[go: up one dir, main page]

JPS59212710A - Displacement detector of electrostatic capacity type - Google Patents

Displacement detector of electrostatic capacity type

Info

Publication number
JPS59212710A
JPS59212710A JP8721883A JP8721883A JPS59212710A JP S59212710 A JPS59212710 A JP S59212710A JP 8721883 A JP8721883 A JP 8721883A JP 8721883 A JP8721883 A JP 8721883A JP S59212710 A JPS59212710 A JP S59212710A
Authority
JP
Japan
Prior art keywords
electrode
transmitting
electrodes
receiving
fixed plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8721883A
Other languages
Japanese (ja)
Other versions
JPH0354284B2 (en
Inventor
Koji Sasaki
康二 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsutoyo Manufacturing Co Ltd
Original Assignee
Mitsutoyo Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsutoyo Manufacturing Co Ltd filed Critical Mitsutoyo Manufacturing Co Ltd
Priority to JP8721883A priority Critical patent/JPS59212710A/en
Priority to DE3418566A priority patent/DE3418566C2/en
Priority to US06/611,869 priority patent/US4633249A/en
Publication of JPS59212710A publication Critical patent/JPS59212710A/en
Publication of JPH0354284B2 publication Critical patent/JPH0354284B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To detect accurately the displacement of a moving object by providing an auxiliary electrode, which cancels the noise mixed into a receiving electrode from an input part, on the rear face of a fixed plate and relaxing and cancelling the noise with a correcting signal from this auxiliary electrode. CONSTITUTION:An auxiliary electrode 26 connected electrically to a receiving electrode 14 is provided in a position on the rear face of a fixed plate 10 corresponding to a one- side transmission electrode 12 forming each phase pair. That is, since the influence of noise components from a transmission electrode 12-4, where a connection pattern and the receiving electrode 14 approach each other most, is great in accordance with the positional relation between them, the auxiliary electrode 26 is provided in the position on the rear face corresponding to a transmission electrode 12-6 to which an AC voltage having a phase opposite to that of an AC voltage having 270 deg. phase shift, which is applied to the transmission electrode 12-4, is applied. As the result, a voltage signal having the same phase shift as the transmission electrode 12-6 is induced in the auxiliary electrode 26 and is connected and supplied to the receiving electrode 14, and thus, the noise mixed from the input part of the transmission electrode 12-4 to the receiving electrode 14 is cancelled effectively by the correcting signal from the auxiliary electrode 26.

Description

【発明の詳細な説明】 産業上の利用分野 本光明は静電容量型変位検出器、特に装置移動体の移動
変位を該移動体に連動する移動電極と本体に固定された
固定電極との両電極間の静電容量変化に基づいて検出す
る静電容量型変位検出器に関Jるものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a capacitive displacement detector, in particular, a device that detects the displacement of a moving body using both a moving electrode that moves in conjunction with the moving body and a fixed electrode that is fixed to the main body. The present invention relates to a capacitive displacement detector that detects based on a change in capacitance between electrodes.

背景技術 従来より測定子の機械的変位或いは移動台の変位を電気
的に変換してその変位量を検出する変位検出器が周知で
あり、通常この種の装置は装置本体に移動可能に設けら
れた移動体と、該移動体の移動量を検出し、電気信号パ
ルスに変換出力する1ンコーダと、を含み、エンコータ
の出力する電気信号パルスを81数回路にて計数し、そ
の計数値をデジタル表示器上にデジタル表示している。
BACKGROUND ART Displacement detectors that electrically convert the mechanical displacement of a measuring point or the displacement of a moving base and detect the amount of displacement have been well known, and this type of device is usually movably installed in the main body of the device. 1 encoder that detects the amount of movement of the moving body, converts it into electrical signal pulses, and counts the electrical signal pulses output by the encoder using 81 circuits, and converts the counted value into a digital signal. It is displayed digitally on the display.

ところで、この種の装置に用いられるエンコーダとして
従来より光電型エンコーダ、接点型エンコーダ、静電型
エンコーダ等が周知である。
Incidentally, photoelectric encoders, contact encoders, electrostatic encoders, and the like are conventionally known as encoders used in this type of apparatus.

光電型エンコーダでは、スケール或いは回転円板の表面
に等間隔に設けられたスリットと、該スケール或いは回
転円板のスリットを介して光路を形成する発光器及び受
光機と、を含み、移動体の変位用に応じてスケール或い
は円板を移動或いは回転し発受光器間に形成される光路
をオンオノし、移動体の変位mを検出している。
A photoelectric encoder includes slits provided at equal intervals on the surface of a scale or rotating disk, and a light emitter and a light receiver that form an optical path through the slits of the scale or rotating disk. The scale or disk is moved or rotated according to the displacement, and the optical path formed between the light emitting and receiving devices is turned on and off to detect the displacement m of the moving body.

しかし、この光電型エンコーダでは、発光器の消費電力
が大きく、使用する電池の交換回数が増加し、また容量
の大きな電池を使用した場合には装置全体が大型となる
という欠点があった。さらに、測定精度を上げるために
は、スケール或いは回転円板状に数ミクロン間隔でスリ
ットを設けることが必要となり、その製造が難しくしか
も運転中にクリアランス変化に起因するミスカウントを
生じゃずいという問題があった。
However, this photoelectric encoder has disadvantages in that the power consumption of the light emitter is large, the number of replacements of batteries increases, and when a large capacity battery is used, the entire device becomes large. Furthermore, in order to improve measurement accuracy, it is necessary to provide slits at intervals of several microns on a scale or rotating disk, which is difficult to manufacture and also causes miscounts due to clearance changes during operation. was there.

また、接点型エンコーダでは、移動体の変位量検出にス
リット、ブラシなどを用いるため、これらスリット、ブ
ラシの消耗が激しく、また測定信号にノイズが混入しや
すいという問題があった。
Furthermore, since contact type encoders use slits, brushes, etc. to detect the amount of displacement of a moving body, there is a problem that these slits and brushes are subject to rapid wear and that noise is easily mixed into the measurement signal.

これに対し、静電型エンコーダでは、光電型エンコーダ
のように消費電力が大きくなく、接点型エンコーダのよ
うにブラシ、スリット等の消耗及びノイズの混入という
問題がないため、近年、移動体の検出装置に幅広く用い
られている。
On the other hand, electrostatic encoders do not consume as much power as photoelectric encoders, and do not have the problems of wear of brushes, slits, etc. and noise contamination like contact encoders. Widely used in equipment.

従来技術 従来、このような変位検出器に用いられる静電型エンコ
ーダでは、複数対の電極板を対向配置してコンデンサを
形成し、両電極板を移動体の変位用に対応して相対移動
させ、このときの機械的変位量をコンデンサの静電容量
変化として電気的に検出していた。
Conventional technology Conventionally, in an electrostatic encoder used in such a displacement detector, a capacitor is formed by arranging multiple pairs of electrode plates facing each other, and both electrode plates are moved relative to each other in accordance with the displacement of a moving object. The amount of mechanical displacement at this time was electrically detected as a change in capacitance of the capacitor.

たとえば、メインスケール上に一方の電極板を等間隔に
複数個整列配置し、このメインスケールと一定間隔をお
いて対向配置されたインデックススケール上に他方の電
極板を配置し、メインスケール又はインデックススケー
ルを移動体のの変位に応じて板面と平行にスライド移動
させ、このとぎ両電極板により形成されるコンデンサの
容量変化により移動体の変位量を検出している。
For example, one electrode plate is arranged on a main scale at equal intervals, and the other electrode plate is arranged on an index scale that is placed facing the main scale at a certain interval, and the main scale or index scale is is slid parallel to the plate surface according to the displacement of the movable body, and the amount of displacement of the movable body is detected by the change in capacitance of the capacitor formed by the two electrode plates.

しかし、従来の装置にお(ブる静電型エンコーダでは、
前記移動電極板からなるコンデンサを用い分圧回路を形
成し、コンデンサの静電容量に応じて変化する分圧比を
検出して移動体の変位量を検出していた。このため、従
来の装置では、コンデンサを形成する移動電極板の板面
間距離が何らかの原因で変化しコンデンサの静電容量が
変化した場合や、分圧回路に印加する電源電圧が変化し
たような場合には、その分圧出力が移動体の変位量に応
じて正確に対応しなくなり、正確な測定ができないとい
う欠点があった。
However, with conventional equipment (electrostatic encoders),
A voltage dividing circuit is formed using a capacitor made of the moving electrode plate, and the amount of displacement of the moving body is detected by detecting a voltage dividing ratio that changes depending on the capacitance of the capacitor. For this reason, in conventional devices, if the distance between the surfaces of the moving electrode plates that form the capacitor changes for some reason and the capacitance of the capacitor changes, or if the power supply voltage applied to the voltage divider circuit changes, In this case, the partial pressure output no longer corresponds accurately to the amount of displacement of the moving body, resulting in a drawback that accurate measurement cannot be performed.

本発明の成立過程 上記従来の欠点を解消するために、前記複数対からなる
電極対の一方の電極にそれぞれ異なる位相の交流電圧を
印加し、他方の電極に誘起される常住信号を検出し、両
電極の相対移動に基づいて変化する出力信号の基準位相
に対する位相変化を検出して前記相対移動毎を求める静
電容量型変位検出器が提案されている。
Establishment process of the present invention In order to eliminate the above-mentioned conventional drawbacks, AC voltages of different phases are applied to one electrode of the plurality of electrode pairs, and a resident signal induced in the other electrode is detected, A capacitive displacement detector has been proposed that detects a phase change with respect to a reference phase of an output signal that changes based on the relative movement of both electrodes, and obtains each relative movement.

第1図、第2図にはこの提案された静電容量型変位検出
器の電極構造を示す説明図が示され、装置本体側に固定
されたステータあるいはスケール板からなる固定板10
の表面側には、第2図に示すJzうに、等間隔に複数の
送信電極12が配設されており、またこの送信電極12
に並列して帯状の受信電極14が設けられている。そし
て前記各送信電極12に位相の異なる交流電圧信号が印
加される。
1 and 2 are explanatory diagrams showing the electrode structure of this proposed capacitive displacement detector, in which a fixed plate 10 consisting of a stator or scale plate fixed to the main body of the device is shown.
A plurality of transmitting electrodes 12 are arranged at equal intervals on the surface side of the JZ shown in FIG.
A strip-shaped receiving electrode 14 is provided in parallel to the receiving electrode 14 . Then, AC voltage signals having different phases are applied to each of the transmitting electrodes 12 .

一方、前記固定板1oに対向させて移動体と連動ブーる
ロータあるいは可動スケール板からなる移動板16が設
けられており、この移動板16には送信電極12と受信
電極14にまたがって対向配置された結合電極18と、
前記送信電極12および受信電極14まにだがっって対
向配置されたアース電極20とが交互に移動板16の移
動方向に治って配置されている。
On the other hand, a movable plate 16 consisting of a rotor or a movable scale plate that interlocks with the movable body is provided opposite to the fixed plate 1o. a coupled electrode 18,
Ground electrodes 20, which are disposed opposite to each other across the transmitting electrodes 12 and the receiving electrodes 14, are arranged alternately in the moving direction of the movable plate 16.

他方、受信電極14には結合電極18を介して前記各送
信電極12の電圧信号に対応した電圧信号が誘起され、
従って、前記各送信電極12に位相の異なる交流電圧を
印加した状態で移動体を変位ずれば受信電極14がら移
動体の変位量に応じた位相の出ノ〕信号を得ることがで
き、この受信電極14から出力される信号の位相を積分
器15にて演算処理し、所定の基準位相と比較すること
により、移動体の変位■を電源電圧の変動等に影響され
ることなく正確に測定することが可能となる。
On the other hand, a voltage signal corresponding to the voltage signal of each transmitting electrode 12 is induced in the receiving electrode 14 via the coupling electrode 18,
Therefore, if the moving body is displaced while applying alternating current voltages with different phases to each of the transmitting electrodes 12, a signal with a phase corresponding to the amount of displacement of the moving body can be obtained from the receiving electrodes 14, and this reception By processing the phase of the signal output from the electrode 14 in the integrator 15 and comparing it with a predetermined reference phase, the displacement of the moving body can be accurately measured without being affected by fluctuations in power supply voltage, etc. becomes possible.

近年、装置の携帯性及び操作性を図るために、装置の小
型化が要請されており、前述した提案装置を小型化する
場合には、各電極の電極面積が小さくなり、極間距離が
狭小となる。このため受信電極14の信号出力電圧が下
がり、いわゆるノイズの混入によるSN化の低下規象が
生じる。この極間距離の狭小に伴い送信電極12の入力
部から結合電極18を介することなく、受信電極14に
混入するもので、これにより装置の検出精度が悪化する
という問題があった。
In recent years, there has been a demand for miniaturization of devices in order to improve their portability and operability, and when miniaturizing the proposed device mentioned above, the electrode area of each electrode becomes smaller and the distance between the electrodes becomes narrower. becomes. For this reason, the signal output voltage of the receiving electrode 14 decreases, resulting in a phenomenon in which the signal-to-noise ratio decreases due to the so-called noise mixture. Due to the narrow distance between the electrodes, the particles enter the receiving electrode 14 from the input part of the transmitting electrode 12 without passing through the coupling electrode 18, which causes a problem in that the detection accuracy of the device deteriorates.

発明の目的 本発明は前述した従来の課題に鑑み成されたものであり
、その目的は、装置の小型化を図るとともに、移動体の
変位量を正確に検出することができる静電容量型変位検
出器を提供することにある。
Purpose of the Invention The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to miniaturize the device and provide a capacitive displacement device that can accurately detect the amount of displacement of a moving body. The purpose is to provide a detector.

発明の構成 上記目的を達成するために、本発明は、本体に固定され
た固定板と、固定板に対向され本体に移動可能に設けら
れた移動板とを有し、固定板の表面には等間隔に配列さ
れた複数の送信電極と、゛送信電極に並列された帯状の
受信電極とが設けられ、移動板には送信極及び受信電極
にまたがって対向され両電極間を静電結合する結合電極
が設けられ、前記各送信電極にそれぞれ位相が異なりか
つ互いに逆位相となる1対以上の位相差引を有する交流
電圧を印加し、移動板の変位を受信電極の出力信号に基
づき検出する静電容量型変位検出器において、固定板の
裏面には少なくとも一対の位相差引の送信電極のうちの
一方の送信電極に対応する位置に受信電極と導通する補
助電極が設けられ、位相差引の一方側の送信電極の入力
部から受信電極に混入するノイズを他方側の送信電極に
よって誘起された補助電極からの補正信号により緩和相
殺することを特徴とする。
Structure of the Invention In order to achieve the above object, the present invention includes a fixed plate fixed to a main body, and a movable plate facing the fixed plate and movably provided to the main body, and the surface of the fixed plate has a A plurality of transmitting electrodes arranged at equal intervals and a band-shaped receiving electrode arranged in parallel with the transmitting electrodes are provided, and the movable plate faces the transmitting electrodes and the receiving electrodes and capacitively couples the two electrodes. A coupling electrode is provided, and an AC voltage having one or more pairs of phase differences having different phases and mutually opposite phases is applied to each of the transmitting electrodes, and displacement of the moving plate is detected based on the output signal of the receiving electrode. In a capacitive displacement detector, an auxiliary electrode is provided on the back surface of the fixed plate at a position corresponding to one of the transmitting electrodes of at least a pair of phase subtraction transmitting electrodes and is electrically connected to the receiving electrode. The noise mixed into the receiving electrode from the input part of the transmitting electrode on the other side is relaxed and canceled by the correction signal from the auxiliary electrode induced by the transmitting electrode on the other side.

実施例 第5図〜第8図には本発明にかかる静電容量型変位検出
器の固定板に形成された電極+R造が示され、本実施例
においては、第3図、第4図に示すように、固定板10
の裏面側に各送信電極ごとに電圧を印加する結線パター
ン22と、前述の混入ノイズを相殺する補助電極とを設
けた例が示されており、前述した提案装置と同一部材に
は同一符号を付しその説明を省略する。
Embodiment FIGS. 5 to 8 show the electrode +R structure formed on the fixed plate of the capacitive displacement detector according to the present invention, and in this embodiment, FIGS. As shown, the fixing plate 10
An example is shown in which a wiring pattern 22 for applying a voltage to each transmitting electrode and an auxiliary electrode for canceling the mixed noise mentioned above are provided on the back side of the device. and the explanation thereof will be omitted.

本実施例において、各送信電極12に位相の異なる交流
電圧を印加する場合には、各送信電極12に順次等位相
、差の交流電圧を印加することも可能であるが、第5図
に示すように、隣接する一対の送信電極に互いに逆位相
の交流電圧を印加し、一方何からのノイズを他方側から
のノイズで相殺する構成とすることもできる。
In this embodiment, when applying AC voltages with different phases to each transmitting electrode 12, it is also possible to sequentially apply AC voltages with the same phase and difference to each transmitting electrode 12, but as shown in FIG. In this way, it is also possible to apply alternating current voltages of mutually opposite phases to a pair of adjacent transmitting electrodes so that noise from one side is canceled out by noise from the other side.

本実施例第5図において、各送信電極12に対応する固
定板10の裏面位置には前記各送信電極12−1〜12
−8の各共通位相電極に共通位相の電圧を供給する結線
パターン22が形成されており、この結線パターンと各
送信電極12−1〜12−8はリード24により導通接
続されている。
In FIG. 5 of this embodiment, each transmitting electrode 12-1 to 12
A wiring pattern 22 for supplying a voltage of a common phase to each of the common phase electrodes 12-8 is formed, and this wiring pattern and each of the transmitting electrodes 12-1 to 12-8 are electrically connected by leads 24.

そして第5図装置においては各送信電極12−1〜12
−8に順次0度、180度、90度、270度、の位相
の異なる電圧が印加されており、ここにおいて位相が0
度の信号が入力される送信型44A12−4と、これに
対し逆位相、すなわち、180度ずれた電圧信号が印加
される送信電極12−5とで一対の位相差引が形成され
ており、同様に、送信電極12−2と送信電極12−3
及び送信電極12−6と送信型tIIi12−7とでそ
れぞれ位相差引が形成されている。
In the device shown in FIG. 5, each transmitting electrode 12-1 to 12
-8, voltages with different phases of 0 degrees, 180 degrees, 90 degrees, and 270 degrees are applied sequentially, and here the phase is 0 degrees.
A pair of phase difference is formed between the transmission type 44A12-4 to which a signal of 180 degrees is input, and the transmission electrode 12-5 to which a voltage signal with an opposite phase, that is, 180 degrees shifted, is applied. , transmitting electrode 12-2 and transmitting electrode 12-3
A phase difference is formed between the transmission electrode 12-6 and the transmission type tIIi 12-7.

本発明において、特徴的なことは、固定板の裏面に入力
部から受信電極に混入するノイズを打消すだめの補助電
極を設け、この補助電極からの補正信号によって前記ノ
イズを緩和相殺する構成どしたことである。
The characteristic feature of the present invention is that an auxiliary electrode is provided on the back surface of the fixed plate to cancel out the noise that enters the receiving electrode from the input section, and the noise is mitigated and canceled by the correction signal from the auxiliary electrode. That's what I did.

本実施例においCは、これら各位相差引を形成する一方
側の送信電極に対応する固定板10の裏面位置に、受信
電極14と導通する補助電極26が設りられていること
である。すなわち、第5図〜第8図においては、接線パ
ターンと受信電極14との位置関係から両者が最も近接
するざ信電極12−7からのノイズ成分の影響が大きい
ので270度の位相ずれを有する交流電圧が印加される
送信電極12−7に対し、逆位相の交流電圧が印加され
る送信電極12−6の裏面位置に補助電極26が設けら
れている。
C in this embodiment is that an auxiliary electrode 26 that is electrically connected to the receiving electrode 14 is provided at the back surface position of the fixed plate 10 corresponding to one side of the transmitting electrode forming each of these phase differences. That is, in FIGS. 5 to 8, due to the positional relationship between the tangential pattern and the receiving electrode 14, there is a phase shift of 270 degrees because the influence of the noise component from the transmitting electrode 12-7, which is closest to both, is large. An auxiliary electrode 26 is provided at a position on the back surface of the transmitting electrode 12-6 to which an AC voltage of opposite phase is applied to the transmitting electrode 12-7 to which an AC voltage is applied.

この結果、補助電極26には送信電極12−6と同位相
ずれを有する電圧信号が誘起されこの誘起された電圧信
号が受信電極14に導通供給される結果、位相差引の他
方の送信電極、すなわち270度の交流電圧が印加され
る送信電極1277の入力部から受信型l114に混入
するノイズを補助電極、26からの補正信号により効果
的に相殺することが可能となる。
As a result, a voltage signal having the same phase shift as that of the transmitting electrode 12-6 is induced in the auxiliary electrode 26, and this induced voltage signal is electrically supplied to the receiving electrode 14, so that the other transmitting electrode for phase subtraction, i.e. It becomes possible to effectively cancel the noise that enters the receiving type 114 from the input part of the transmitting electrode 1277 to which a 270 degree AC voltage is applied by the correction signal from the auxiliary electrode 26.

この補助電極26は、各送信電極12に位相差引が複数
ある場合には、送信電極の入力部から受信電極14に混
入するノイズの量に対応して所望散設けられ、特に混入
ノイズ量が大きい場合には全位相差箱の一方の送信電極
の裏面位置にそれぞれ設けると効果的である。また、こ
の場合において、混入ノイズの大小に応じ補助電極26
の電極面積を大小変化させることも可能である。
When each transmitting electrode 12 has a plurality of phase subtractors, the auxiliary electrodes 26 are provided at desired intervals in accordance with the amount of noise mixed into the receiving electrode 14 from the input section of the transmitting electrode, and are particularly provided when the amount of mixed noise is large. In some cases, it is effective to provide each of the transmitter electrodes on the back side of one of the transmitter electrodes of all the phase difference boxes. In this case, the auxiliary electrode 26
It is also possible to change the size of the electrode area.

本実施例においては、受信電極14に正規のルートを通
らないで混入するノイズ、すなわち送信電極12から結
合電極18を介して受信電極14に誘起される電圧信号
以外のノイズ、すなわち送信電極12から直接受信電極
14に混入するノイズを効果的に除去するために、補助
手段として送信電極12と受信電極14との間には第7
図、第8図に示すように、両者を電気的に隔絶づ゛る隔
絶アース電極28が設けられている。
In this embodiment, noise that enters the receiving electrode 14 without passing through the regular route, that is, noise other than the voltage signal induced from the transmitting electrode 12 to the receiving electrode 14 via the coupling electrode 18, that is, In order to effectively remove noise directly mixed into the receiving electrode 14, a seventh electrode is provided between the transmitting electrode 12 and the receiving electrode 14 as an auxiliary means.
As shown in FIG. 8, an isolated ground electrode 28 is provided to electrically isolate the two.

また、第6図〜第8図に示すように、固定板10の裏面
には送信電極12の入力接続部の外側位置に補助アース
電極30が設けられ、各送信電極に電圧信号を供給する
入力部から固定板10の面に沿って迂回して受信電極1
4に混入するノイズを阻止することができる。
Further, as shown in FIGS. 6 to 8, an auxiliary ground electrode 30 is provided on the back side of the fixed plate 10 at a position outside the input connection part of the transmitting electrode 12, and an input terminal for supplying voltage signals to each transmitting electrode. The receiving electrode 1 is detoured along the surface of the fixing plate 10 from the
It is possible to prevent noise from being mixed into 4.

さらに、第8図、第9図に示すように、固定板10の内
部にアース層32を設けることにより、送信型[i12
の入力部から固定板10の内部を通って受信電極14に
混入するノイズを阻止することも可能であり、上記隔絶
アース電極28、補助アース電極30.アース層32を
適宜設けることにより前記補助電極26の効果とあいま
って更に一層の受信電極14へのノイズの混入阻止効果
が発揮され、移動体の移動量を極めて高精度にて検出す
ることができる。
Furthermore, as shown in FIGS. 8 and 9, by providing a ground layer 32 inside the fixed plate 10, the transmission type [i12
It is also possible to prevent noise from entering the receiving electrode 14 through the inside of the fixed plate 10 from the input section of the isolated ground electrode 28, the auxiliary ground electrode 30. By appropriately providing the ground layer 32, together with the effect of the auxiliary electrode 26, the effect of preventing noise from entering the receiving electrode 14 is further exhibited, and the amount of movement of the moving object can be detected with extremely high accuracy. .

具体例 次に本発明装置をマイクロメータに適用した具体例につ
いて説明する。
Specific Example Next, a specific example in which the device of the present invention is applied to a micrometer will be described.

■ 装置構成 く1)固定板と移動板の配設態様 スピンドル側に移動板、本体側に固定板を配設。■ Equipment configuration 1) Arrangement of fixed plate and movable plate A moving plate is placed on the spindle side and a fixed plate is placed on the main body side.

(2)電極の配置とその駆動方法 送信電極8個を1組とし、ステータの円周上に5組等間
隔配列した。そして各組の送信電極に順次0度、45度
、90度、135度、180度、225度、270度の
位相を有する交流電圧を印加し、いわゆる8組駆動方式
とした。
(2) Arrangement of electrodes and method of driving the same One set consisted of eight transmitting electrodes, and five sets were arranged at equal intervals on the circumference of the stator. Then, alternating current voltages having phases of 0 degrees, 45 degrees, 90 degrees, 135 degrees, 180 degrees, 225 degrees, and 270 degrees were sequentially applied to each set of transmitting electrodes, resulting in a so-called 8-set drive system.

また、補助電極は、受信電極と最も近接するパターン電
路が導く電圧位相と逆位相の交流電圧が印加される送信
電極の裏面位置に設けた。
Further, the auxiliary electrode was provided at a position on the back surface of the transmitting electrode to which an AC voltage having a phase opposite to that of the voltage introduced by the patterned electrical path closest to the receiving electrode was applied.

(3)本装置適用マイクロメータの概略この具体例にお
いて、ロータ 1回転あたり電気角は360°X 5=
18006位相変化づることどなり、本具体例において
、0.5n+n+ビツヂの1μm読みのマイクロメータ
に適用ブる場合には、ロータ 1回転500パルスの信
号を出力することとなり、この場合には機械角360°
の位相を 360°1500÷5= 360’ / 100、すな
わち、360°位相を100分割することにより、1μ
o1の読みが実現される。
(3) Outline of micrometer applicable to this device In this specific example, the electrical angle per rotation of the rotor is 360° x 5 =
18006 phase change. In this specific example, if it is applied to a micrometer with a 1 μm reading of 0.5n+n+bits, a signal of 500 pulses per rotation of the rotor will be output, and in this case, a mechanical angle of 360 °

The reading of o1 is realized.

(4)検出部の具体的設計値 送信電極と結合電極間の距141f1mm以・下 受信電極と最も近接する結線パターン 電路との距@ : 2mm 送信電極1個の電極面積61111112送信電極の印
加電圧:3v 送信電極と補助電極との距!1ift:1mm補助電極
の電極面積:6mm2 結果 本具体例において混入ノイズを相殺す る補助電極が設(プられる結果、補助電極を有しない前
述の提案装置に比較して受信電極へのノイズ混入による
悪影響を効果的に解消することができた。
(4) Specific design values for the detection unit Distance between the transmitting electrode and the coupling electrode: 141 f1 mm or less Distance between the receiving electrode and the closest wiring pattern circuit @: 2 mm Electrode area of one transmitting electrode 61111112 Applied voltage of the transmitting electrode :3v Distance between transmitting electrode and auxiliary electrode! 1ift: 1mm Electrode area of auxiliary electrode: 6mm2 As a result, in this specific example, an auxiliary electrode is provided to cancel out the mixed noise, and as a result, the adverse effect of noise mixing on the receiving electrode is lower than in the proposed device described above that does not have an auxiliary electrode. could be effectively resolved.

すなわち、補助電極を有しない提案装 置によれば、結線パターンから受信電極に混入するノイ
ズは約200…v  <s/xx22(IB)であり、
このときの最大位相誤差は11°となり、上記1μm読
みのマイクロメータにおいては、最大非直線誤差は約3
μmとなる。
That is, according to the proposed device that does not have an auxiliary electrode, the noise that enters the receiving electrode from the wiring pattern is approximately 200...v <s/xx22 (IB),
The maximum phase error at this time is 11°, and the maximum nonlinear error is approximately 3
It becomes μm.

これに対し、補助電極を設(ブた具体例によれば、結線
パターンから受信電極に混入するノイズは40mv(S
/N ;36dB>までに減少しており、このときの最大誤差
は2.2°となり、上記マイクロメータにa5いて、そ
の最大非直線誤差は0.6μmと極めて小さい誤差にお
さえることができた。
In contrast, an auxiliary electrode was installed (but according to a specific example, the noise entering the receiving electrode from the wiring pattern was 40 mV (S
/N; 36 dB>, the maximum error at this time was 2.2 degrees, and the maximum non-linear error was suppressed to an extremely small error of 0.6 μm using the micrometer mentioned above. .

発明の詳細 な説明したように、本発明によれば、固定板の矢面には
、少なくとも一対の位相差引の送信電極のうちの一方の
送信電極に対応する固定板の裏面位置に、受信電極と導
通する補助電極が設りられる結果、送信電極に交流電圧
を印加する入力部から受信電極へのノイズの混入を効果
的に相殺でき、これにより装置の小型化を図るにもかか
わらず移動体の変位を極めて高精度にて検出することが
可能となる。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, the fixing plate has a receiving electrode and a receiving electrode on the back side of the fixing plate corresponding to one transmitting electrode of at least a pair of phase-subtraction transmitting electrodes. As a result of providing a conductive auxiliary electrode, it is possible to effectively cancel out the noise entering the receiving electrode from the input section that applies AC voltage to the transmitting electrode. It becomes possible to detect displacement with extremely high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が適用される静電容量型変位検出器の電
極構造を示す説明図、 第2図は第1図の固定板と移動板に設けられた各電極の
説明図、 第3図は各送信電極に交流電圧を印加する結線パターン
どその入力接続部を示す説明図、第4図は第3図の側面
図、 第5図は本発明に係る静電容量型変位検出器の固定板側
に設けられた電極構造を示す説明図、第6図は第5図の
A=Ag7i面図、 第7図、第8図、第9図は本発明装置の固定板に設けた
電極構造を示す伯の実施例図である。 10・・・固定板、 12・・・送信電極、 14・・・受信電極、 16・・・移動板、 18・・・結合電極、 26・・・補助電極、 28・・・隔絶アース電極、 30・・・補助アース電極。 代理人 弁理士 吉 1)研 二 (ばか1名) 第1図 I6 第2図 2 第3図    第4図 第5図 第6図 第7図 第8図 第9図 手続補正書く能) 特許庁長官殿 1、事件の表示 00和58年 特許願 第87218号2、発明の名称 静電容量型変位検出器 (3,補正をする者 事件との関係     特許出願人 任 所  東京都港区芝5丁目33番7号名称 株式会
社 三層製作所 4、代理人 5、補正の対象 明1[1書の発明の詳細な説明の欄、図面。 以上 手続補正書(蛙) 昭和58年 7月29日 1、事件の表示 昭和58年 特許願 第87218号 2、発明の名称 静電容量型変位検出器 3、補正をする者 事件との関係     特許出願人 件 所  東京都港区芝5丁目33番7号名称 株式会
社 三層製作所 4、代理人 5、補正の対象 明■1書及び図面 6、補正の内容 以上 明  細  書 1、発明の名称 静電容量型変位検出器 2、特許請求の範囲 (1)本体に固定された固定板と、固定板に対向され本
体に移動可能に設けられた移動板とを有し、固定板の表
面には等間隔に配列された複数の送信電極と、送信電極
に並列された帯状の受信電極とが設けられ、移動板には
送信電極及び受信電極にまたがって対向され両電極間を
静電結合する結合電極が設けられ、前記各送信電極にそ
れぞれ位相が異なりかつ互いに逆位相となる1対以上の
位相差箱を有する交流電圧を印加し、移動板の変位を受
信電極の出力信号に基づき検出する静電容量型変位検出
器において、固定板の裏面には少なくども一対の位相差
箱の送信電極のうちの一方の送信電極に対応する位置に
受信電極と導通する補助電極が設けられ、位相差箱の一
方側の送信電極の入力部から受信電極に混入するノイズ
を他方側の送信電極によって誘起された補゛助電極から
の補正信号により緩和相殺することを特徴とする静電容
量型変位検出器。 (2、特許請求の範囲(1)記載の装置において”、補
助電極は印加電圧信号が互いに逆位相となる位相差箱を
構成する全ての送信電極に対応させて設けられることを
特徴とする静電容量型変位検出器。 (3)特許請求の範囲(1)又は(2)記載の装置にお
いて、送信電極と出力電極間には両者を電気的に隔絶す
る隔絶アース電極が設けられていることを特徴とする静
電容量型変位検出器。 3、発明の詳細な説明 産業上の利用分野 本発明は静電容量型変位検出器、特に装置移動体の移動
変位を該移動体に連動する移動電極と本体に1固定され
た固定電極との両電極間の静電容量変化に基づいて検出
する静電容量型変位検出器に関するものである。 背景技術 従来より測定子の機械的変位或いは移動台の変位を電気
的に変換してその変位量を検出する変位検出器が周知で
あり、通常この種の装置は装置本体に移動可能に設番プ
られた移動体と、該移動体の移動量を検出し、電気信号
パルスに変換出力するエンコーダと、を含み、エンコー
ダの出力する電気信号パルスを計数回路にて計数し、そ
の計数値をデジタル表示器上にデジタル表示している。 ところで、この種の装置に用いられるエンコーダとして
従来より光電型エンコーダ、接点型エンコーダ、静電型
エンコーダ等が周知である。 光電型エンコーダでは、スケール或いは回転円板の表面
に等間隔に設けられたスリットと、該スケール或いは回
転円板のスリットを介して光路を形成する発光器及び受
光機と、を含み、移動体の変位ωに応じてスケール或い
は円板を移動或いは回転し発受光器間に形成される光路
をオンオフし、移動体の変位量を検出している。 しかし、この充電型エンコーダでは、発光器の消″IN
電力が大きく、使用する電池の交換回数が増加し、また
容量の大きな電池を使用した場合には装置全体が大型と
なるという欠点があった。さらに、測定精度を上げるた
めには、スケール或いは回転円板状に数ミクロン間隔で
スリットを設けることが必要となり、その製造が難しく
しかも運転中にクリアランス変化に起因するミスカウン
トを生じやすいという問題があった。 また、接点型エンコータでは、移動体の変位量検出にス
リット、ブラシなどを用いるため、これらスリット、ブ
ラシの消耗が激しく、また測定信号にノイズが混入しゃ
ずいという問題があった。 これに対し、静電型エンコーダでは、光電型エンコーダ
のように消費電力が大きくなく、接点型エンコーダのよ
うにブラシ、スリット等の消耗及びノイズの混入という
問題がないため、近年、移動体の検出装置に幅広く用い
られている。 従来技術 従来、このような変位検出器に用いられる静電型エンコ
ーダでは、複数対の電極板を対向配置してコンデンサを
形成し、両電極板を移動体の変位量に対応して相対移動
させ、このときの機械的変位量をコンデンサの静蕾容略
変化として電気的に検出していた。 たとえば、メインスケール上に一方の電極板を等間隔に
複数個整列配置し、このメインスケールと一定間隔をお
いて対向配置されたインデックススケール上に使方の電
極板を配置し、メインスケール又はインデックススケー
ルを移動体の変位に応じて板面と平行にスライド移動さ
せ、このとき両電極板により形成されるコンデンサの容
量変化により移動体の変位量を検出している。 しかし、従来の装置における静電型エンコーダでは、前
記移動電極板からなるコンデンサを用い分圧回路を形成
し、コンデンサの静電容量に応じて変化する分圧比を検
出して移動体の変位量を検出していた。このため、従来
の装置では、コンデンサを形成する移動電極板の板面間
距離が何らかの原因で変化しコンデンサの静電容量が変
化した場合や、分圧回路に印加する電源電圧が変化した
Jζうな場合には、その分圧出力が移動体の変位量に応
じて正確に対応しなくなり、正確な測定ができないとい
う欠点があった。 本発明の成立過程 上記従来の欠点を解浦するために、前記複数対からなる
電極対の一方の電極にそれぞれ異なる位相の交流電圧を
印加し、他方の電極に誘起される電圧信号を検出し、両
電極の相対移動に基づいて変化する出力信号の基準位相
に対する位相変化を検出して前記相対移動量を求める静
電容量型変位検出器が提案されている。 第1図、第2図にはこの提案された静電容量型変位検出
器の電極構造を示ず説明図が示され、装置本体側に固定
されたステータあるいはスケール板からなる固定板10
の表面側には、第2図に示すように、等間隔に複数の送
信電極12が配設されており、またこの送信電極12に
並列して帯状の受信電極14が設けられている。そして
前記各送信電極12に位相の異なる交流電圧信号が印加
される・。 一方、前記固定板10に対向させて移動体と連動するロ
ータあるいは可動スケール板からなる移動板16が設(
プられており、この移動板16には送信電極12と受信
電極14にまたがって対向配置された結合電極18と、
前記送信電極12および受信電極14まにだがっって対
向配置されたアース電極20とが交互に移動板16の移
動方向に沿って配置行されている。 他方、受信電極14には結合電極18を介して前記各送
信電極12の電圧信号に対応した電圧信号が誘起され、
従って、前記各送信電極12に位相の異なる交流電圧を
印加した状態で移動体を変位すれば受信電極14から移
動体の変位量に応じた位相の出力信号を得ることができ
、この受信質4セ14から出力される信号の位相を積分
器15にて演算処理し、所定の基準位相と比較すること
により、移動体の変位量を電源電圧の変動等に影響され
ることなく正確に測定することが可能となる。 近年、装置の携帯性及び操作性を図るために、装置の小
型化が要請されており、前述した提案装置を小型化する
場合には、各電極の電極面積が小さくなり、極間距離が
狭小となる。このため受信電極14の信号出力電圧が下
がり、いわゆるノイズの混入によるSN比の低下現象が
生じる。この極間距離の狭小に伴い送信電極12の入力
部から結合電極18を介することなく、受信電極14に
混入するもので、これにより装置の検出精度が悪化する
という問題があった。 発明の目的 本発明は前述した従来の課題に鑑み成されたものであり
、その目的は、装置の小型化を図るとともに、移動体の
変位量を正確に検出することができる静電容量型変位検
出器を提供することにある。 発明、の構成 上記目的を達成するために、本発明は、本体に固定され
た固定板と、固定板に対向され本体に移動可能に設けら
れた移動板とを有し、固定板の表面には等間隔に配列さ
れた複数の送信電極と、送信電極に並列された帯状の受
信電極とが設けられ、移動板には送信極及び受信型4M
iにまたがって対向され両電極間を静電結合する結合電
極が設けられ、前記各送信電極にそれぞれ位相が異なり
かつ互いに逆位相となる1対以上の位相差用を有する交
流電圧を印加し、移動板の変位を受信電極の出力信号に
基づぎ検出ツる静電容量型変位検出器において、固定板
の裏面には少なくとも一対の位相差用の送信電極のうち
の一方の送信電極に対応する位置に受信電極と導通する
補助電極が設けられ、位相差用の一方側の送信電極の入
ツノ部から受信電極に混入覆るノイズを他方側の送信電
極によって誘起された補助電極からの補正信号により緩
和相殺することを特徴とする。 実施例 第5図〜第8図には本発明にかかる静電容量型変位検出
器の固定板に形成された電極Mi造が示され、本実施例
においては、第3図、第4図に示ずように、固定板10
の裏面側に各送信電極ごとに電圧を印加する結線パター
ン22と、前述の混入ノイズを相殺する補助電極とを設
けた例が示されており、前述した提案装置と同一部材に
は同一符号を付しその説明を省略づる。 本実施例において、各送信電極12に位相の異なる交流
電圧を印加する場合には、各送信電極12に順次等位相
差の交流電圧が印加される。 本実施例第5図において、各送信電極12に対応する固
定板10の裏面位置には前記各送信電極12−1〜12
−8の各共通位相電極に共通位相の電圧を供給する結線
パターン22が形成されており、この結線パターンと各
送信電極12−1〜12−8はリード24により導通接
続されている。 そして第5図装置においては各゛送信電極12−1〜1
2−8に順次0度、90度、180゛度、270度、の
位相の異なる電圧が印加されており、ここにおいて位相
が0度の信号が入力される送信電極12−5と、これに
対し逆位相、すなわち、180度ずれた電圧信号が印加
される送信電極12−7とで一対の位相差用が形成され
ており、同様に、送信電極12−2ど送信電極12−4
及び送信電極12−1と送信電極12−3とでそれぞれ
位相外相が形成されている。 本発明において、特徴的なことは、固定板の矢面に人力
部から受信電極に混入覆るノイズを打消すための補助電
極を設(ブ、この補助電極からの補1に信号によって前
記ノイズを緩和相殺する+j、i成としたことである1
゜ 本実施例において(ま、これら各位相差用を形成づ−る
一方側の送信電極に対応する固定板10の裏面位置に、
受信7R極1/Iと導通する補助電極26か設【づられ
ていることである。すなわら、第5図へ・7158図に
J3いては、結線パターンと受信電イ々14どの位置関
係1)+ rう両者が最も近接する送信電(〜12−/
Iからのノーrズ成分の影響が大きいので270[印の
位相ずれを右づる交流電圧が印加される送信電極12−
4に対し、逆位相の交流電圧が印加される送信電極12
−6の裏面(fr置に補助iG1亜26が段(プられて
いる。 この結果、補助電極26には送信電極12−6と同位相
ずれを有する電圧信号が誘起されこの誘起された電圧信
号が受信電極14に導通供給される結果、位相差用の他
方の送信電極、すなわち270度の交流電圧が印加され
る送信電極12−4の入力部から受信電極1/Iに混入
するノイズを補助電極26からの補正信号により効果的
に相殺することが可能となる。 この補助電極26(よ、各送信電極12に位相差用が複
数ある場合には、送信電極の入力部から受信電極14に
混入するノイズの貧に対応して所望散設けられ、特に混
入ノイズ量が大きい場合には全位相差用の一方の送信電
極の裏面位置にそれぞれ設けると効果的である。また、
この場合において、混入ノイズの大小に応じ補助電極2
Gの電極面相を大小変化させることも可能である。 本実施例においては、受信電極14に正規のルートを通
らないで混入するノイズ、すなわち送信電極12から結
合電極18を介して受信電極14に誘起される電圧信号
以外のノイズ、ずなわち送信電極12から直接受信電極
14に混入するノイズを効果的に除去するために、補助
手段として送信電極12と受信電極14との間には第7
図、第8図に示すように、両者を電気的に隔絶する隔絶
アース電極28が設けられている。 また、第6図〜第8図に示ずように、固定板10の裏面
には送信電極12の入力接続部の外側位動に補助アース
電極30が設けられ、各送信電極に電圧信号を供給する
入力部から固定板10の面に沿って迂回して受信電極1
4に混入するノイズを阻止することができる。 さらに、第8図、第9図に示すように、固定板10の内
部にアース層32を設【ノること(こより、送信電tf
i12の入力部から固定板10の内部を通って受信電極
14に混入するノイズを阻止することも可能であり、上
記隔絶アース電極28、補助アース電極30.アース層
32を適宜段(プることにより前記補助電極26の効果
とあいまって更に一層の受信電極14へのノイズの混入
阻止効果が発揮され、移動体の移動Mを極めて高精度に
て検出することができる。 具体例 次に本発明装置をマイクロメータに適用した具体例につ
いて説明する。 ■ 装置構成 (1)固定板と移動板の配設態様 スピンドル側に移動板、本体側に固定板を配設。 (2)電極の配置とその駆動方法 送信電極8個を1紺とし、ステータの円周上に5組等間
隔配列した。そして各相の送信電極に順次0度、45度
、90度、135゛度、 180度、 225度、 2
70度の位相を有する交流電圧を印加し、いわゆる8組
駆動方式とした。 また、補助電極は、受信電極と最も近接するパターン電
路が導く電圧位相と逆位相の交流電圧が印加される送信
電極の裏面位置に設けた。 (3)本装置適用マイクロメータの概略この具体例にお
いて、ロータ 1回転あたり電気角ハ360’ x 5
=18006位相7化−することとなり、本具体例にお
いて、0.5mmピッチの1μmVAみのマイクロメー
タに適用する場合には、ロータ 1回転500パルスの
信号を出力することとなり、この場合には1幾械角36
o°の位相を360°1500÷5= 360’ / 
100.すなわち、360°位相を100分割すること
により、1μmの読みが実現される。 (/I)検出部の具体的設計値 送信電極と結合電極間の距Ni : 1mm J:I。 下 受信電極と最も近接ツる結線パターン 電路との距離: 2mm 送信電極1個の電極面積6mn+2 送信電極の印加電圧:3V 送信電極と補助電極との距離: 1mm補助電極の電極
面積: 6mm 2 結果 本具体例において混入ノイズを相殺す る補助電極が設けられる結果、補助電極を有しない前述
の提案装置に比較して受信電極へのノイズ混入による悪
影響を効果的に解消することができた。 すなわち、補助電極を有しない提案装 置によれば、結線パターンから受信電極に混入するノイ
ズは約200mv  (S/N=22dB>であり、こ
のときの最大位相誤差は11°となり、上記1μm読み
のマイクロメータにおいては、最大非直線誤差は約3μ
川となる。 これに対し、補助電極を設けた具体例 によれば、結線パターンから受信電極に混入するノイズ
は40v v  (S / N=36dB)までに減少
しており、このときの最大誤差は2.2°となり、上記
マイクロメータにiJ3いて、その最大非直線誤差は0
.6μmと極めて小さい誤差におさえることができた。 発明の詳細 な説明したように、本発明″によれば、固定板の裏面に
は、少なくとも一対の位相差引の送信電極のうちの一方
の送信電極に対応づ−る固定板の裏面位置に、受信電極
と導通する補助電極が設けられる結果、送信電極に交流
電圧を印加する入力部から受信電極へのノイズの混入を
効果的に相殺でき、これにより装置の小型化を図るにも
かかわらず移動体の変位を極めて高精度にて検出−′る
ことが可能となる。 4、図面の簡単な説明 第1図は本発明が適用される静電容量型変位検出器の電
極構造を示づ説明図、 第2図は第1図の固定板と移動板に設置ノられた各電極
の説明図、 第3図は各送信電極に交流電圧を印加−ツる結わ+jパ
ターンとその入力接続部を示す説明図、第4図は第3図
の側面図、 第5図は本発明に係る静電容量型変位検出器の固定板側
に設けられた電極構造を示す説明図、第6図は第5図の
A−へ断面図、 第7図、第8図、第9図は本発明装置の固定板に設けた
電極構造を示ず他の実施例図である。 10・・・固定板、 12・・・送信電極、 ]4・・・受信電極、 16・・・移動板、 18・・・結合電極、 26・・・補助電極、 28・・・隔絶アース電極、 330・・・補助アース電極。 代理人 弁理士 古 1)研 二 (ほか1名)
FIG. 1 is an explanatory diagram showing the electrode structure of a capacitive displacement detector to which the present invention is applied; FIG. 2 is an explanatory diagram of each electrode provided on the fixed plate and moving plate of FIG. 1; The figure is an explanatory diagram showing input connections such as wiring patterns for applying AC voltage to each transmitting electrode, FIG. 4 is a side view of FIG. 3, and FIG. 5 is an illustration of a capacitive displacement detector according to the present invention. An explanatory diagram showing the electrode structure provided on the fixing plate side, FIG. 6 is a plane view of A=Ag7i in FIG. FIG. 3 is a diagram showing an embodiment of the structure. 10... Fixed plate, 12... Transmitting electrode, 14... Receiving electrode, 16... Moving plate, 18... Coupling electrode, 26... Auxiliary electrode, 28... Separated earth electrode, 30...Auxiliary earth electrode. Agent Patent attorney Yoshi 1) Kenji (1 idiot) Figure 1 I6 Figure 2 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Procedure amendment writing ability) Patent Office Mr. Commissioner, 1. Indication of the case 00W58 Patent Application No. 87218 2. Name of the invention Capacitive displacement detector (3. Person making the amendment. Relationship with the case. Patent applicant's office. 5, Shiba, Minato-ku, Tokyo. Chome 33-7 Name Sanso Seisakusho Co., Ltd. 4, Agent 5, Subject of amendment 1 [Detailed description of the invention in document 1, drawings. Written amendment to the above procedure (frog) July 29, 1982 1. Indication of the case 1982 Patent Application No. 87218 2. Name of the invention Capacitive displacement detector 3. Person making the amendment Relationship to the case Patent applicant Location 5-33-7 Shiba, Minato-ku, Tokyo Name Sanjo Seisakusho Co., Ltd. 4, Agent 5, Statement of the subject of the amendment 1 Document and drawing 6, Contents of the amendment Document 1, Name of the invention Capacitive displacement detector 2, Claims (1) ) It has a fixed plate fixed to the main body, and a movable plate facing the fixed plate and movably provided to the main body, and on the surface of the fixed plate, there are a plurality of transmitting electrodes arranged at equal intervals, and a plurality of transmitting electrodes arranged at equal intervals. and band-shaped receiving electrodes arranged in parallel with each other, and a coupling electrode facing across the transmitting electrode and the receiving electrode and capacitively coupling between the two electrodes is provided on the moving plate, and each of the transmitting electrodes has a different phase. In a capacitive displacement detector that applies an alternating current voltage and has one or more pairs of phase difference boxes that are in opposite phases to each other and detects the displacement of the moving plate based on the output signal of the receiving electrode, the back surface of the fixed plate is An auxiliary electrode that is electrically connected to the receiving electrode is provided at a position corresponding to at least one of the transmitting electrodes of the pair of phase difference boxes, and the auxiliary electrode is connected to the receiving electrode from the input part of the transmitting electrode on one side of the phase difference box. A capacitive displacement detector characterized in that the noise caused by the transmission is relaxed and canceled by the correction signal from the auxiliary electrode induced by the transmitting electrode on the other side. (2. The device according to claim (1) A capacitive displacement detector characterized in that auxiliary electrodes are provided corresponding to all transmitting electrodes forming a phase difference box in which applied voltage signals have opposite phases to each other. (3) Claims of Claims A capacitive displacement detector in the device according to scope (1) or (2), characterized in that an isolation ground electrode is provided between the transmitting electrode and the output electrode to electrically isolate them. 3 DETAILED DESCRIPTION OF THE INVENTION Industrial Field of Application The present invention relates to a capacitive displacement detector, and more particularly, to a capacitive displacement detector, which detects the displacement of a moving body by using both a moving electrode that moves in conjunction with the moving body and a fixed electrode that is fixed to the main body. The present invention relates to a capacitive displacement detector that detects based on changes in capacitance between electrodes. BACKGROUND ART Displacement detectors that electrically convert the mechanical displacement of a measuring point or the displacement of a moving base and detect the amount of displacement have been well known, and this type of device is usually installed in a movable manner in the main body of the device. The encoder detects the moving amount of the moving object and converts it into electrical signal pulses, and the electrical signal pulses output from the encoder are counted by a counting circuit, and the counted value is converted into a digital signal. It is displayed digitally on the display. Incidentally, photoelectric encoders, contact encoders, electrostatic encoders, and the like are conventionally known as encoders used in this type of apparatus. A photoelectric encoder includes slits provided at equal intervals on the surface of a scale or rotating disk, and a light emitter and a light receiver that form an optical path through the slits of the scale or rotating disk. The scale or disk is moved or rotated in accordance with the displacement ω to turn on and off the optical path formed between the light emitter and receiver, thereby detecting the amount of displacement of the moving body. However, with this rechargeable encoder, the light emitter is turned off.
There are disadvantages in that the electric power is large, the number of times the battery used is replaced increases, and if a battery with a large capacity is used, the entire device becomes large. Furthermore, in order to improve measurement accuracy, it is necessary to provide slits at intervals of several microns on a scale or rotating disk, which is difficult to manufacture and also causes problems such as miscounts due to clearance changes during operation. there were. Furthermore, since contact type encoders use slits, brushes, etc. to detect the amount of displacement of a moving body, there are problems in that these slits and brushes are subject to rapid wear and that noise is mixed into the measurement signal. On the other hand, electrostatic encoders do not consume as much power as photoelectric encoders, and do not have the problems of wear of brushes, slits, etc. and noise contamination like contact encoders. Widely used in equipment. Conventional technology Conventionally, in an electrostatic encoder used in such a displacement detector, a capacitor is formed by arranging multiple pairs of electrode plates facing each other, and both electrode plates are moved relative to each other in accordance with the amount of displacement of a moving object. The amount of mechanical displacement at this time was electrically detected as a change in the capacitor's static capacity. For example, one electrode plate is arranged on the main scale at equal intervals, and the electrode plate to be used is placed on the index scale, which is placed facing the main scale at a certain interval. The scale is slid parallel to the plate surface according to the displacement of the moving body, and at this time, the amount of displacement of the moving body is detected by the change in capacitance of the capacitor formed by both electrode plates. However, in the electrostatic encoder in the conventional device, a voltage dividing circuit is formed using a capacitor made of the moving electrode plate, and the displacement amount of the moving object is detected by detecting the voltage dividing ratio that changes according to the capacitance of the capacitor. was detected. For this reason, in conventional devices, when the distance between the surfaces of the movable electrode plates that form the capacitor changes for some reason and the capacitance of the capacitor changes, or when the power supply voltage applied to the voltage divider circuit changes, In this case, the partial pressure output no longer corresponds accurately to the amount of displacement of the moving body, resulting in a drawback that accurate measurement cannot be performed. Establishment process of the present invention In order to solve the above-mentioned conventional drawbacks, alternating current voltages of different phases are applied to one electrode of the plurality of electrode pairs, and the voltage signal induced in the other electrode is detected. A capacitive displacement detector has been proposed that detects a phase change with respect to a reference phase of an output signal that changes based on the relative movement of both electrodes to determine the relative movement amount. 1 and 2 are explanatory diagrams without showing the electrode structure of this proposed capacitive displacement detector, and a fixed plate 10 consisting of a stator or scale plate fixed to the device main body side.
As shown in FIG. 2, a plurality of transmitting electrodes 12 are arranged at equal intervals on the front side of the transmitting electrode 12, and a band-shaped receiving electrode 14 is provided in parallel with the transmitting electrodes 12. Then, AC voltage signals having different phases are applied to each of the transmitting electrodes 12. On the other hand, a movable plate 16 consisting of a rotor or a movable scale plate is provided opposite to the fixed plate 10 and which is interlocked with the movable body.
The movable plate 16 has a coupling electrode 18 disposed facing each other across the transmitting electrode 12 and the receiving electrode 14;
Ground electrodes 20 facing each other between the transmitting electrodes 12 and the receiving electrodes 14 are alternately arranged along the moving direction of the moving plate 16. On the other hand, a voltage signal corresponding to the voltage signal of each transmitting electrode 12 is induced in the receiving electrode 14 via the coupling electrode 18,
Therefore, if the moving body is displaced while applying alternating current voltages with different phases to each of the transmitting electrodes 12, an output signal with a phase corresponding to the amount of displacement of the moving body can be obtained from the receiving electrodes 14, and this reception quality 4 By processing the phase of the signal output from the cell 14 in the integrator 15 and comparing it with a predetermined reference phase, the amount of displacement of the moving object is accurately measured without being affected by fluctuations in power supply voltage, etc. becomes possible. In recent years, there has been a demand for miniaturization of devices in order to improve their portability and operability, and when miniaturizing the proposed device mentioned above, the electrode area of each electrode becomes smaller and the distance between the electrodes becomes narrower. becomes. Therefore, the signal output voltage of the receiving electrode 14 decreases, resulting in a phenomenon in which the S/N ratio decreases due to the so-called noise mixture. Due to the narrow distance between the electrodes, the particles enter the receiving electrode 14 from the input part of the transmitting electrode 12 without passing through the coupling electrode 18, which causes a problem in that the detection accuracy of the device deteriorates. Purpose of the Invention The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to miniaturize the device and provide a capacitive displacement device that can accurately detect the amount of displacement of a moving object. The purpose is to provide a detector. Structure of the Invention In order to achieve the above object, the present invention includes a fixed plate fixed to a main body, and a movable plate facing the fixed plate and movably provided to the main body, and having a movable plate on the surface of the fixed plate. is provided with a plurality of transmitting electrodes arranged at equal intervals and a band-shaped receiving electrode parallel to the transmitting electrodes, and the moving plate has transmitting electrodes and receiving type 4M.
coupling electrodes facing each other across the electrodes and capacitively coupling the two electrodes are provided, and applying an alternating current voltage having one or more pairs of phase differences having different phases and opposite phases to each other to each of the transmitting electrodes, In a capacitive displacement detector that detects the displacement of a moving plate based on the output signal of a receiving electrode, the back surface of the fixed plate corresponds to one of at least a pair of transmitting electrodes for phase difference. An auxiliary electrode that conducts with the receiving electrode is provided at a position where the noise is mixed into the receiving electrode from the input horn of the transmitting electrode on one side for phase difference, and a correction signal from the auxiliary electrode is induced by the transmitting electrode on the other side. It is characterized by relaxing and canceling out. Embodiment FIGS. 5 to 8 show the electrode structure formed on the fixing plate of the capacitive displacement detector according to the present invention, and in this embodiment, FIGS. As shown, the fixing plate 10
An example is shown in which a wiring pattern 22 for applying a voltage to each transmitting electrode and an auxiliary electrode for canceling the mixed noise mentioned above are provided on the back side of the device. It is attached and the explanation is omitted. In this embodiment, when applying alternating current voltages with different phases to each transmitting electrode 12, alternating current voltages having the same phase difference are sequentially applied to each transmitting electrode 12. In FIG. 5 of this embodiment, each transmitting electrode 12-1 to 12
A wiring pattern 22 for supplying a voltage of a common phase to each of the common phase electrodes 12-8 is formed, and this wiring pattern and each of the transmitting electrodes 12-1 to 12-8 are electrically connected by leads 24. In the apparatus shown in FIG. 5, each transmitting electrode 12-1 to 1
Voltages with different phases of 0 degrees, 90 degrees, 180 degrees, and 270 degrees are sequentially applied to the transmitter electrode 12-8, and the transmitter electrode 12-5 receives a signal with a phase of 0 degrees. On the other hand, a pair of phase difference electrodes are formed with the transmitting electrode 12-7 to which a voltage signal of opposite phase, that is, 180 degrees shifted, is applied, and similarly, the transmitting electrode 12-2 and the transmitting electrode 12-4
The transmitting electrode 12-1 and the transmitting electrode 12-3 each form an out-of-phase phase. The characteristic feature of the present invention is that an auxiliary electrode is provided at the center of the fixing plate to cancel out the noise that enters the receiving electrode from the human power section (B). This is because +j cancels out and i becomes 1.
In this embodiment (well, at the back side position of the fixed plate 10 corresponding to the transmitting electrode on one side forming each of these phase differences,
An auxiliary electrode 26 is provided which is electrically connected to the receiving 7R pole 1/I. In other words, in Figure 5 and J3 in Figure 7158, the positional relationship between the wiring pattern and the receiving power 14 (1) + r is the closest transmitting power (~12-/
Since the influence of the nose r component from I is large, the transmitting electrode 12- to which an AC voltage is applied that shifts the phase shift of the mark 270[to the right]
4, a transmitting electrode 12 to which an AC voltage of opposite phase is applied.
The auxiliary iG1 sub 26 is stepped on the back side (fr) of the auxiliary electrode 26. As a result, a voltage signal having the same phase shift as that of the transmitting electrode 12-6 is induced in the auxiliary electrode 26, and this induced voltage signal is electrically supplied to the receiving electrode 14, and as a result, noise mixed into the receiving electrode 1/I from the input part of the other transmitting electrode for phase difference, that is, the transmitting electrode 12-4 to which a 270 degree AC voltage is applied, is assisted. This can be effectively canceled out by the correction signal from the electrode 26. This auxiliary electrode 26 (if each transmitting electrode 12 has a plurality of phase difference signals, the signal from the input part of the transmitting electrode to the receiving electrode 14) They are provided as desired in response to the amount of mixed noise, and especially when the amount of mixed noise is large, it is effective to provide them at the back side of one of the transmitting electrodes for all phase differences.
In this case, the auxiliary electrode 2
It is also possible to change the size of the electrode surface phase of G. In this embodiment, noise that enters the receiving electrode 14 without going through the normal route, that is, noise other than the voltage signal induced from the transmitting electrode 12 to the receiving electrode 14 via the coupling electrode 18, that is, the noise that enters the receiving electrode 14 without passing through the normal route, In order to effectively remove noise that directly enters the receiving electrode 14 from the transmitting electrode 12, a seventh
As shown in FIG. 8, an isolation ground electrode 28 is provided to electrically isolate the two. Further, as shown in FIGS. 6 to 8, an auxiliary ground electrode 30 is provided on the back side of the fixed plate 10 at a position outside the input connection part of the transmitting electrode 12, and supplies a voltage signal to each transmitting electrode. The receiving electrode 1 is detoured along the surface of the fixed plate 10 from the input section
It is possible to prevent noise from being mixed into 4. Furthermore, as shown in FIG. 8 and FIG.
It is also possible to prevent noise from entering the receiving electrode 14 from the input part of the i12 through the inside of the fixed plate 10, and the isolated ground electrode 28, the auxiliary ground electrode 30. By appropriately stepping the ground layer 32, combined with the effect of the auxiliary electrode 26, the effect of preventing noise from entering the receiving electrode 14 is further exerted, and the movement M of the moving body can be detected with extremely high precision. Specific Example Next, a specific example in which the device of the present invention is applied to a micrometer will be explained. ■ Device configuration (1) Arrangement of fixed plate and movable plate The movable plate is on the spindle side and the fixed plate is on the main body side. Arrangement. (2) Arrangement of electrodes and their driving method Eight transmitting electrodes were made of one dark blue color and five sets were arranged at equal intervals on the circumference of the stator. degrees, 135 degrees, 180 degrees, 225 degrees, 2
An alternating current voltage having a phase of 70 degrees was applied, resulting in a so-called 8-set drive system. Further, the auxiliary electrode was provided at a position on the back surface of the transmitting electrode to which an AC voltage having a phase opposite to that of the voltage introduced by the patterned electrical path closest to the receiving electrode was applied. (3) Outline of the micrometer applicable to this device In this specific example, the electrical angle per rotation of the rotor is 360' x 5
= 18006 phase 7 - In this specific example, when applied to a micrometer of only 1 μm VA with 0.5 mm pitch, a signal of 500 pulses per rotation of the rotor will be output, and in this case, 1 Geomechanical angle 36
The phase of o° is 360°1500÷5=360'/
100. That is, by dividing the 360° phase by 100, a reading of 1 μm is achieved. (/I) Specific design values for the detection unit Distance between the transmitting electrode and the coupling electrode Ni: 1 mm J:I. Distance between the lower receiving electrode and the closest wiring pattern circuit: 2 mm Electrode area of one transmitting electrode: 6 mm + 2 Applied voltage of transmitting electrode: 3 V Distance between transmitting electrode and auxiliary electrode: 1 mm Electrode area of auxiliary electrode: 6 mm 2 Results In this specific example, as a result of providing an auxiliary electrode for canceling mixed noise, it was possible to effectively eliminate the adverse effects of noise mixed into the receiving electrode, compared to the above-mentioned proposed device that does not have an auxiliary electrode. In other words, according to the proposed device that does not have an auxiliary electrode, the noise that enters the receiving electrode from the wiring pattern is approximately 200mv (S/N = 22dB>), and the maximum phase error at this time is 11°, which is equivalent to the above 1μm reading. For micrometers, the maximum nonlinear error is approximately 3μ
Become a river. On the other hand, according to a specific example in which an auxiliary electrode is provided, the noise that enters the receiving electrode from the wiring pattern is reduced to 40 v v (S / N = 36 dB), and the maximum error in this case is 2.2 °, and the micrometer above has iJ3, and its maximum nonlinear error is 0.
.. We were able to suppress the error to an extremely small error of 6 μm. As described in detail, according to the present invention, on the back surface of the fixing plate, at a position on the back surface of the fixing plate corresponding to one of the transmitting electrodes of at least a pair of phase-subtraction transmitting electrodes, As a result of providing an auxiliary electrode that conducts with the receiving electrode, it is possible to effectively cancel out the noise that enters the receiving electrode from the input section that applies alternating voltage to the transmitting electrode, which allows for easy movement even though the device is smaller. It becomes possible to detect the displacement of the body with extremely high precision. 4. Brief description of the drawings Figure 1 shows and explains the electrode structure of a capacitive displacement detector to which the present invention is applied. Figure 2 is an explanatory diagram of each electrode installed on the fixed plate and moving plate in Figure 1. Figure 3 is an illustration of the AC voltage applied to each transmitting electrode - twist + j pattern and its input connection. 4 is a side view of FIG. 3, FIG. 5 is an explanatory diagram showing the electrode structure provided on the fixed plate side of the capacitive displacement detector according to the present invention, and FIG. 6 is a side view of FIG. A sectional view taken along line A in FIG. 5, and FIGS. 7, 8, and 9 are views of other embodiments that do not show the electrode structure provided on the fixing plate of the device of the present invention. 10... Fixing plate, 12... Transmitting electrode, ]4... Receiving electrode, 16... Moving plate, 18... Coupling electrode, 26... Auxiliary electrode, 28... Isolated earth electrode, 330... Auxiliary earth Electrode. Agent: Patent attorney Furu 1) Kenji (and 1 other person)

Claims (1)

【特許請求の範囲】 〈1)本体に固定された固定板と、固定板に対向され本
体に移動可能に設けられた移動板とを有し、固定板の表
面には等間隔に配列された複数の送信電極と、送信電極
に並列された帯状の受信電極とが設けられ、移動板には
送信電極及び受信電極にまたがって対向され両電極間を
静電結合する結合電極が設【プられ、前記各送信電極に
それぞれ位相が異なりかつ互いに逆位相となる1対以上
の位相差引を有する交流電圧を印加し、移動板の変位を
受信電極の出力信号に基づき検出する静電容量型変位検
出器において、固定板の裏面には少なくとも一対の位相
差引の送信電極のうちの一方の送信電極に対応J−る位
置に受信電極と導通する補助電極が設けられ、位相差引
の一方側の送信電極の入力部から受信電極に混入するノ
イズを他方側の送信電極によって誘起された補助電極か
らの補正信号により緩和相殺することを特徴とする静電
容量型変位検出器。 (2、特許請求の範囲(1)記載の装置において、補助
電極は印加電圧信号が互いに逆位相となる位相差引を構
成する全ての送信電極に対応させて設けられることを特
徴とする静電容量型変位検出器。 (3)特許請求の範囲(1)又は(2)記載の装置にお
いて、送信電極と出力電極間には両者を電気的に隔絶す
る隔絶アース電極が設けられていることを特徴とする静
電容量型変位検出器。
[Claims] <1) It has a fixed plate fixed to the main body and a movable plate facing the fixed plate and movably provided on the main body, and the movable plate is arranged at equal intervals on the surface of the fixed plate. A plurality of transmitting electrodes and a band-shaped receiving electrode are provided in parallel with the transmitting electrodes, and a coupling electrode is provided on the moving plate to face the transmitting electrodes and the receiving electrodes and to capacitively couple the two electrodes. , a capacitive displacement detection method in which alternating current voltages having one or more pairs of phase differences having different phases and mutually opposite phases are applied to each of the transmitting electrodes, and displacement of the moving plate is detected based on the output signal of the receiving electrode. In the device, an auxiliary electrode is provided on the back surface of the fixed plate at a position corresponding to one of the transmitting electrodes of at least a pair of phase subtraction transmitting electrodes and is electrically connected to the receiving electrode. A capacitive displacement detector characterized in that noise mixed into a receiving electrode from an input section of the sensor is relaxed and canceled by a correction signal from an auxiliary electrode induced by a transmitting electrode on the other side. (2. The device according to claim (1), characterized in that the auxiliary electrode is provided corresponding to all the transmitting electrodes forming a phase subtraction in which the applied voltage signals have opposite phases to each other. Mold displacement detector. (3) The device according to claim (1) or (2), characterized in that an isolation ground electrode is provided between the transmitting electrode and the output electrode to electrically isolate them. Capacitive displacement detector.
JP8721883A 1983-05-18 1983-05-18 Displacement detector of electrostatic capacity type Granted JPS59212710A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP8721883A JPS59212710A (en) 1983-05-18 1983-05-18 Displacement detector of electrostatic capacity type
DE3418566A DE3418566C2 (en) 1983-05-18 1984-05-18 Displacement detector
US06/611,869 US4633249A (en) 1983-05-18 1984-05-18 Displacement detector utilizing change of capacitance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8721883A JPS59212710A (en) 1983-05-18 1983-05-18 Displacement detector of electrostatic capacity type

Publications (2)

Publication Number Publication Date
JPS59212710A true JPS59212710A (en) 1984-12-01
JPH0354284B2 JPH0354284B2 (en) 1991-08-19

Family

ID=13908767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8721883A Granted JPS59212710A (en) 1983-05-18 1983-05-18 Displacement detector of electrostatic capacity type

Country Status (1)

Country Link
JP (1) JPS59212710A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155706U (en) * 1985-03-19 1986-09-27
JPS61235702A (en) * 1985-04-11 1986-10-21 Mitsutoyo Mfg Corp Electrostatic capacity type calipers
JPH032211U (en) * 1989-05-29 1991-01-10
JPH04242117A (en) * 1991-01-16 1992-08-28 Mitsutoyo Corp Capacitance type displaycement measuring apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155706U (en) * 1985-03-19 1986-09-27
JPH0424405Y2 (en) * 1985-03-19 1992-06-09
JPS61235702A (en) * 1985-04-11 1986-10-21 Mitsutoyo Mfg Corp Electrostatic capacity type calipers
JPH032211U (en) * 1989-05-29 1991-01-10
JPH04242117A (en) * 1991-01-16 1992-08-28 Mitsutoyo Corp Capacitance type displaycement measuring apparatus

Also Published As

Publication number Publication date
JPH0354284B2 (en) 1991-08-19

Similar Documents

Publication Publication Date Title
US5598153A (en) Capacitive angular displacement transducer
KR910006670B1 (en) Untouching type pattern sensor improved
US4603365A (en) Magnetic detection apparatus
US9435831B2 (en) Current sensor
US4788546A (en) Electrostatic capacity type encoder
JP3373587B2 (en) Electric signal generator
US9835473B2 (en) Absolute electromagnetic position encoder
JPS6093312A (en) Capacity type measuring machine of displacement
JP2008051827A (en) Angle transducer
US4633249A (en) Displacement detector utilizing change of capacitance
JPS59212710A (en) Displacement detector of electrostatic capacity type
US6550150B1 (en) Surveying instrument incorporating a magnetic incremental rotary encoder
JPH0354285B2 (en)
JP7463593B2 (en) Magnetic sensor system and lens position detection device
JP2002221402A (en) Measuring system and measuring method for capacitance type gap sensor
JPH0376404B2 (en)
JPS59187203A (en) Digital display micrometer
JPH0412812B2 (en)
JPH0624733Y2 (en) Phase discrimination type capacitance detector
JPS61269017A (en) Electrostatic capacitance type encoder
JPS62159002A (en) Digital display type measuring instrument
JPS61269016A (en) Electrostatic capacitance type encoder
JPS5868615A (en) Output circuit of magnetic type rotary encoder
JPH08327306A (en) Capacitance type displacement detector
JPS61235702A (en) Electrostatic capacity type calipers