  11.1213・・・制御弁、   14,15.
16・・・ガス圧源、17・・・散気装置、   18
・・・制御弁、  19・・・ガス圧源、  20.2
1・・・圧力検出伝送器、 22・・・差圧伝送器、 
24・・・質量流量調節計、 25・・・ゆらぎ現象検
出器、  26・・・スペクトル密度検出器、 27.
28・・・圧力検出伝送器、 29・・・差圧伝送器。 代理人 鵜 沼 辰 之 (ほか1名) 手続補正書 昭和58年7 月73日 昭和58年 特許願 第77882 号2、発明の名称 3、補正をする者 事件との関係 特許出願人 名 称 デンカエンジニアリング株式会社4、代理人 7、 補正の対象 願書および明細書の発明の名称の欄、明細書の特許請求
の範囲の欄、明細書の発明の詳細な説明の欄、図面、−
IHデ倭−1状“。 に改める。 (2)  明細書の特許請求の範囲を別紙のとおり改め
る。 (3)明細書第4頁第1行の「流動層」をr密閉タンク
内において移動層、流動層、噴流層」に改める。 改める。 (5)  明細書第4頁第6行の「流動層設備内」を「
移動層設備内」に改める。 (6)明細書第4頁第4行の「関する。」のつぎに以下
の文を加える。 「ここで、移動層とは流動床を有するタンク内でがス上
昇速度が粉粒体の最小流動化速度より/JXさい場合の
粉粒体の層をいい、流動層とは同様の場合で前記ガス上
昇速度が前記最小流動イヒ速度より大きい場合をいい、
噴流層とは前記流動床の力飄わりにタンクの底部を朝顔
型にしてその中Iう力)らガスを入れて粉粒体を流動化
した場合をいう。従って、タンク内の粉粒体充填密度(
粉粒体質量/ガス密量)は移動層、流動層、噴流層の1
貝に低くなる。また、流動層は広義には移動層、狭義の
流動層および噴流層を含むものである力;、以下流動層
は狭義の流動層をいうものとする。」(7)明細書第5
頁第19行の「流」を「移」に改める。 (8)  明細書第6頁第19行の「ている。」のつぎ
に「なお、タンク1はこの実施例のように流動層設備に
限定する必要はなく、例えば移動層設備又は噴流層設備
であっても良い。」 (9)  明細書第13頁第2行の[下降流の高密度の
]を「下降流を高密度の状態に維持し、jに改める。 al  図面中温1図を別紙のとおり改める。 以上 特許請求の範囲 輸送管内に供給して粉粒体を輸送する方法において、輸
送管を路上下刃向に延在させて、粉粒体を重力下降させ
るとともに、輸送管の下部に曲り管、水平管、傾斜管、
固定絞り、堰などを設けて、輸送管内での粉粒体の密度
を瀞動層の充填密度と略同−に保ち、輸送管の中途にガ
スを供給しかつこのガスの供給量を制御することによっ
て粉粒体の流量を制御することを特徴とする粉粒外2下
降流制御方法。 (2)  密閉タンク内で粉粒体を流動化した状態で輸
送管内に供給して粉粒体を輸送する方法において、輸送
管を路上下方向に延在させて粉粒体を重力下降きせると
ともに、輸送管の下部に曲り管、水平管、傾斜管、固定
絞り、堰などを設けて、輸送管内での粉粒体の密度を!
動層の充填密度と略同−に保ち、輸送管の中途にガスを
供給しかつこのガスの供給量を制御することによって粉
粒体の質量流量を制御し、この制御に際して、輸送管の
所定区間の圧力損失に基づいて粉粒体の質量流量を検出
し、この質量流量の検出値に基せいて前記ガスの供給量
を制御することを特徴とする粉粒外の下降流制御方法。 (3)  密閉タンク内で粉粒体を流動化した状態で輸
送管内を送る粉粒体輸送方法において、輸送管を路上下
刃向に延在させて粉粒体を重力下降させるとともに′、
輸送管の下部に曲り管、水平管、傾斜管、固定絞り、堰
などを設けて、輸送管内での粉粒体の密度を高め得るよ
うにし、輸送管の中途にがスを供給しかつこのガスの供
給量を制御することによって粉粒体の流量を制御し、こ
の制御て際して、輸送管内の粉粒体の下降流に起因する
騒音または圧力振動などのゆらぎ現象を検出し、このゆ
らぎ現象の特定周波数における信号スペクトル密度を求
め、この信号スペクトル密度に基づいて粉粒体の質量流
量を求め、このようにして求められた質量流量に基づい
て前記ガスの供給量を制御することを特徴とする粉粒体
の下降流制御方法。 (4)  密閉タンク内で粉粒体を流動化した状態で輸
送管内を送る粉粒体輸送方法において、輸送管を路上下
方向に延在させて粉粒体を重力下降させるとともに、輸
送管の下部に曲り管、水平管、傾斜管、固定絞り、堰な
どを設けて、輸送管内での粉粒体の密度を高め得るよう
にし、輸送管の中途にガスを供給しかつこのガスの供給
量を制御することによって粉粒体の質量流量を制御し、
下降輸送管の下端を合流本管に接続して粉粒体を輸送管
から合流本管に送り、輸送管下部と合流本管との差圧を
検出し、この差圧に基づいて粉粒体の質量流量を求め、
このようにして求められた粉粒体の質量流量に基づいて
前記ガスの供給量を制御することを特徴とする粉粒体の
下降流制御方法。
Fig. 1 is a block diagram showing an embodiment of the powder transportation method according to the present invention, Fig. 2 is a longitudinal sectional view showing an example of a booster in the same embodiment, and Fig. 3 is a block diagram showing another example of the booster. FIG. 1...Fluidized bed equipment, 6...Transport pipe, 7...
・Merge main pipe, 81.92.10...gas supply pipe,
11.1213...control valve, 14,15.
16... Gas pressure source, 17... Diffuser, 18
...Control valve, 19...Gas pressure source, 20.2
1... Pressure detection transmitter, 22... Differential pressure transmitter,
24... Mass flow controller, 25... Fluctuation phenomenon detector, 26... Spectral density detector, 27.
28...Pressure detection transmitter, 29...Differential pressure transmitter. Agent Tatsuyuki Unuma (and 1 other person) Procedural amendment July 73, 1980 Patent Application No. 77882 2, Title of invention 3, Relationship with the person making the amendment Patent applicant name Name Denka Engineering Co., Ltd. 4, Agent 7, Application subject to amendment and the title of the invention in the specification, the scope of claims in the specification, the detailed description of the invention in the specification, drawings, -
(2) The claims of the specification are amended as shown in the appendix. (3) The “fluidized bed” in the first line of page 4 of the specification is moved in a sealed tank. "bed, fluidized bed, spouted bed". change. (5) “Inside fluidized bed equipment” on page 4, line 6 of the specification is changed to “
"Inside moving layer equipment". (6) Add the following sentence next to "Regarding." on page 4, line 4 of the specification. "Here, the moving bed refers to a layer of powder and granular material in which the rising speed of gas is lower than the minimum fluidization speed of the powder and granular material in a tank with a fluidized bed, and a fluidized bed is defined as Refers to the case where the gas rising speed is higher than the minimum flow rate,
The spouted bed refers to a case where the bottom of the tank is made into a morning glory shape and gas is introduced into the tank to fluidize the granular material. Therefore, the powder packing density in the tank (
Powder mass/gas density) is 1 for moving bed, fluidized bed, and spouted bed.
Get low on shellfish. In addition, a fluidized bed includes a moving bed in a broad sense, a fluidized bed in a narrow sense, and a spouted bed; hereinafter, the term fluidized bed refers to a fluidized bed in a narrow sense. (7) Specification No. 5
``Flow'' in line 19 of the page is changed to ``transfer.'' (8) In the 19th line of page 6 of the specification, next to ``It is.'' it says, ``The tank 1 does not have to be limited to a fluidized bed facility as in this embodiment, but may be, for example, a moving bed facility or a spouted bed facility. (9) In the second line of page 13 of the specification, [high density of downward flow] is changed to "keep the downward flow in a high density state, and change it to j. Amended as shown in the attached sheet.In the method of transporting powder and granular material by supplying it into a transport pipe, the transport pipe is extended in the direction below the road, and the powder and granular material is lowered by gravity, and the transport pipe is Bent pipe, horizontal pipe, inclined pipe,
Fixed throttles, weirs, etc. are installed to maintain the density of powder and granules in the transport pipe at approximately the same density as the packing density of the perturbation bed, and to supply gas to the middle of the transport pipe and to control the amount of this gas supplied. A method for controlling a downward flow of powder and granules, characterized in that the flow rate of powder and granules is controlled by: (2) In a method of transporting powder and granules by supplying the powder and granules in a fluidized state in a closed tank into a transport pipe, the transport pipe is extended downward on the road so that the powder and granules descend by gravity, and , By installing bent pipes, horizontal pipes, inclined pipes, fixed throttles, weirs, etc. at the bottom of the transport pipe, the density of powder and granules inside the transport pipe can be controlled!
The mass flow rate of the powder is controlled by keeping the packing density approximately the same as the packing density of the moving bed, supplying gas midway through the transport pipe, and controlling the supply amount of this gas. 1. A method for controlling a downward flow outside of powder particles, characterized in that the mass flow rate of the powder material is detected based on the pressure loss in the section, and the supply amount of the gas is controlled based on the detected value of the mass flow rate. (3) In a powder transport method in which the powder is fluidized in a closed tank and sent through a transport pipe, the transport pipe is extended toward the bottom of the road to lower the powder by gravity, and
Bent pipes, horizontal pipes, inclined pipes, fixed throttles, weirs, etc. are installed at the bottom of the transport pipe to increase the density of the powder and granules in the transport pipe, and gas is supplied to the middle of the transport pipe and this The flow rate of powder and granular material is controlled by controlling the amount of gas supplied, and during this control, fluctuation phenomena such as noise or pressure vibration caused by the downward flow of powder and granular material in the transport pipe are detected. A signal spectral density at a specific frequency of a fluctuation phenomenon is determined, a mass flow rate of the powder or granular material is determined based on this signal spectral density, and the supply amount of the gas is controlled based on the thus determined mass flow rate. Characteristic method for controlling the downward flow of powder and granular materials. (4) In a powder transport method in which the powder is fluidized in a closed tank and sent through a transport pipe, the transport pipe is extended downwards on the road to lower the powder by gravity, and the transport pipe is Bent pipes, horizontal pipes, inclined pipes, fixed throttles, weirs, etc. are installed at the bottom to increase the density of powder and granules in the transport pipe, and to supply gas to the middle of the transport pipe and to reduce the amount of gas supplied. The mass flow rate of the powder is controlled by controlling the
The lower end of the descending transport pipe is connected to the merging main pipe, the powder and granules are sent from the transport pipe to the merging main pipe, the differential pressure between the lower part of the transport pipe and the merging main pipe is detected, and the powder and granular material is Find the mass flow rate of
A method for controlling the downward flow of a powder or granular material, characterized in that the supply amount of the gas is controlled based on the mass flow rate of the powder or granular material determined in this way.

Claims (4)

【特許請求の範囲】[Claims] (1)流動層設備によって粉粒体を流動化した状態で輸
送管内に供給して粉粒体を輸送する方法において、輸送
管を路上下方向に延在させて、粉粒体を重力下降させる
とともに、輸送管の下部に曲りg、水平管、傾斜管、固
定絞り、根などを設けて、輸送管内での粉粒体の密度を
流動層設備内と略同−に保ち、輸送管の中途にガスを供
給しかつこのガスの供給量を制御することによって粉粒
体の流計を制御することを特徴とする粉粒体流動層の下
降流制御方法。
(1) In a method of transporting powder and granules by supplying them into a transport pipe in a fluidized state using fluidized bed equipment, the transport pipe is extended downward on the road and the powder and granules are lowered by gravity. In addition, bends, horizontal pipes, inclined pipes, fixed throttles, roots, etc. are provided at the bottom of the transport pipe to maintain the density of the powder in the transport pipe to be approximately the same as in the fluidized bed equipment. 1. A method for controlling the downward flow of a fluidized bed of powder and granular material, characterized by controlling a flow meter of the powder and granular material by supplying gas to the flow meter and controlling the amount of gas supplied.
(2)  流動層設備によって粉粒体を流動化した状態
で輸送管内に供給して粉粒体を輸送する方法において、
輸送管を路上下方向に延在させて粉粒体を重力下降させ
るとともに、輸送管の下部に曲り管、水平管、傾斜管、
固定絞り、柵などを設けて、輸送管内での粉粒体の密度
を流動層設備内と略同−に保ち、輸送管の中途にガスを
供給しかつこのガスの供給6tを制御することによって
粉粒体の質量流量を制御し、この制御に際して、輸送管
の所定区間の圧力損失に基づいて粉粒体の質量流量を検
出し、この質量流量の検出値に基いて前記ガスの供給量
を制御することを特徴とする粉粒体流動層の下降流制御
方法。
(2) In a method of transporting powder and granules by supplying them into a transport pipe in a fluidized state using fluidized bed equipment,
The transport pipe is extended downwards on the road to allow the powder and granules to fall by gravity, and the lower part of the transport pipe is equipped with bent pipes, horizontal pipes, inclined pipes, etc.
By providing fixed throttles, fences, etc., to maintain the density of the powder in the transport pipe to be approximately the same as in the fluidized bed equipment, and by supplying gas to the middle of the transport pipe and controlling the 6t of gas supply. The mass flow rate of the powder and granular material is controlled, and during this control, the mass flow rate of the powder and granular material is detected based on the pressure loss in a predetermined section of the transport pipe, and the supply amount of the gas is determined based on the detected value of the mass flow rate. A method for controlling the downward flow of a powder fluidized bed.
(3)  流動層設備によって粉粒体を流動化1.だ状
態で輸送管内を送る粉粒体輸送方法において、輸送管を
路上下方向に延在させて粉粒体を重力下降させるととも
に、輸送管の下部に曲り管、水平管。 傾斜管、固定絞り、根などを設けて、輸送管内での粉粒
体の密度を高め得るようにし、輸送管の中途にガスを供
給しかつこのガスの供給量を制御することによって粉粒
体の流Mを制御し、この制御に際して、輸送管内の粉粒
体の下降流に起因する騒音また線圧力振動などのゆらぎ
現象を検出し7、このゆらぎ現象の特定周波数における
信号スペクトル密度を求め、この信号スペクトル密度に
基づいて粉粒体の質量流量を求め、このようにして求め
られた質…流−h1−に基いて前記ガスの供給−;狭を
制御することを特徴とする粉粒体流動層の下降流制御方
法。
(3) Fluidize powder and granules using fluidized bed equipment 1. In a method for transporting powder and granules in a transport pipe in an open state, the transport pipe is extended downward on the road so that the powder and granules are lowered by gravity, and a bent pipe and a horizontal pipe are installed at the bottom of the transport pipe. By providing inclined pipes, fixed throttles, roots, etc., to increase the density of the powder and granular material in the transport pipe, and by supplying gas midway through the transport pipe and controlling the amount of gas supplied, the powder and granular material can be increased. During this control, a fluctuation phenomenon such as noise or linear pressure vibration caused by the downward flow of the powder or granular material in the transport pipe is detected7, and the signal spectral density at a specific frequency of this fluctuation phenomenon is determined. A powder or granular material characterized in that the mass flow rate of the powder or granular material is determined based on this signal spectrum density, and the supply of the gas is controlled based on the thus determined quality...flow h1-. Method for controlling downward flow in a fluidized bed.
(4)  v&動層設備によって粉粒体を流動化した状
、t、r、uで輸送管内を送る粉粒体輸送方法において
、輸送管を路上下方向に延在させて粉粒体を重力下降さ
せるとともに、輸送管の下部に曲り管、水平管、傾斜管
、固定絞り、柵などを設けて、輸送管内での粉粒体の密
度を高め得るようにし、輸送管の中途にカスを供給しか
つこのガスの供給量を制御することによって粉粒体の質
量流用2を制御し、下降輸送管の下端を合流本管に接続
して粉粒体を輸送管から合流本管に送り、輸送管下部と
合流本管との差圧を検出し、この差圧に基づいて粉粒体
の質叶流丑を求め、このようにして求められた粉粒体の
質量流量に基づいて前記ガスの供給量を制御することを
特徴とする粉粒体流@層の下降流制御方法。
(4) In a method of transporting powder and granules that are fluidized using v&dynamic bed equipment and transported through a transport pipe using t, r, and u, the transport pipe is extended downward on the road and the granules are transported by gravity. In addition to lowering the transport pipe, a bent pipe, horizontal pipe, inclined pipe, fixed throttle, fence, etc. are installed at the bottom of the transport pipe to increase the density of the powder and granular material in the transport pipe, and feed waste to the middle of the transport pipe. In addition, by controlling the supply amount of this gas, the mass flow 2 of the powder and granular material is controlled, and the lower end of the descending transport pipe is connected to the merging main pipe to send the powder and granular material from the transport pipe to the merging main pipe and transported. The pressure difference between the lower part of the pipe and the merging main pipe is detected, the quality of the powder and granule is determined based on this pressure difference, and the flow rate of the gas is determined based on the mass flow rate of the powder and granule thus determined. A method for controlling the downward flow of a powder/granular material flow@layer, characterized by controlling the supply amount.
JP7788283A 1983-05-02 1983-05-02 Downflow controlling method in fluidized bed of powder and particulate body Pending JPS59213435A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7788283A JPS59213435A (en) 1983-05-02 1983-05-02 Downflow controlling method in fluidized bed of powder and particulate body
DE19843416236 DE3416236A1 (en) 1983-05-02 1984-05-02 Method for controlling the gravity flow of pulverulent or granular material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7788283A JPS59213435A (en) 1983-05-02 1983-05-02 Downflow controlling method in fluidized bed of powder and particulate body

Publications (1)

Publication Number Publication Date
JPS59213435A true JPS59213435A (en) 1984-12-03

Family

ID=13646441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7788283A Pending JPS59213435A (en) 1983-05-02 1983-05-02 Downflow controlling method in fluidized bed of powder and particulate body

Country Status (2)

Country Link
JP (1) JPS59213435A (en)
DE (1) DE3416236A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114955554A (en) * 2022-05-10 2022-08-30 中磁(深圳)节能科技有限公司 Powder production conveying system
US11858757B2 (en) * 2021-12-28 2024-01-02 Mitsubishi Heavy Industries, Ltd. Control device, granular material supply system, control method, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9405758U1 (en) * 1994-04-07 1995-08-10 Claudius Peters Ag, 21614 Buxtehude Device for adjusting the pressure loss in a pneumatic delivery line

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2556957A1 (en) * 1975-12-18 1977-06-30 Otto & Co Gmbh Dr C PLANT FOR GASIFICATION OF FINE GRAIN FUELS
DE2711114C2 (en) * 1977-03-15 1983-03-10 Alb. Klein Gmbh & Co Kg, 5241 Niederfischbach Device and method for removing bulk material from a storage space with a moving sensor protruding into the bulk material flow
DE2714355A1 (en) * 1977-03-31 1978-10-12 Klein Alb Kg Free-running material e.g. pulverised coal charging system - with flow rate controlled gate setting and carrier gas admission

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11858757B2 (en) * 2021-12-28 2024-01-02 Mitsubishi Heavy Industries, Ltd. Control device, granular material supply system, control method, and program
CN114955554A (en) * 2022-05-10 2022-08-30 中磁(深圳)节能科技有限公司 Powder production conveying system

Also Published As

Publication number Publication date
DE3416236A1 (en) 1984-11-08
DE3416236C2 (en) 1987-07-16

Similar Documents

Publication Publication Date Title
US5129766A (en) Aeration tube discharge control device
AU2008221091B2 (en) Method and apparatus for controlling a stream of solids
Takeuchi et al. A quantitative definition and flow regime diagram for fast fluidization
EP0348008B1 (en) Aeration tube discharge control device
JPS55114340A (en) Fluidized layer reactor and operation method thereof
YU68800A (en) Method for conveying on high-density bed powder materials and device with potential fluidisation for implementing same
US4614167A (en) Combustion chamber having beds located one above the other and a method of controlling it
US2623793A (en) Pneumatic conveyer and feeder for loose solids
JPS59213435A (en) Downflow controlling method in fluidized bed of powder and particulate body
Ferreira et al. Fluid dynamics characterization of a pneumatic bed using a spouted bed type solid feeding system
US4934876A (en) Aeration apparatus for discharge control of particulate matter
US2913281A (en) Transport of finely divided solids
US4089563A (en) Apparatus for pneumatic conveyance of pulverulent or granular materials
EP0116764B1 (en) Apparatus for blowing powdery refining agent into refining vessel
US5175942A (en) Method for fluidized bed discharge
US4943190A (en) Aeration tube discharge control device with variable fluidic valve
JPS6211895B2 (en)
US4809886A (en) Apparatus for controlling a flow of granular material
JPS60139330A (en) Pressure fluidized bed reaction apparatus
US4078675A (en) Seal leg and method for transferring particulate solids between zones of different pressures
CN1022925C (en) Aeration tube discharge control device
JPS6023857B2 (en) Method and device for supplying powder to a pressurized fluidized bed
EP0236320A1 (en) A particulate solid feeding device
SU1516003A3 (en) Method of conveying solid material particles for catalyst systems
US2730407A (en) Conveyance of granular solids