[go: up one dir, main page]

JPS59208692A - fire alarm device - Google Patents

fire alarm device

Info

Publication number
JPS59208692A
JPS59208692A JP8324883A JP8324883A JPS59208692A JP S59208692 A JPS59208692 A JP S59208692A JP 8324883 A JP8324883 A JP 8324883A JP 8324883 A JP8324883 A JP 8324883A JP S59208692 A JPS59208692 A JP S59208692A
Authority
JP
Japan
Prior art keywords
fire
alarm
data
smoke
setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8324883A
Other languages
Japanese (ja)
Inventor
成宮 淳一
古山 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP8324883A priority Critical patent/JPS59208692A/en
Publication of JPS59208692A publication Critical patent/JPS59208692A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fire-Detection Mechanisms (AREA)
  • Fire Alarms (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、アナログ火災検出データの平均値から火災を
判別する発報基準値を周期的に設定して火災を判別し、
気圧変化による誤報を防止覆るために気j丁変化に応じ
て発報基準値の設定周期を変更づるようにしたアナログ
火災感知装胃に関りる、。 本願考案台等は、火災感知器−(゛検出した温1す、煙
11ff1度等に応じたアナ
The present invention determines a fire by periodically setting an alarm reference value for determining a fire from the average value of analog fire detection data,
This relates to an analog fire detection system that changes the alarm reference value setting cycle according to changes in air pressure in order to prevent false alarms due to changes in air pressure. The invention device of the present invention is equipped with a fire detector (゛)

【]グ火災検出侶(−5を
面接受信機にデータ伝送して火災を判別するようにした
所謂アナ「1グ火災報知装置を提案し−((13す(例
えば実願昭b 8−10708号)、このノツプ1]グ
火災報知装置でlJ、発報j;¥片(1c1どして 定
周期11)にアナログ火災データを複数回4ノーンブリ
ングして平均値を求め、この平均値に一定飴を加えノ、
1白をR報基準値どじで火災データどの比較により火災
を判別づるようにしている1゜ ところが、アナログ火災感知器どしく、例えばイオン化
式煙感知器を使用した場合に(Jl、煙や虫等が侵入し
なくとも、気圧の変化によ−)てR報基準値を上回る検
出イ8弓を出力りる現象が見られた。。 即ち、イオン化式煙感知器は、炸の流入の無い内部イオ
ン室と煙が流入覆る外部イオン室の人々を放射線源によ
りイオン化して煙の流入によるヂ〜・ンハー電圧の変化
を検出1ノる構造を備えていることから、急檄な気圧変
化によってチャンバー宵月に変化を起こり恐れかぁ−)
だ。 本発明(よ、このJ、う<i問題点に狙ikみてイ(さ
れたもの(、気圧の変化による誤報を防止−りるように
したアJ Tlグ火災報知装置を提供することを目的と
りる、3 この[1的を達成Jるため本発明は、気圧検出器C検出
し/こ気11:の一定時間ごとの気圧変化を捕え、気L
r変化に1.t・じて発報基準値の設定周期を変える4
」ζうにじ、具体的に(よ、気圧変化の大ぎさに応じC
発+[ズ阜F11fii’i (1)設定周期を1m 
<づ−るように変更し、気圧変化(こよる火災データの
変化を速やかに発報阜片値の油筒に取り入れることで気
圧変化に追従した’rtIl’ hr+の設定で誤報を
生じないようにしたものである1゜ 以1・、本発明の実f+i!i例を1ソ1面に基づいて
説明りる。 第1図は本発明の一実施例を示した71119図である
。まづ゛、構成を説明すると、1(,1受信)幾であり
、受信機1に対し煙感知器;3及び気月しンリ4が信号
線接続される。ここで、煙感知器3(、上火災による!
栗濃度に応じたアブ上1グ火災検出(ご1号を出力する
イオン化式煙感知器雪が用いられる3、また、気圧セン
リ−4としては気象条イ′1に応lじた気圧変化の範囲
、例え(ま90〇−・1100ミリバールの範囲となる
気1]−変化に応じた気圧(う)出(J:>3’G・出
力する。煙感知器3及び気斤ゼンリ1の出力(よ受信機
1のA / D変換Zi 5に入力接続され、煙感知器
3によるアナログ火災検出信号及び気し+レンリ4の気
圧検出信号のイれそれをデfジタル佑号に変換している
。 6は受信処理部−〇あり、例えc、r ”、′イタ1−
1−’Iンピコータのブ[1グラム制御により実現する
ことか(きる。即ち、受信処tqIr:++ 6には、
煙感り、11器r3(検出した煙データを記憶する炸デ
ータメしり7.及び気月−レンリ/′l(倹1j l、
た気1「データを記憶づる気月γ−クメ七りE3が設(
ノられており、煙デ゛−クメ■す7に記′lQ (Jる
煙データのリンブリンク周期は設定II、l lυ]変
史変更よりのサンプリング信号に基づい(所定のリンブ
リング周IVJ旬に行なわれており、1回のリンブリン
グて゛、例えば3つの煙デ゛−タを□ 1り’・l−タ
メしり7(こh己1舷(]るようになる。 ’l 01,1. 、 ;H% Q(i1ti演算部(
あり、設定周期変更部ε〕、」、り出力される複数回の
リンブリング周期、例えば5〕回のリンブリング周期旬
に阜ff1(!−1直設定信号か出力され、この設定侶
弓に応じた炸データのリンゾリンつて煙デークメしり7
に記憶した3つのすR・ノータを5)°、力出しU ’
7の平均値を演τ7(シ、この平均lll′Iを!、L
 L’A、 Ill′i S aどしで出力する。また
、121.1.1.しく’ 顧’(itj i;′、1
部10で油筒した早ts!−(iCi S aに加緯出
感歴に応じた一定(+fiが用いられる。13は発報値
演算部であり、基ill値演紳部10(演+iニアI(
、/、二基単個Sa及びp3 tlls加F3 +1(
l Wa定部12.j、’) ノ塁”/1111算値α
を入力し、 5p=Sa  Ici′ として発報値を油部2jる6 1 /l l;J、比較回路であり、J−リlj li
l’、i Sン1の設定周期を除く煙データのリンブリ
ンク周期fjj M 、煙う−タメ七り7に記・隠した
33つの煙デ゛−タ4発報111′l演算部13よりの
発報Ill′l51)と比較し、づl\l、のソトWデ
ータが発報1的Sp以−1どイ「った時に比較出力を生
じ、−インタフェース15を介しくソ(災表示部16の
作動により火災1もテ報を11なわけるJ、うにしくい
る。 一方、気圧f−タメしりE3に記憶りる気H’ j” 
−夕のリンブリンク周期は、予め定めた一定周1!l]
 ’+10に行なわれており、この気月−j゛−タメし
りE3は現在の気圧データpnと、前回の気坏j゛−タ
I) n−1を記憶する1幾能をイjづる。、、気月−
j−タメしす8q)記10出力4JイLiiζ7(部1
ε3に!jえられて+3す、演I:″ン部lε3は気圧
データのリーンブリンク周期−「旬に気月j−タメしり
ε3に記1怠した現(1の気圧pnと、前回の5(月p
n−iを人力し、 △P = l P n−1)n−11 にJ、り気L1差△[つを演算しで出力する。この演算
B111ε3゜j、りの気圧差△[−′は設定周期変更
8[39に与え1)れてd−3す、設定層lUj変更部
9(よ気ffE差△Pの人ささに応じ(煙デ゛−夕を検
出する→ノンブリング周1ill及び基ンv仙Saを演
算づる基準値設定周期を変史・jく)(層重をイJりる
。即ら、この実施例では気圧差へ1−)を人、中、小の
3段階に分GJ、気圧差Δ1)か小さい11.4にはに
! tl(Itfl設定周明を−「0どし、気11;r
−△1つか中程度の時には基準値設定周期を゛「Lとし
1、史に気月ジ(△[つか人さいll:’7には基準値
設定1?il 1111を[Sど(1、このり単鎖設定
周期To、TL。 ISの間にIJ: −1−o :・−既 > −1−s
となる関係が定められて−いる。即ら、設定周期変更部
9は気圧差△P ’7)増7JII ニ応Iに ’?:
 71 ン1”(ll’f 設定円IJI (r −1
41、−1+、  。 Tsの3段階に順次籍1くづる周期変更をir If 
’う低能をイj′?I−る。尚、基準値設定置1υJに
外I L j:l’・データのリンブリング周期は例え
ば1.・′!′)に設定され(おり、このため基1j 
11ff設定周+!IJの変史に応じて煙データのリン
ブリング周期も変史されるようになる1゜ 次に第1図の実施例の動作を説明Jる1、J、ず、煙デ
゛−夕に基づいた火災判別(、↓第2図に示4〕]二」
−チト−1〜に従って行なわれC+3す、5−のグ12
図のフローチャー1へによる炸データのリンブリングは
第4図(C)の信局波形図にス・1応しくいる。 叩ら、第2図のフローノ゛−(−−1・(パは第4図(
C)に示Jように設定周期変更部0にJ、る早’(i、
 1ifi設定周期が1°0て゛あっlことすると、大
喝’l’l−’t’−夕のリンシリング周+i1Jはl
 O、/ 5 C勺えられ、最初の1.(卑値設定信号
が得られるとブロックaに示(ように3つの炸データを
リンブリングしC炸データメしす?(・二占込、7)、
続い−Cブに〕ラック)て3つの煙データの中−均11
11どしで基片:1直3aを阜卑1白演鼻部10でrx
i ’;l’ I−’、続イ(ソr、’、+ ツクc 
t=示j−J:うに発報1irt ?山()部1 ’、
3 C゛光111+f+ S l)を31)= 3 a
 1αとして演(′ンリ?、)1、 こσ) J、う(J、発報1ici S pの演算か終
了Jると次のリーンブリンク周期て゛ブロックdに示づ
ように再び3つの煙フータをリンブリングして煙データ
メ4ニリ7(こ記憶し、続いて比較回路14において判
別ブ11ツク(![こ小づように検出した3つの煙デー
タと発報111°l51)とを比較し、すべての煙デー
タが発報ju Sl)以上の9、〒にlea火災と判別
し、ブロック[に、I)いて火災表示を行なう。一方、
煙データの少/j (どし1つか発報Mi Spを下回
っている時に(,1〕11ツク9(こコ焦/υて補1功
力・ンンタNをN = N 十1−−1とインクリメン
1−シ、判別ブ1」ツクhで補1す)カウンタN−1で
′あることから、再びブロックtlL;Zj;ζす、次
σ)リンブリング周1i1’lで炸データを一リーンプ
リングし、同様41火災刊別をi−jイi・)、このj
、うな火災判別を4回繰り返りと71−1ツクリに83
1Jる補助カウンタNはN−4とイ「つ、jju初にU
J%つた発報1+IJS +1を再度、設定りるための
ゾ11ツクaの煙データの1ノンシリングに戻る1゜1
11】ら、第2図のフロ−チャードu” fよ煙アーク
の1ノンブリングによる火災判別を一/1回?J’ <
jつIC後に発報基準Ire’ S 11を再設定する
処理を繰り返す、。 次に、第1図の実施例に+31Jる気11. 、;’+
△1″に214づいた基準11I′i設定周IIIの変
史は第こ3図(、二車リン11−ヂト−1〜に従って行
なわれる、1 そこで、第3図のフローブド−1・にJ、る阜Qu l
ll’1設定周期の変更を第4図のタイl\ブX・−1
−を参照して説明づ−ると、例えばIf、’、刻[1(
こ431’Jるブに1ツクΔでポリ−気圧データの゛リ
ンシリングにJ、す、ノロツクBで演算された気圧差Δ
1〕が極く僅かて゛あったと覆ると、判別ブロック0,
1つにa月ノる入t i1+値l’)  、l:)S(
但しP て1ツS)どの比較判別にJ、す、;1、す゛
ブロックCで気圧差△Pは基型fii’J P s、」
、り小さいことから判別ブロックDに進み、この判別ノ
11ツク[)においでも気圧差ΔPは基準値)〕ムJ:
すl)小ざいことからプロ・ツク1三(こa3いて]ノ
ンプリング周期のI:5も長い−「()とし、このにう
なサンプリング周期の設定を終了すると第2図に示した
ノ+−+ −−f t−−l−に戻って−1−0/ 5
どなるサンプリング周期による煙データの検出により火
災判別を行イjう。 次にll’7ll 2におりる気圧データの→ノンブリ
ング゛(′気1土冷△1つかp L 、、C△l:) 
< 1つSどナラた時には、ブに1ツク[=に進んてり
ンブリング周期を中低度の周期−1−IJ  に変更し
、第2図の)1]−ヂャー1へに灰り1ム /ε)と4
「る→ノンブリング周期゛C−煙ゲークに阜づく火災判
別を行4fう。 If’、’j p、ll I 3にJ−3いて(ン同様
に気圧△1)はPム 〈△1)< F)S−(・あるこ
と73日ら、ブト1ツクFのサンプリング周!!II 
’lL  がイのよよ設定され、助刻[4に至ると気圧
差Δ[)が基11−(的1〕S」メ−1どイfることか
らブロックCにあい【サンプリング周JILI ’i最
ら短い周期Tsに変更し、第2図のノr:] −′Jl
・−1−+(: l)こってTs15となるリーンプリ
ング川明(煙j−−タに基づく火災判別を行なう。 以下、同様にして時刻[〔(っ(” LLリン/゛リン
グ周期丁S/J′N設定され、11h刻16.l−7”
Cはリンブリング周期Tム が設定されるJ、つにイす
る1゜このJ、うに、第3図の]11−1−1・−1〜
にJ、る基準値設定周期の変更で(、L、一定周期(こ
お(]る気気圧化が大きくなるにつれ−(火災判別に用
いるJ、4 t%1(+i’JSa 、即15、発報値
5t)(−8a  +(x)の演ε)ににる設定円+1
1Jがり1Ωくされ、気圧変化にス−11,速やかに発
報基11”−frc+ S pを設定変更づることで気
l−1(こより変化した火災検出テ〜りを火災にJ、る
イ1−1舅変化と誤って判別覆る誤’MJをμ)止づる
。 尚、7F記の実施例で1゜上気fi−の変化を33段階
に分(プて各段階に応じIS基ip−舶設定周期に変更
りるよ)にしくいるが、他の実施例としC気圧変化の増
fullに比例し℃阜1i1−値段定周期を減少さける
ようにしく1)J、い。1 51、た、上記の実施例は煙感知器のアナIコグ検出(
、′l弓を直接受信機に人力さけるプフ式を例にとるも
の(ifりったが、例えば実)9ず! Il:’i 5
B −10708号にzi< ’J’ J、うに、受信
機に電源兼用信弓線を介して殴数のアーリー1’lグ火
災感知器を並列接続し、受’f+榔、」、り順次感);
11器を呼出し、呼出された火災感知器(:)’ −J
 +−+グ火災(つ)出(ig号をテ2rジタル信化に
変模しく受イ11)浅に送出さける火災報知設備につい
ても同i! <−;気jルンリを設り、気j王差に応じ
て呼出された人災検知器よりの!、ヤア゛−夕に基づく
発報塁準顧の設定円1i1Jを変更りるにうにしCもよ
い、。 次(l、本発明の詳細な説明づると、気圧検出器にJ、
リ 定周期h)に気圧を検出し、この検出周期(こお(
〕る気Y「変化に応じて火災判別に用いる発報)’、L
 tl’ 伯の設定周期を変更・」るようにしたため、
人きな気圧変化を生じた時に(31、発報)、tQ’ 
lil′+の設定周期が短くなること73日ら、気圧に
にるアJ INグ検出信弓の変動を速やかに介報基i%
I賄の油管に取り入れることで気j+変化で生じた火災
信号レベルの変化を火災と誤って判別しCしまうことイ
ー防lI(、・さ、アナ]二]グツ〈災検出信舅を・受
イ8)幾に人力しくソ(災を判別Jる火災報2、II 
Hifイの仏Jt’i l)lを大幅に向11ノること
かでさ゛る。
[]Proposed a so-called 1G fire alarm system that transmits 5 signals to an interview receiver to determine the presence of a fire. No.), this knob 1] fire alarm system, alarm the analog fire data multiple times (1c1 etc. fixed period 11), calculate the average value, and calculate the average value. Add some candy,
However, when using an analog fire detector, for example, an ionization type smoke detector (Jl, smoke and insect Even if there was no intrusion, there was a phenomenon in which a detection value exceeding the R report standard value was output due to changes in atmospheric pressure. . That is, the ionization type smoke detector uses a radiation source to ionize people in an internal ion chamber where no explosives flow in and an external ion chamber covered by smoke, and detects changes in voltage due to the inflow of smoke. Because of its structure, there is a fear that sudden changes in atmospheric pressure could cause changes in the chamber Yozuki.
is. The object of the present invention is to provide a fire alarm system which is designed to solve the problem and prevent false alarms caused by changes in atmospheric pressure. 3 To achieve this goal, the present invention detects the air pressure detector C and captures changes in air pressure at regular intervals, and detects air pressure L.
1 for r change. Change the setting cycle of the alarm reference value until t.4
"ζ Sea urchin, specifically (Y, depending on the magnitude of the change in atmospheric pressureC
(1) Set cycle to 1m
To avoid false alarms, set 'rtIl' hr+ to follow pressure changes by promptly incorporating changes in fire data into the alarm value oil cylinder. An example of an actual f+i!i of the present invention will be explained based on one plane of one solenoid. Fig. 1 is a diagram 71119 showing an embodiment of the present invention. To explain the configuration, there are 1 (, 1 reception), and the smoke detector 3 (, 1 reception) is connected to the signal line to the receiver 1. Due to a fire!
Fire detection according to chestnut concentration (Ionization type smoke detector that outputs No. 1 snow is used 3, and atmospheric pressure sensor 4 is based on the range of atmospheric pressure changes according to weather conditions A'1) For example, the air pressure in the range of 900 - 1100 millibar (1) - Output (J: >3'G) according to the change. The output of the smoke detector 3 and the air pressure sensor 1 ( It is input connected to the A/D converter Zi 5 of the receiver 1, and converts the analog fire detection signal from the smoke detector 3 and the air pressure detection signal from the air pressure sensor 4 into digital signals. 6 is a reception processing unit - 〇, for example c, r'', 'Ita 1-
1-' Impicoter can be realized by 1-gram control. That is, in the receiving process tqIr:++6,
Smoke sensation, 11 device r3 (explosion data meter 7. which stores detected smoke data, and Qigetsu-Renri/'l (倹1j l,
Taki 1 “Kigetsu γ-Kume Shichiri E3 that memorizes data is established (
Based on the sampling signal from the alteration (the predetermined ringing period IVJ period) For example, three smoke data are collected in a single rimbling process. . , ;H% Q(i1ti calculation unit (
Yes, the setting cycle change section ε], "" is outputted in multiple rimbling cycles, for example, when the rimbling cycle is 5], a direct setting signal of ff1(!-1 is output, and this setting signal is Rinzorin's smoke data according to the data
5) °, force output U'
The average value of 7 is calculated by τ7(shi, this average lll'I!,
L'A, Ill'i S a are both output. Also, 121.1.1. Shiku'gu' (itj i;', 1
The early ts that made the oil tank in part 10! -(iCi S a constant (+fi) is used according to the sensitivity history. 13 is an alarm value calculation section, and the base ill value operation section 10 (operation + i near I (
, /, two groups single Sa and p3 tlls plus F3 +1(
l Wa fixed part 12. j,') Nobase”/1111 calculated value α
Input the alarm value as 5p=SaIci';61/l;J is the comparison circuit;
l', i Link cycle of smoke data excluding the set cycle of S11 fjj M, from the 33 smoke data 4 alarm 111'l calculation unit 13 recorded and hidden in the smoke data 7 A comparative output is generated when the soto W data of zl\l is compared with the alarm Ill'l51) of the alarm 1, and a comparison output is generated via the interface 15 Due to the operation of section 16, the fire 1 is also divided into 11. On the other hand, the air pressure f - the temperature is memorized in E3.
-The ring link cycle in the evening is a predetermined fixed cycle of 1! l]
This was carried out on '+10, and this air pressure data E3 records the current air pressure data pn and the function that stores the previous air pressure data n-1. ,,Kigetsu-
j-Tameshisu 8q) Note 10 output 4J Liiζ7 (Part 1
To ε3! Act I: ``N part lε3 is the lean blink period of the atmospheric pressure data. p
ni is manually calculated, ΔP = l P n-1) n-11 is calculated with J, and the difference Δ[ is output. This calculation B111ε3゜j, the pressure difference △[-' is given to the setting cycle change 8 [39 1), and d-3, the setting layer lUj change section 9 (according to the size of the difference △P) (Detect the smoke event → change the reference value setting period for calculating the non-bringing period 1ill and the base value Sa) (remove the layer weight. In other words, in this embodiment To the atmospheric pressure difference 1-) to three levels: human, medium, small GJ, atmospheric pressure difference Δ1) or small 11.4 to! tl (Itfl setting Shumei - "0 doshi, ki 11; r
-△When the value is 1 or medium, set the standard value setting cycle to ``L''. This single chain setting period To, TL. IJ during IS: -1-o:・-already > -1-s
The relationship is defined as follows. That is, the setting cycle changing section 9 changes the pressure difference △P'7) to increase 7JII NI response I'? :
71 n1” (ll'f Setting circle IJI (r −1
41, -1+, . ir If the periodic changes are sequentially added to the three stages of Ts.
'Are you a moron?' I-ru. Incidentally, at the reference value setting position 1υJ, the rimbling period of the external I L j:l' data is, for example, 1.・′! ′) is set to (and therefore the base 1j
11ff setting lap+! The rimbling period of the smoke data changes in accordance with the change in the history of the IJ.Next, the operation of the embodiment shown in FIG. 1 will be explained based on the smoke data. fire detection (shown in Figure 2))
- C+3 performed according to Tito-1~, 5- no G12
The rimbling of the burst data according to flowchart 1 in the figure corresponds to S.1 in the signal waveform diagram in FIG. 4(C). Flow No. 2 (--1) (Pa is shown in Fig. 4)
As shown in C), J, ruhaya'(i,
If the 1ifi setting cycle is 1°0, then the large cheer 'l'l-'t'-evening ring cycle + i1J is l
O, / 5 C was raised, the first 1. (When the base value setting signal is obtained, the three burst data are rimbling as shown in block a.
Continuing - to C] Rack) Among the three smoke data - Average 11
11 and base piece: 1 shift 3a to Fubei 1 white performance nose part 10 to rx
i ';l'I-', continuation i (sor, ', + tsuku c
t=indication j-J: sea urchin alarm 1irt? Mountain () part 1',
3 C゛light 111 + f + S l) 31) = 3 a
Assuming 1α, the operation ('Nri?,)1, koσ) J, U(J, alarm 1ici S When the calculation of p is completed, the next lean blink period is shown in block d, again the three smoke futa The smoke data is stored in memory, and then the comparison circuit 14 compares the three smoke data detected with the alarm 111°l51. 9, when all the smoke data is alarmed, it is determined that there is a lea fire, and a fire is displayed in the block [I). on the other hand,
When the smoke data is low/j (dot 1 or less than the alarm Mi Sp), (, 1] 11 tsuku 9 (here focus/υ and supplement 1 force/n is N = N 11--1) Since the counter is N-1, the block tlL; Zj; Similarly, 41 fire publications i-j ii・), this j
, 83 repeated eel fire detection 4 times and 71-1 Tsukuri
1J's auxiliary counter N is N-4.
Return to 1 non-shilling of the smoke data of Zo 11 Tsuk a to set J% Tsuta Announcement 1 + IJS +1 again 1゜1
11], Flowchart u''f in Figure 2, fire detection by 1 non-bringing of smoke arc 1/1 time?J'<
The process of resetting the alarm standard Ire' S 11 is repeated after j ICs. Next, I would like to add 31J to the embodiment shown in FIG. 11. , ;'+
The history of the reference 11I'i set circumference III based on 214 △1'' is carried out according to Figure 3 (, 11-dito-1 ~, 1). J, Rufu Qu l
Change the setting period of ll'1 by changing the cycle of ll'1 in Figure 4.
-, for example, If, ', time [1(
431' Pressure difference ∆ computed by 1 ∆ in J block and 1 x ∆ in poly-pressure data, J, 2, and ∆
1] was extremely small, the discrimination block 0,
Enter a month into one ti1+value l'), l:)S(
However, P te 1 S) Which comparison and discrimination J, S; 1, So, the pressure difference △P in block C is the base type fii'J P s,''
Since , is smaller, the process proceeds to judgment block D, and in this judgment block 11 [), the pressure difference ΔP is the reference value)] MJ:
sl) From a small point of view, the non-pulling period I:5 is also long. + --f Return to t--l- -1-0/5
Fires are determined by detecting smoke data at different sampling intervals. Next, the atmospheric pressure data in ll'7ll 2 → non-bringing ゛ ('Ki 1 earth cold △1 or p L ,, C △l:)
< When you hear one S, go to [= and change the rimbling period to a medium-low period - 1 - IJ, then change the ash 1 to 1] - Jar 1 in Figure 2). m/ε) and 4
``ru → non-bringing period ゛C- Perform fire discrimination based on smoke game 4f. If', 'j p, ll I J-3 in 3 (air pressure △1 as in N) is P m 〈△1 ) < F) S-(・Sometimes 73 days later, the sampling period of Butto 1 Tsuku F!! II
'lL is set to 'A', and when the sampling interval [4] is reached, the pressure difference Δ[) is based on the base 11-(target 1] iChange to the shortest period Ts, and set the period in Fig. 2 as follows:] -'Jl
・−1−+(: l) This results in Ts15. Fire discrimination is performed based on smoke data. S/J'N set, 11h interval 16.l-7"
C is the rimbling period Tm set to J, which is 1°.
By changing the standard value setting cycle (,L, as the air pressure increases) Setting circle + 1 for alarm value 5t) (-8a + operation ε of (x))
1J is reduced by 1Ω, and by immediately changing the setting of the alarm base 11"-frc+ SP due to a change in atmospheric pressure, it is possible to immediately change the setting of the alarm base 11"-frc+ SP. 1-1 Stop the error of erroneously identifying it as a change in MJ (μ). In addition, in the example described in 7F, the change in 1° upper air fi- is divided into 33 steps (and the IS base ip is changed according to each step). 1) J, 1 51 , The above embodiment is for Ana I cog detection of smoke detector (
, 'l Taking the Pouf type, which manually connects the bow directly to the receiver, as an example (if written, for example, real) 9zu! Il:'i 5
To No. B-10708, connect the early 1'lg fire detectors in parallel to the receiver via the power supply line and connect them sequentially. feeling);
11 was called, and the called fire detector (:)' -J
+-+G fire alarm (receive the IG signal by converting it into a digital signal 11) The same applies to fire alarm equipment that sends out signals to shallow areas. <-; From the man-made disaster detector that was set up and called according to the difference in energy! , it is also possible to change the setting circle 1i1J of the warning base quasi-register based on the date. Next (l, Detailed explanation of the present invention: J,
The atmospheric pressure is detected at a regular period (h), and this detection period (ko (
〕Ruki Y ``Alarm used for fire detection according to changes)'', L
Since the setting cycle of tl' has been changed,
When a significant change in atmospheric pressure occurs (31, alarm), tQ'
Since the setting cycle of lil'+ is shortened from 73 days onwards, it is necessary to promptly report changes in the aj ing detection signal due to atmospheric pressure.
By introducing the fire signal into the oil pipe of the fire, it is possible to prevent changes in the fire signal level caused by changes in air from being mistakenly identified as a fire. B8) Fire alarms 2, II, how much human effort does it take to identify disasters?
Hifi's Buddha Jt'i l)l has been significantly moved to 11 times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(,1本発明の一実施(シリを示した〕1−]ツ
ク図、第2図は第′1図の実施例にお(Jる火災判別処
理令−示した)[I−ヂャー1へ図、第33図は本発明
(、:、、よる気圧データに入りづいた基r1’−1+
+’、i設定周明の変更処理を示したフローヂ〜・−1
・図、第4図は本発明に、J、る基準値設定周期の変更
を示し/Jタイlx ’f−t・−ト図である。 1:受信機 3:煙感知器 4:気圧レンザ )5.△/1〕変換器 6、受信処理部 7:煙データメモリ 8:気圧フークメしり 9:設定周期変更部 10:基準)1f1演算部 12二もt準加点値設定部 13 、 発報11′] ンp7 ji”、1 部14
°比較回路 15:インタフェース 1(う、火災表示部
Figure 1 (, 1 One implementation of the present invention (showing the sill)) [I-] Fig. 33 shows the base r1'-1+ based on the atmospheric pressure data according to the present invention.
+', flow showing the change process of i setting Shumei~・-1
・FIG. 4 is a diagram showing a change in the reference value setting cycle according to the present invention. 1: Receiver 3: Smoke detector 4: Atmospheric pressure lens) 5. △/1] Converter 6, reception processing unit 7: smoke data memory 8: atmospheric pressure measurement 9: setting cycle changing unit 10: reference) 1f1 calculation unit 12, t quasi-additional value setting unit 13, alarm 11'] p7 ji”, 1 part 14
° Comparison circuit 15: Interface 1 (Uh, fire display section

Claims (1)

【特許請求の範囲】[Claims] )′ノC+グ火災感知器よりの検出データを所定周期角
に検出してR報基準値を演算し、前記火災検出データを
該発報基W−値と比較して火災を判別づ−るアナ上1グ
火災報知装置にa5いて、気Liをh: Ji nる気
圧検出器と、該気J]−検出器で検出した気圧の一定時
間にお(プる気圧変化に応じC前記光(・1ス塁準餡の
設定周期を変更り−る設定周期疫史干段とを備えたこと
を特徴とするアナログ火災腎報芸1!1゜
) Detect the detection data from the C+G fire detector at a predetermined periodic angle, calculate the R alarm reference value, and compare the fire detection data with the alarm W- value to determine a fire. A5 is on the fire alarm system, and the air pressure detector is connected to the air pressure detector, and the air pressure detected by the sensor changes at a certain time. (・Analog fire reportage 1!1゜ characterized by being equipped with a setting cycle for changing the setting cycle of the 1st base semi-an paste.
JP8324883A 1983-05-12 1983-05-12 fire alarm device Pending JPS59208692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8324883A JPS59208692A (en) 1983-05-12 1983-05-12 fire alarm device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8324883A JPS59208692A (en) 1983-05-12 1983-05-12 fire alarm device

Publications (1)

Publication Number Publication Date
JPS59208692A true JPS59208692A (en) 1984-11-27

Family

ID=13797026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8324883A Pending JPS59208692A (en) 1983-05-12 1983-05-12 fire alarm device

Country Status (1)

Country Link
JP (1) JPS59208692A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4831361A (en) * 1987-06-30 1989-05-16 Nittan Company, Ltd. Environmental abnormality alarm apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4831361A (en) * 1987-06-30 1989-05-16 Nittan Company, Ltd. Environmental abnormality alarm apparatus

Similar Documents

Publication Publication Date Title
EP0729123A1 (en) Apparatus including a fire sensor and a non-fire sensor
DK309582A (en) PROCEDURES AND PLACES TO INCREASE THE REACTION AND INTERFERENCE SAFETY IN A DANGER, NAMELY A FIRE ALARMING SYSTEM
JPS586996B2 (en) Flame detection method
GB2206433A (en) Environmental abnormality alarm apparatus
DE60137365D1 (en) METHOD AND DEVICE FOR REDUCING FALLEN ALARMS IN OUTPUT / INPUT SITUATIONS FOR SECURITY MONITORING OF RESIDENTIAL BUILDINGS
WO2020147644A1 (en) Monitoring method and system based on terminal detection
WO1991009390A1 (en) Fire fighting system mainly conceived to safeguard forests
JPS59208692A (en) fire alarm device
CN108230627B (en) Combustible gas monitoring system for oil depot
KR102103786B1 (en) Smart Fire Evacuation Leader
CN114511984A (en) Fire monitoring camera, fire monitoring method and automatic fire alarm system
JP4718844B2 (en) Fire alarm
JPH07200960A (en) False-alarm prevention method and fire alarm equipment
JPS6011995A (en) fire alarm device
CN210170712U (en) Automatic fire extinguishing device for battery compartment of electric vehicle battery replacing station
JPS5540954A (en) Load cell failure detection method and its unit
JPS54144837A (en) Detection system for data transfer failure
JPS56138243A (en) Temperature distribution supervisory device
JPH0444795B2 (en)
JPS62289753A (en) Gas concentration detecting device
RU2032228C1 (en) Telemetering device
JPH054079Y2 (en)
SU1300655A1 (en) Method of checking equivalent load parameters
GB912046A (en) A photo-sensitive detecting system
JPS53113500A (en) Detector adapter