[go: up one dir, main page]

JPS59210043A - Preparation of unsaturated carboxylic acid - Google Patents

Preparation of unsaturated carboxylic acid

Info

Publication number
JPS59210043A
JPS59210043A JP59009801A JP980184A JPS59210043A JP S59210043 A JPS59210043 A JP S59210043A JP 59009801 A JP59009801 A JP 59009801A JP 980184 A JP980184 A JP 980184A JP S59210043 A JPS59210043 A JP S59210043A
Authority
JP
Japan
Prior art keywords
catalyst
unsaturated carboxylic
carboxylic acid
acid
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59009801A
Other languages
Japanese (ja)
Other versions
JPS6131092B2 (en
Inventor
Masato Otani
真人 大谷
Hideo Matsuzawa
松沢 英雄
Masao Kobayashi
雅夫 小林
Hiromichi Ishii
石井 啓道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP59009801A priority Critical patent/JPS59210043A/en
Publication of JPS59210043A publication Critical patent/JPS59210043A/en
Publication of JPS6131092B2 publication Critical patent/JPS6131092B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled compound in high selectivity in high yield, by oxidizing acrolein or methacrolein with O2 at high temperature in a gaseous phase by the use of a catalyst having high selectivity, life, and utility prepared by adding K, Cu, Fe, etc. to a system consisting of P-Mo-V. CONSTITUTION:In preparing acrylic acid or methacrylic acid by oxidizing catalytically acrolein or methacrolein with O2 at high temperature in a gaseous phase, a catalyst (e.g., catalyst shown by the formula II, etc.) shown by the formula (X is one or more selected from K, Rb, Cs, and Tl; Y is one or more selected from Cu, Si and Sb; Z is one or more selected from Ni, Mn, and U; a=0.5-6; b=12, c=0.2-6; d=0.01-6; e=0.01-6; f=0.01-6) is used. EFFECT:Highly catalytic activity can be maintained for a long period.

Description

【発明の詳細な説明】 本発明は不飽和アルデヒドを空気または分子状酸素によ
り、気相高温で酸化して相当する不飽和カルボ/酸を製
造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for producing the corresponding unsaturated carboxylic acids by oxidizing unsaturated aldehydes with air or molecular oxygen at high temperature in the vapor phase.

従来、不飽和アルデヒドを気相接触酸化して相当する不
飽和カルボ/酸の製造法に関して数多くの特r[が提案
されている。これらは王としてアクロレインからアクリ
ル酸を製造する方法を重点とするものであり、そこに提
案されている触媒をメタクリル酸製造用として使用1−
ると副反応が太さいため選択率が低く、ずた、)J命が
短か(実用的でなかった。
Conventionally, a number of methods have been proposed for producing unsaturated carboxylic acids by vapor phase catalytic oxidation of unsaturated aldehydes. These mainly focus on the method of producing acrylic acid from acrolein, and the catalyst proposed therein is used to produce methacrylic acid.
If so, the selectivity would be low due to severe side reactions, and the lifespan would be short (not practical).

一方、メタクロレインからメタクリル酸ヲ製造する方法
に関しても、多数の触媒が提案されているが、いずれも
反応成績が低かったり、触媒活性の経時低下が犬ぎかっ
たり、反応温度が高すぎたりの欠点を有し、工業触媒と
しては必ずしも充分とは言えない。
On the other hand, many catalysts have been proposed for the production of methacrylic acid from methacrolein, but all of them have poor reaction results, a slow decline in catalyst activity over time, or too high reaction temperature. It has drawbacks and is not necessarily sufficient as an industrial catalyst.

本発明者らはメタクロレインからメタクリル酸を製造す
るに用いる触媒について鋭意研究したところ、上記の欠
点を改良し、活性、選択性、寿命ともに実用性の高い触
媒を見い出し、さらにこの触媒がアクロレインからアク
リル酸を製造する方法にも適用し得ることを見い出し、
本発明を完成するに到った。
The present inventors conducted extensive research on catalysts used to produce methacrylic acid from methacrolein, and found a catalyst that improved the above-mentioned drawbacks and was highly practical in terms of activity, selectivity, and lifespan. It was discovered that the method could also be applied to a method for producing acrylic acid, and
The present invention has now been completed.

本発明は、アクロレイ/またはメタクロレイ/を分子状
酸素で接触酸化してアクリル酸複たはメタクリル酸な得
るに際−し、一般式が・Pa MobXc VdYe 
ZfOg但しPはリン、Moはモリブデ/、■はバナジ
ウム、0は酸素をあられし、Xはカリウム、ルビジウム
、セシウムおよびタリウムより成る群から選ばれる1種
筐たは2種以上、Yは銅、硅素ぢよびア/チモンより成
る群から選ばれた1種または2種、2は鉄、ニッケル、
マンガンおよびウランより成る群から選ばれた1種また
は2種以上をあられし、a +  b +  (! +
  d +  e *  fはそれぞれの成分の原子比
をあられし、a = 0.5〜61 b−12,C=0
.2〜6.d=0.01〜6、  e 〜0.01〜6
.  f = 0.01〜6.  g+X触媒の酸化状
態で定まる値である。
The present invention provides acrylic acid or methacrylic acid by catalytic oxidation of acrolei/or methacrolei/ with molecular oxygen, and the general formula is -Pa MobXc VdYe
ZfOg, where P is phosphorus, Mo is molybdenum/, ■ is vanadium, 0 is oxygen, X is one or more selected from the group consisting of potassium, rubidium, cesium and thallium, Y is copper, One or two selected from the group consisting of silicon and acetate; 2 is iron, nickel,
One or more selected from the group consisting of manganese and uranium, a + b + (! +
d + e * f represents the atomic ratio of each component, a = 0.5 ~ 61 b-12, C = 0
.. 2-6. d=0.01~6, e~0.01~6
.. f = 0.01-6. g+X is a value determined by the oxidation state of the catalyst.

であられされる触媒を用いることを特徴とする不飽和カ
ルボ/酸の製造方法である。
This is a method for producing an unsaturated carboxylic acid, which is characterized by using a catalyst formed by:

本発明の方法によれば不飽和アルデヒドから相当する不
飽和カルボ/酸が高収率、高選択率で得ることが可能で
あり、特に長期にわたって高い触媒活性が維持されるの
で、工業的価値はきわめて犬ざい。
According to the method of the present invention, it is possible to obtain the corresponding unsaturated carboxylic acid from an unsaturated aldehyde in high yield and high selectivity, and in particular, high catalytic activity is maintained over a long period of time, so the industrial value is high. Extremely dog-like.

リンRよびモリブデンを含む触媒系がアクロレイン複た
はメタクロレインの気相接触酸化用として有効であるこ
とは良(知られている。す/とモリブデンはその混合割
合、熱処理の温度雰囲気によってきわめて複雑な化合物
を生成す   ・る。しかし、従来提案されてぎたリン
、モリブデ/を含む触媒系ではこれを気相酸化に用いる
と通常用いられる反応温度領域で経時的に活性、選択性
の低下が生ずることが多く、工業触媒としては問題を有
していた。
It is well known that a catalyst system containing phosphorus and molybdenum is effective for gas phase catalytic oxidation of acrolein complex or methacrolein. However, when using the previously proposed catalyst systems containing phosphorus and molybdenum for gas phase oxidation, the activity and selectivity decrease over time in the reaction temperature range normally used. This has caused problems as an industrial catalyst.

これに対して本発明の触媒では熱的安定性が著しく高(
,600℃で熱処理を施しても高性能を維持することが
できる。
In contrast, the catalyst of the present invention has extremely high thermal stability (
, high performance can be maintained even after heat treatment at 600°C.

本発明の触媒ではリン、モリブデン以外の添加金属はり
/、モリブデンときわめて安定な塩を作る性質があり、
この事が活性、選択性の維持に寄与しているものと思わ
れる。
The catalyst of the present invention has the property of forming extremely stable salts with additive metals other than phosphorus and molybdenum, and molybdenum.
This seems to contribute to maintaining activity and selectivity.

本発明で用いる触媒の各成分元素の化学的な存在状態は
極めて複雑であって厳密には明らかでないが、おそう(
どの成分も単独の酸化物としては存在せず、緊密に結合
していると思われる。
The chemical state of existence of each component element of the catalyst used in the present invention is extremely complex and is not strictly clear, but it is likely (
None of the components exist as individual oxides, but appear to be tightly bound together.

触媒を調製する方法としては特殊な方法に限定する必要
はなく、成分の著しい偏在を伴なわない限り、従来から
よ(知られている蒸発乾固法、沈澱法、酸化物混合法等
の種々の方法を用いることができろ。
There is no need to limit the method for preparing the catalyst to a special method, and as long as it does not involve significant uneven distribution of components, conventional methods (such as known evaporation to dryness method, precipitation method, oxide mixing method, etc.) may be used. You can use this method.

触媒の調製に用いる原料化合物としては、各元素の硝酸
塩、アンモニウム塩、ハロゲン化物等の塩類、酸化物あ
るいはリンモリブデン酸等のへテロポリ酸またはその塩
類を組合せて使用することがでざる。例えばモリブデン
酸ア/モニウムの水溶液にメタバナジ7酸ア/モニウム
を溶解し、これにリン酸の水溶液を加えた後、硝酸タリ
ウム水溶液と硝酸鉄水溶液を加えて得られたスラリーに
適当な担体物質を加えて蒸発乾固する。
As raw material compounds used for preparing the catalyst, salts and oxides of each element such as nitrates, ammonium salts, and halides, or heteropolyacids such as phosphomolybdic acid or salts thereof may not be used in combination. For example, am/monium metavanadate heptamate is dissolved in an aqueous solution of am/monium molybdate, an aqueous solution of phosphoric acid is added thereto, an aqueous thallium nitrate solution and an aqueous iron nitrate solution are added, and an appropriate carrier material is added to the resulting slurry. Add and evaporate to dryness.

熱処理の温度は300〜650℃、好ましくは350〜
600℃の範囲で、熱処理の時間は温度によって異なる
が1時間ないし数十時間が適当である。
The temperature of heat treatment is 300-650°C, preferably 350-650°C
Although the heat treatment time varies depending on the temperature within the range of 600° C., it is suitable for one hour to several tens of hours.

本発明の方法で用いる触媒はシリカ、アルミナ、シリカ
・アルミナ、シリコンカーバイト等の不活性担体に担持
させるか、あるいはこれらで希釈して用いるごとができ
る。
The catalyst used in the method of the present invention can be supported on an inert carrier such as silica, alumina, silica-alumina, silicon carbide, etc., or can be diluted with these.

本発明の触媒は固定床、流動床あるいは移動床にも使用
できる。
The catalyst of the invention can be used in fixed beds, fluidized beds or moving beds.

原料ガス中の不飽和アルデヒドの濃度は広い範囲で変え
ることができるが、容量で1〜20係が適当であり、と
(に3〜15%が好ましい。
Although the concentration of unsaturated aldehyde in the raw material gas can be varied over a wide range, it is suitably between 1 and 20% by volume, and preferably between 3 and 15%.

原料不飽和アルデヒドは、水、低級飽和アルデヒド等の
不純物を少量含んでいてもよ(、これらの不純v!lJ
は反応に実質的な影響を与えない。
The raw material unsaturated aldehyde may contain small amounts of impurities such as water and lower saturated aldehydes (these impurities v!lJ
has no substantial effect on the reaction.

酸素源としては空気を用いるのが経済的であるが、必要
ならば純酸素で富化した空気も用い得る。原料ガス中の
酸素濃度は不飽和アルデヒドに対するモル比で規定され
、この値は0.3〜4と(に0.4〜2.5が好ましい
It is economical to use air as the oxygen source, but air enriched with pure oxygen can also be used if necessary. The oxygen concentration in the raw material gas is defined by the molar ratio to the unsaturated aldehyde, and this value is preferably 0.3 to 4 and 0.4 to 2.5.

原料ガスは窒素、水蒸気、炭酸ガス等の不活性ガスを加
えて希軒してもよい。反応圧力は常圧から数気圧までが
よい。反応温度は240〜450℃の範囲で選ぶことが
できるが、と(に270〜400℃が好ましい。
The raw material gas may be diluted by adding an inert gas such as nitrogen, water vapor, or carbon dioxide gas. The reaction pressure is preferably from normal pressure to several atmospheres. The reaction temperature can be selected within the range of 240 to 450°C, but preferably 270 to 400°C.

以下に実施例および比較例を挙げて本発明の方法を更に
詳しく説明する。以下Kgいては部は重量部を表わし、
不飽和カルボ/酸選択率は不飽和アルデヒドの反応した
モル数に対する生成した不飽和カルボン酸のモル数の割
合(バーセント)を表わす。
The method of the present invention will be explained in more detail below with reference to Examples and Comparative Examples. Hereinafter, "Kg" means parts by weight.
The unsaturated carboxylic acid/acid selectivity represents the percentage of the number of moles of unsaturated carboxylic acid produced relative to the number of moles of reacted unsaturated aldehyde.

実施例1 バラモリブデン酸アンモニワムを約60°Cの純水に溶
解した。これに85%リン酸を加える。
Example 1 Ammonium rosemolybdate was dissolved in pure water at about 60°C. Add 85% phosphoric acid to this.

次いで硝酸セシウム、メタバナジン岐アンモニウム、硝
酸銅及び硝酸鉄を純水に溶解させたものを加える。該混
合液を加熱攪拌しながら蒸発乾固した。
Next, a solution of cesium nitrate, ammonium metavanazine branch, copper nitrate, and iron nitrate dissolved in pure water is added. The mixture was evaporated to dryness while heating and stirring.

得られたケークを130℃で16時間乾燥後、圧縮成型
し450℃で2時間焼成しこれを触媒とした。
The resulting cake was dried at 130° C. for 16 hours, compression molded, and calcined at 450° C. for 2 hours to be used as a catalyst.

触媒の組成は原子比でMo、2p、 C52vo、3C
uo、IP’e(1,5であった。本触媒を反応器に充
填しメタクロレイ75%、酸素10%、水蒸気30%、
窒素55%(容量%)の混合ガスを反応温度330°C
1接触時間3.6秒で通じた。生成物をガスクロマトグ
ラフィーで分析したところ、メタクロレイン反応率80
.9%、メタクリル酸選択率は82.2%であった。
The composition of the catalyst is Mo, 2p, C52vo, 3C in atomic ratio.
uo, IP'e (1,5. This catalyst was packed into a reactor and 75% methachloride, 10% oxygen, 30% water vapor,
A mixed gas containing 55% nitrogen (volume %) was reacted at a reaction temperature of 330°C.
One contact time was 3.6 seconds. When the product was analyzed by gas chromatography, the methacrolein reaction rate was 80.
.. 9%, and the methacrylic acid selectivity was 82.2%.

この他、酢酸、炭酸ガス、−酸化炭素等が生成した。In addition, acetic acid, carbon dioxide gas, -carbon oxide, etc. were generated.

実施例2〜6 実施例1と同様にして次の触媒を調製し、実施例1と同
一条件で反応させ、表1の結果を得た。
Examples 2 to 6 The following catalysts were prepared in the same manner as in Example 1, and reacted under the same conditions as in Example 1 to obtain the results shown in Table 1.

表1 225Table 1 225

Claims (1)

【特許請求の範囲】 アクロレイン又はメタクリル酸/を分子状酸素により高
温の気相で接触酸化して、アクリル酸またはメタクリル
酸を得るに際し、次の一般式 %式% 但し、Pはリン、Moはモリブデン、■はバナジウム、
0は酸素をあられし、Xはカリウム、ルビジウム、セシ
ウムおよびタリウムより成る群から選ばれる])1.l
Jiまたは2種以上、Yは銅、硅素およびアンチモノよ
り成る群から選ばれた1オ・1(または2種、Zは鉄、
ニッケル、マンガン?よびウラ/より成る群から選ばれ
た1種または2 J:ilE以上’?: b> Vvわ
し、a、  b、  (!、  a、  e、  fお
よびgはそれぞれの成分の原子比をあられし、a = 
0.5〜6 、  b = 12 、  c = 0.
2〜6 、  d 〜0.0 1〜6.   e  =
O,Ol〜6.   f  〜0.0 1〜6゜gは触
媒の酸化状態で足まる値である。 であられされる触媒を用いることを特徴とする不飽和カ
ルボン酸の製造方法。
[Claims] When acrylic acid or methacrylic acid is obtained by catalytically oxidizing acrolein or methacrylic acid in a high-temperature gas phase with molecular oxygen, the following general formula % is used, where P is phosphorus and Mo is Molybdenum, ■ vanadium,
0 represents oxygen and X is selected from the group consisting of potassium, rubidium, cesium and thallium]) 1. l
Ji or 2 or more, Y is 1 or 1 (or 2) selected from the group consisting of copper, silicon and anti-mono, Z is iron,
Nickel or manganese? 1 or 2 selected from the group consisting of J:ilE or more'? : b> Vv, a, b, (!, a, e, f and g are the atomic ratios of each component, a =
0.5-6, b = 12, c = 0.
2-6, d ~0.0 1-6. e =
O, Ol~6. f ~0.0 1~6°g is a value that is sufficient depending on the oxidation state of the catalyst. A method for producing an unsaturated carboxylic acid, characterized by using a catalyst formed by:
JP59009801A 1984-01-23 1984-01-23 Preparation of unsaturated carboxylic acid Granted JPS59210043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59009801A JPS59210043A (en) 1984-01-23 1984-01-23 Preparation of unsaturated carboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59009801A JPS59210043A (en) 1984-01-23 1984-01-23 Preparation of unsaturated carboxylic acid

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP50144134A Division JPS5824419B2 (en) 1975-12-03 1975-12-03 Fuhouwa Carbon Sanno Seizouhouhou

Publications (2)

Publication Number Publication Date
JPS59210043A true JPS59210043A (en) 1984-11-28
JPS6131092B2 JPS6131092B2 (en) 1986-07-17

Family

ID=11730291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59009801A Granted JPS59210043A (en) 1984-01-23 1984-01-23 Preparation of unsaturated carboxylic acid

Country Status (1)

Country Link
JP (1) JPS59210043A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4803302A (en) * 1986-01-08 1989-02-07 Mitsubishi Rayon Co., Ltd. Process for the production of methacrylic acid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4803302A (en) * 1986-01-08 1989-02-07 Mitsubishi Rayon Co., Ltd. Process for the production of methacrylic acid

Also Published As

Publication number Publication date
JPS6131092B2 (en) 1986-07-17

Similar Documents

Publication Publication Date Title
JPH03238051A (en) Preparation of catalyst for preparing methacrylic acid
JPS5827255B2 (en) Method for producing unsaturated fatty acids
JPS5946934B2 (en) Method for manufacturing methacrylic acid
JPS5826329B2 (en) Seizouhou
JP2720215B2 (en) Preparation of catalyst for methacrylic acid production
KR0131336B1 (en) Method of producing methacrylic acid
JPH05177141A (en) Method for producing methacrylic acid
JP3209778B2 (en) Preparation of catalyst for methacrylic acid production
JP3186243B2 (en) Preparation of catalyst for methacrylic acid production
JPS5824419B2 (en) Fuhouwa Carbon Sanno Seizouhouhou
JPS59210043A (en) Preparation of unsaturated carboxylic acid
JPS61114739A (en) Preparation of catalyst for preparing unsaturated carboxylic acid
JP2814321B2 (en) Method for producing methacrylic acid
JPH03167152A (en) Production of methacrylic acid
JPS5842176B2 (en) Fuhouwa Carbon Sanno Seizouhou
JPS582933B2 (en) Methacrylic Sanno Seizouhouhou
JPS5825653B2 (en) Fuhouwa Carbon Sanno Seizouhouhou
JPS6136816B2 (en)
JP2592325B2 (en) Method for producing unsaturated carboxylic acid
JP2883454B2 (en) Method for producing unsaturated carboxylic acid
JPS5826740B2 (en) Method for producing unsaturated carboxylic acid
JPS5829289B2 (en) Deck steam pipe with thermal insulation coating
JPS5910332B2 (en) Method for producing methacrolein and methacrylic acid
JPH064559B2 (en) Method for producing methacrylic acid
JP2928397B2 (en) Method for producing unsaturated carboxylic acid