[go: up one dir, main page]

JPS5920941A - Cathode structure - Google Patents

Cathode structure

Info

Publication number
JPS5920941A
JPS5920941A JP57129531A JP12953182A JPS5920941A JP S5920941 A JPS5920941 A JP S5920941A JP 57129531 A JP57129531 A JP 57129531A JP 12953182 A JP12953182 A JP 12953182A JP S5920941 A JPS5920941 A JP S5920941A
Authority
JP
Japan
Prior art keywords
cathode
lanthanum
nickel
cathode base
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57129531A
Other languages
Japanese (ja)
Inventor
Masaru Nikaido
勝 二階堂
Yoshiaki Ouchi
義昭 大内
Eiji Yamamoto
栄治 山本
Sakae Kimura
木村 栄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57129531A priority Critical patent/JPS5920941A/en
Publication of JPS5920941A publication Critical patent/JPS5920941A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/14Solid thermionic cathodes characterised by the material

Landscapes

  • Solid Thermionic Cathode (AREA)

Abstract

PURPOSE:To obtain a super-highspeed type cathode structure which assures long emission life and does not result in deterioration in strength of cathode base even after a long period of use by dispersely scattering lanthanum into the cathode base in the form of LaNi5 and La2O8. CONSTITUTION:A nickel-lanthanum alloy containing scattered lanthanum of 0.3wt% in the form of LaNi5 and a reinforced type nickel-lanthanum alloy containing scattered lanthanum of 0.1wt% and in the form of La2O3 of 0.3wt% to such nickel-lanthanum alloy are manufactured by the powder metallurgy method. Thereafter, the alloy is punched into disks in the thickness of 40mum with diameter of 1.3mm. after the ordinary processings such as rolling and annealing. The obtained disk is built into the cathode structure of a color CRT as the cathode base 11 of the high speed type cathode as shown in the figure so as to manufacture a color CRT. As a result, even if the thickness of cathode base is reduced to 100mum or less, a color CRT which assures longer electron emission life and less deformation can be obtained.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、酸化物陰極構体、特にカラーブラウン管等の
陰極線C二使用して好適な、超連動かつ長寿命の酸化物
陰極構体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to an oxide cathode structure, and particularly to a super-interlocking and long-life oxide cathode structure suitable for use in cathode rays such as color cathode ray tubes. .

(発明の技術的背景と問題点) テレビジョン受像機はそのスイッチを入れた時出来るだ
け速やかに安定した画面が得られることが望ましい。
(Technical Background and Problems of the Invention) It is desirable for a television receiver to be able to provide a stable screen as quickly as possible when it is turned on.

最近は、この要硝を満たす為に連動型陰極が広く使用さ
れている。この連動型陰極は、第1図に示すよう1二例
えば陰極スリーブ02にニッケル・クロム合金を用い、
ニッケルの陰極基体(Ill上には電子放射物質03)
が塗布される。陰極スリーブ叫は陰極製造工程中1=湿
水素中で加熱し、表面を陵化することにより黒化し、熱
放射率を例えばニッケルの0.2に対して0.8に増大
させ、定常動作温度の高温時における熱放射を増大し、
かつこの増大した熱損失C二見合うだけの大きな、例え
ば陰極容積当りで、これまでの非速動型陰極の約4倍の
ヒータcI→の電力を入力することC二より急速な温度
上昇な可能とするものである。
Recently, interlocking cathodes have been widely used to meet this requirement. As shown in FIG. 1, this interlocking cathode uses a nickel-chromium alloy for the cathode sleeve 02,
Nickel cathode substrate (electron emitting material 03 on Ill)
is applied. During the cathode manufacturing process, the cathode sleeve is heated in wet hydrogen to blacken the surface and increase its thermal emissivity to, for example, 0.8 compared to nickel's 0.2, which increases the steady-state operating temperature. increases thermal radiation at high temperatures,
In addition, this increased heat loss C2 is commensurately large, for example, by inputting the heater cI→ which is about four times as much power per cathode volume as that of a conventional non-fast-acting cathode, it is possible to increase the temperature more rapidly than C2. That is.

さて、連動性を得る方法としては、投入電力を増加する
以外に陰極スリーブあるl、Nは陰極基体金属の容積を
小さくシ、熱容量を小さくする方法75;ある。陰極ス
リーブにおいては、上記ニッケル・クロム合金にタング
ステンを添加、強化したニッケル・クロム・タングステ
ン合金(特開昭53−119662号)を用いることC
二より10μm程度にまで、陰極スリーブ厚を小さくす
ること−tri m !@である。一方陰極基体(11
)の板厚を薄くすることは、電子放射及び寿命JlIC
二は高温強度の点で好ましくないとされてきた。即ち、
電子放射を助長する還元剤の負が減少すること及び、断
面積減少C二伴う強度低下に因るものである。
Now, as a method for obtaining interlocking properties, in addition to increasing the input power, there is a method of reducing the volume of the cathode base metal and reducing the heat capacity of the cathode sleeve. For the cathode sleeve, use a nickel-chromium-tungsten alloy (Japanese Unexamined Patent Publication No. 119662/1983), which is made by adding tungsten to the above-mentioned nickel-chromium alloy to strengthen it.
2. Reduce the cathode sleeve thickness to about 10 μm! It is @. On the other hand, the cathode substrate (11
) can reduce the electron emission and lifetime JlIC
2 has been considered unfavorable in terms of high temperature strength. That is,
This is due to the decrease in the negative power of the reducing agent that promotes electron emission and the decrease in strength due to the decrease in cross-sectional area C2.

これC二対し、ある種の還元剤を多く含んだ陰極基体を
使用すると、動作初期の電子放射は一般1′−良好であ
るが、結果的に寿命の短かし)特性を丞す傾向がある。
On the other hand, when a cathode substrate containing a large amount of a certain type of reducing agent is used, the electron emission at the initial stage of operation is generally good, but as a result the life tends to be shortened and the characteristics tend to deteriorate. be.

そこで還元剤の量が動作寿命中、充分確保され、しかも
強度的に優れた薄し)陰極基体金属が望まれる訳である
。最・近、この要望を満たす為に、ランタンをLaN:
14の金属間化合物粒子の形で分散させ、これによって
霜、子放射物質活性化の為の還元剤源の涸渇を防止し同
時にまた分散粒子C二より強化した陰極基体が開発され
陰極の連動性向上に太い【二効果を収めている。
Therefore, a thin cathode base metal is desired, which ensures a sufficient amount of reducing agent throughout the operating life and has excellent strength. Recently, in order to meet this request, I have made a lantern LaN:
A cathode substrate was developed in which C14 was dispersed in the form of intermetallic particles, thereby preventing frost and depletion of the source of reducing agent for activation of the radioactive substance, and at the same time strengthening the cathode substrate by dispersing particles C2. It has a large improvement [two effects].

しかしながら、特に長時間の陰極動作においては電子放
射物質活性化の為、ニッケル中に分散したLaNi5が
消耗するにつれて、分散強化の効果が小さくなり、ある
動作時間以降、急に陰極基体が変形する現象が認められ
た。%に100μm以下で、劣化が多くみられる。従っ
て、長時間の使用にわたって強度低下のない陰極基体が
望まれる訳である0 (発明の目的) 本発明の目的はエミッションライフ的C長N 命で、更
に長時間の使用においても陰極基体の強度低下のない超
速動型陰極構体を提供することにあるO (発明の概要) 即ち本発明は陰極基体中にランタンがLaNi5および
LaBOBの形で分散して含有したところC二特徴を有
しており、その結果陰極基体の厚さを100μm以下C
二しても電子放射寿命が長く、変1−bx少な5)陰極
基体となって超速動形として優れた陰極構体が得られる
However, especially during long-term cathode operation, as LaNi5 dispersed in nickel is consumed due to the activation of electron emitting materials, the effect of dispersion strengthening becomes smaller, and after a certain operating time, the cathode substrate suddenly deforms. was recognized. %, deterioration is often seen at 100 μm or less. Therefore, it is desired to have a cathode substrate that does not reduce its strength even after long-term use. (Summary of the Invention) The present invention has two characteristics in that the cathode substrate contains lanthanum dispersed in the form of LaNi5 and LaBOB. As a result, the thickness of the cathode substrate was reduced to 100 μm or less.
In addition, the electron emission lifetime is long and the cathode substrate has a small 1-bx ratio.5) A cathode structure excellent as an ultra-fast moving type can be obtained.

(発明の実施例) 以下、実施例を用いて更1:詳しく説明する。(Example of the invention) Hereinafter, a further detailed explanation will be given using examples.

ランタンを、0.3″!を前ノく−セント、1.laN
 i Sの形で分散し含有するニッケル・ランタン合金
、このニッケル・ランタン合金に更1ニランタンを0.
1 M*り、 −セントおよび0.3iitノく−セン
) LaBOBの形で分散し含有した強化壓のニッケル
・ランタン合金を、粉末冶金法で製造し、その後、圧姑
、焼鈍などの通常の工程を経て、厚さ40μm、直径1
.3鰭の円板に打ち抜き、これを第1図1−示すような
連動型陰極の陰極基体(11)として、カラーブラウン
管の陰極栴体内に組み込み、強制寿命試験を行なった。
Lantern, 0.3"! in front of - cent, 1. laN
A nickel-lanthanum alloy containing dispersed nickel-lanthanum in the form of iS;
A strengthened nickel-lanthanum alloy dispersed in the form of LaBOB is produced by powder metallurgy, and then subjected to conventional processes such as compaction and annealing. After the process, the thickness is 40μm and the diameter is 1
.. A three-fin disk was punched out, and this was incorporated into the cathode body of a color cathode ray tube as a cathode substrate (11) of an interlocking type cathode as shown in FIG. 1, and a forced life test was conducted.

まり、マグネシウムを0.06重量ツク−セント、ケイ
素なO,O3*量パーセント含有する従来の陰極基体合
金を真空溶解し、その後は上述した工程と同様の工程で
カラーブラウン管を作製した0 出画時間は、従来の厚さ135μmの陰極基体使用品が
、はぼ4秒であるの区二対して、本笑施例の場合いずれ
も2秒台で出画できるような陰極構体を作ることができ
た。これらをヒータ電圧を定格の20%増で断続点火し
、長時間に亘り、陰極電流を測定した。寿命試験におけ
る陰極電流曲線を第2図1−示す。第2図において曲線
(21)はLaNi5を含有しLa20Bを含有しない
陰極基体使用の場合の、曲線−1例は本発明のランタン
をLaN13の形で0.3重量パーセント含有し、  
La20Bの形で0.1 重搦゛パーセントおよび0.
3重量パーセント含む場合の、曲線例はマグネシウムを
0.06重量パーセント、ケイ素を0.03重葉パーセ
ント含有する場合の陰極電流曲線である。また曲線■)
は、従来の135μmの板厚でMgを0.06重量パー
セント、 81を0.03重葉パーセント含有する場合
の陰極電流曲線である。この結果は、従来の陰極基体を
40μmの板厚に薄くすることで、陰極電流が大巾(二
低減するのに対し、ランタンをLaNi3の形で添加す
ることにより、陰極基体が薄くなっても、陰極電流の寿
命中における低減を抑制する効果のあること、更にLa
20Bの添加が陰極を流C一対し、何ら悪影響を及ぼさ
ないことを示す。
A conventional cathode base alloy containing 0.06% by weight of magnesium and 0.06% by weight of silicon O, O3* was melted in vacuum, and then a color cathode ray tube was manufactured using the same process as described above. In contrast to the conventional product using a cathode substrate with a thickness of 135 μm, which takes about 4 seconds, in this example, it is possible to create a cathode structure that can produce an image in about 2 seconds. did it. These were ignited intermittently at a heater voltage 20% higher than the rated value, and the cathode current was measured over a long period of time. Figure 2 shows the cathode current curve in the life test. In FIG. 2, curve (21) is for a cathode substrate containing LaNi5 and no La20B; curve-1 example contains 0.3 weight percent of the lanthanum of the present invention in the form of LaN13;
0.1% weight and 0.1% in the form of La20B.
An example curve for a case containing 3 weight percent is a cathode current curve for a case containing 0.06 weight percent magnesium and 0.03 weight percent silicon. Also curve ■)
is a cathode current curve for a conventional plate having a thickness of 135 μm and containing 0.06 weight percent of Mg and 0.03 weight percent of 81. This result shows that by thinning the conventional cathode substrate to a thickness of 40 μm, the cathode current is significantly reduced, whereas by adding lanthanum in the form of LaNi3, even if the cathode substrate is thinned, , has the effect of suppressing the decrease in cathode current during its life, and furthermore, La
It is shown that the addition of 20B causes no negative effect on the cathode flow.

次に、陰極基体の変形を、第1グリツド(二印加する陰
極電流のカットオフ電圧の変化量として測定した。即ち
、陰極と第1グリッド間の寸法変化がカットオフ電圧の
変化量に比例する事実を利用したものである。カットオ
フ電圧の変動曲線を第3図に示す。第3図C二おいて、
曲線(81)FiLaNi5を含有しLazOBを含有
しない場合の、曲線卿および(33)はランタンなLa
Ni5の形で0.3重量パーセント含翁し、  La2
0Bの形で01重量パーセントおよび0.3重オバーセ
ント含む場合の、また曲線((4)はマグネシウムを0
.06重猜パーセント、ケイ素をo、oa7紹パーセン
ト含有する場合のカットオフ変動曲線である。また、曲
線姉)は従来の板厚でマグネシウムを0.06重量パー
セント、ケイ素を0.03重量バーセント含有する場合
のカットオフ電圧変動曲線を示す。この結果は、従来の
陰極基体を40μmI−したことで、陰極基体が著しく
変形するのに対し、ランタンを添′加することにより強
化されていること、また、ランタンを一部La20Bの
形で添加することによりs  LaN16だけの時より
、長時間の使用にたえうることを示すものである。
Next, the deformation of the cathode substrate was measured as the amount of change in the cutoff voltage of the cathode current applied to the first grid (i.e., the dimensional change between the cathode and the first grid is proportional to the amount of change in the cutoff voltage). This takes advantage of the fact. The variation curve of the cutoff voltage is shown in Figure 3. In Figure 3 C2,
Curve (81) contains FiLaNi5 and does not contain LazOB, and (33) is the lanthanum La
Contains 0.3% by weight in the form of Ni5, La2
01 weight percent and 0.3 weight percent in the form of 0B, and the curve ((4)
.. It is a cut-off variation curve in the case of containing 0.06% by weight and 7% by weight of silicon. Further, curve sister) shows a cut-off voltage fluctuation curve when the conventional plate thickness contains 0.06 weight percent of magnesium and 0.03 weight percent of silicon. This result shows that the cathode substrate is significantly deformed due to the conventional cathode substrate having a thickness of 40 μmI, but it is strengthened by adding lanthanum, and that lanthanum is partially added in the form of La20B. This shows that it can be used for a longer period of time than when only sLaN16 is used.

本実施例では1. ’LaNi5として添加したランタ
ン11to、3重量パーセントであるがLaN16とし
て添加するランタンは0.05重量パーセント以上1.
0重量パーセント以下であることが望ましい。これは、
0、05重量パーセント未満では、充分な電子放射が得
られず、また、1.o重量パーセントを超えると、加工
性に難を生じ、工業的生産性に児、合わなくなるからで
ある。
In this example, 1. 'Lanthanum 11to added as LaNi5 is 3% by weight, but lanthanum added as LaN16 is 0.05% by weight or more1.
It is desirable that it be 0 weight percent or less. this is,
If it is less than 0.05 weight percent, sufficient electron emission cannot be obtained; This is because if it exceeds 0% by weight, processability becomes difficult and it is not suitable for industrial productivity.

一方、  La20Bとして添加するランタンは、0.
1重量パーセント以上1.0重量パーセントが望ましい
。これは、0.1重量パーセント以下では、強度向上の
効果が充分得られず、また、1.0蔗量パーセントを超
えると、加工性に難を生じ工業的生産性に見合わなく々
るがらである。
On the other hand, the lanthanum added as La20B is 0.
1 weight percent or more and 1.0 weight percent are desirable. This is because if the amount is less than 0.1% by weight, the effect of improving strength cannot be obtained sufficiently, and if it exceeds 1.0% by weight, the processability becomes difficult and it is not suitable for industrial productivity. It is.

また、本実施例では、陰極スリーブ6二陰極基体を嵌め
込む方式のものについて説明したが、第4シ1〜第8図
に示すように、カップ型、板状体内側カール型、板状体
外側カール型、複スリーブ懸架型、直熱型などのいずれ
のものに、陰極基体間。
In addition, in this embodiment, the cathode sleeve 6 is of a type in which two cathode bases are fitted, but as shown in FIGS. Between the cathode substrate and any of the external curl type, multi-sleeve suspension type, direct heating type, etc.

f511 、 (61) 、 fil+ 、、 f&I
lが使用されても、本発明c係る陰極基体を用いた場合
、いずれも、前記したようなすぐれた効果を示すもので
ある〇 (発明の効果) この様に、本発明に係る陰極構体を具備した電子銃を配
設した電子管r%l二安定した特性を賛求されるカラー
ブラウン管においては、陰極基体の劣化がなく安定した
寿命特性を示し、しかも極だった連動性を付与された管
特性を得ることができる0
f511, (61), fil+,, f&I
Even if 1 is used, when the cathode substrate according to the present invention c is used, the above-mentioned excellent effects are exhibited. (Effects of the invention) In this way, the cathode structure according to the present invention In color cathode ray tubes, which are praised for their stable characteristics, they are tubes that exhibit stable life characteristics without deterioration of the cathode substrate, and are also provided with interlocking characteristics that are similar to poles. Characteristics can be obtained 0

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)および(b)は、傍熱型陰極を示す平面図
と断面図、第2図および第3図は本発明と従来例におけ
る強制寿命試験結果を示す特性曲線図、第4図〜第8図
は本発明のそれぞれ他の実施例に適応する陰極基体部分
を示す断面図である。 11、41.51.61.71.81・・・陰極基体1
2、42.52.62.72.82・・・陰極スリーブ
13、43.53.63.73.83・・・電子放射物
質(7317)代理人 弁理士 則 近 憲 佑 (ほ
か1名)第  ””(b) 第  2 図 強伽ハ部豪與(h) 第  3 図
Figures 1 (a) and (b) are a plan view and a sectional view showing an indirectly heated cathode, Figures 2 and 3 are characteristic curve diagrams showing the results of a forced life test for the present invention and a conventional example, and Figure 4 8 are cross-sectional views showing cathode base portions adapted to other embodiments of the present invention. 11, 41.51.61.71.81...Cathode base 1
2, 42.52.62.72.82...Cathode sleeve 13, 43.53.63.73.83...Electron emitting material (7317) Agent Patent attorney Noriyuki Chika (and 1 other person) No. ”” (b) Figure 2 Goga Habe Goyo (h) Figure 3

Claims (1)

【特許請求の範囲】 (1)  ニッケル基合金からなる陰極基体と、この陰
極基体上に被扱される電子放射物質とを有する陰極構体
において、 前記陰極基体はランタンがLaNi5の形およびLa2
0Bの形で分散して含有していることを特徴とする陰極
構体。 (2)  LaNi3としてのランタンが陰極基体全体
i二対して0.05〜1.O]iiパーセントの範囲内
に、La20gとしてのランタンが0.1〜1.0重量
パーセントの範囲内にあることを特徴とする特許請求の
範囲第1項記載の陰極構体。 (8)  陰極基体の厚さが100μm以下であること
を特徴とする特許請求の範囲第1項、第2項記載の陰極
構体。
[Scope of Claims] (1) A cathode structure having a cathode base made of a nickel-based alloy and an electron-emitting material placed on the cathode base, wherein the cathode base has lanthanum in the form of LaNi5 and La2.
A cathode structure characterized in that it contains 0B in a dispersed form. (2) The amount of lanthanum as LaNi3 is 0.05 to 1. 2. The cathode assembly according to claim 1, wherein the lanthanum content as 20 g of La is within the range of 0.1 to 1.0 weight percent within the range of O]ii percent. (8) The cathode assembly according to claims 1 and 2, wherein the cathode base has a thickness of 100 μm or less.
JP57129531A 1982-07-27 1982-07-27 Cathode structure Pending JPS5920941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57129531A JPS5920941A (en) 1982-07-27 1982-07-27 Cathode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57129531A JPS5920941A (en) 1982-07-27 1982-07-27 Cathode structure

Publications (1)

Publication Number Publication Date
JPS5920941A true JPS5920941A (en) 1984-02-02

Family

ID=15011814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57129531A Pending JPS5920941A (en) 1982-07-27 1982-07-27 Cathode structure

Country Status (1)

Country Link
JP (1) JPS5920941A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0210805A2 (en) 1985-07-19 1987-02-04 Mitsubishi Denki Kabushiki Kaisha Cathode for electron tube
US4864187A (en) * 1985-05-25 1989-09-05 Mitsubishi Denki Kabushiki Kaisha Cathode for electron tube and manufacturing method thereof
JPH01267926A (en) * 1988-04-19 1989-10-25 Mitsubishi Electric Corp Cathode for electron tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4864187A (en) * 1985-05-25 1989-09-05 Mitsubishi Denki Kabushiki Kaisha Cathode for electron tube and manufacturing method thereof
EP0210805A2 (en) 1985-07-19 1987-02-04 Mitsubishi Denki Kabushiki Kaisha Cathode for electron tube
US4797593A (en) * 1985-07-19 1989-01-10 Mitsubishi Denki Kabushiki Kaisha Cathode for electron tube
JPH01267926A (en) * 1988-04-19 1989-10-25 Mitsubishi Electric Corp Cathode for electron tube

Similar Documents

Publication Publication Date Title
US4184100A (en) Indirectly-heated cathode device for electron tubes
US3328626A (en) Rotary anodes of x-ray tubes
US2233917A (en) Black coating for electron discharge devices
JPS5920941A (en) Cathode structure
RU2104600C1 (en) Filamentary cathode manufacturing process
US4310777A (en) Directly heated cathode for electron tube
US1883898A (en) Thermionic cathode
US3271849A (en) Iridium-sheathed wire for electron tubes
US1733744A (en) Composite x-ray target
JPH02186525A (en) Storage type dispenser cathode and manufacture thereof
US4220891A (en) Directly heated cathode for electron tube
US1961122A (en) Thermionic cathode
US2520760A (en) Method of producing cathodes for electronic tubes
US4215457A (en) Rapid heating dispenser cathode in a holder and method of manufacturing the same
KR100382060B1 (en) Cathode using a cermet pellet and its manufacturing method
JPH09231939A (en) High melting point metal electrode, its manufacture, and electrode for discharge lamp using it
JPS58225528A (en) Cathode structure
US1971076A (en) Method of coating a filament with oxide
JP3110052B2 (en) Cathode for electron tube
US1759454A (en) Uranium metal and product and process of making the same
JPS6134218B2 (en)
JPH0624091B2 (en) Oxide cathode structure
KR820001402B1 (en) Nickel alloy base metal plate for directly heated oxide cathodes
JPS60257035A (en) Oxide coated cathode structural body
KR950013862B1 (en) Cathod manufacture method