[go: up one dir, main page]

JPS59203737A - Glass for sealing metal - Google Patents

Glass for sealing metal

Info

Publication number
JPS59203737A
JPS59203737A JP7621783A JP7621783A JPS59203737A JP S59203737 A JPS59203737 A JP S59203737A JP 7621783 A JP7621783 A JP 7621783A JP 7621783 A JP7621783 A JP 7621783A JP S59203737 A JPS59203737 A JP S59203737A
Authority
JP
Japan
Prior art keywords
glass
linear expansion
water resistance
kovar
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7621783A
Other languages
Japanese (ja)
Other versions
JPS6310105B2 (en
Inventor
Kouichi Ikeda
池田 浤一
Akira Kasai
晃 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENKI SHINKU GLASS KK
Original Assignee
NIPPON DENKI SHINKU GLASS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENKI SHINKU GLASS KK filed Critical NIPPON DENKI SHINKU GLASS KK
Priority to JP7621783A priority Critical patent/JPS59203737A/en
Publication of JPS59203737A publication Critical patent/JPS59203737A/en
Publication of JPS6310105B2 publication Critical patent/JPS6310105B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain the titled glass capable of providing secure sealing for ''Kovar'' alloy and having superior water resistance consisting primarily of SiO2 and B2O3 with a coefft. of linear expansion and transition temp. close to those of ''Kovar'' alloy. CONSTITUTION:Glass for sealing ''Kovar'' alloy comprising 61.2wt% (shortly described as % hereunder) SiO2, 5.0-7.8% Al2O3, 20.2-22.6% B2O3, 1.0-1.9% Na2O, 1.5-2.5% K2O, 1.0-2.0% Li2O, 0-2.0% BaO, 0-3.8% ZnO, 0.2-1.0% P2P5, 0-0.3% As2O3, and 0-0.3% Sb2O3, and having (44-48)X10<-7>/ deg.C mean coefft. of linear expansion at 30-380 deg.C and 470-480 deg.C transition temp. Since the glass has a coefft. of linear expansion and transition temp. close to those of ''Kovar'' alloy, secure sealing of ''Kovar'' is possible. Moreover, the proportion of B2O3 is reduced while adding P2O5 and increasing the proportion of Al2O3, the water resistance is improved without elevating the transition temp. Since no fluorine-contg. component is contained, liberation of fluorine which is harmful for cathodes of thermionic tube in the state of heat-sealing of the glass is avoided.

Description

【発明の詳細な説明】 この発明は、コバー(Kovar )という商標名で知
られている鉄、ニッケル、コバルトよシなる合金盤にこ
れに類する金属の合金との封着に用いる(1) ガラスの組成に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an alloy plate of iron, nickel, and cobalt known under the trade name Kovar, which is used for sealing an alloy of similar metals (1) Glass. Regarding the composition of

一般に、ガラスをコパー合金に封着して安定した封着体
を得るためには、ガラスの線膨張係数。
Generally, in order to obtain a stable sealed body by sealing glass to a copper alloy, the coefficient of linear expansion of the glass must be determined.

転移温度がコパー合金の線膨張係数、転移温度に適合し
ていることが必要である。そのためにはコパー合金封着
用ガラスの30℃〜380℃間ノ平均線膨張間数平均線
膨張係数10/℃、転移温度は470℃〜480℃間に
あることが望ましい。
It is necessary that the transition temperature matches the linear expansion coefficient and transition temperature of the copper alloy. To this end, it is desirable that the copper alloy sealing glass has an average linear expansion coefficient of 10/°C and a transition temperature of 470°C to 480°C between 30°C and 380°C.

従来この種のコバー合金封着用ガラスには、主として多
量の硼酸成分を含有した硼硅酸ガラスが用いられて来た
。その中でも特に線膨張係数、転移温度がコパー合金の
線膨張係数、転移温度に近い値を持った硼硅酸ガラスと
して7050.C4,O。
Conventionally, borosilicate glass containing a large amount of boric acid component has been mainly used as this type of glass for sealing Kovar alloy. Among them, 7050 is a borosilicate glass whose linear expansion coefficient and transition temperature are close to those of copper alloys. C4, O.

FCN等の符号でよばれているガラスが安定したガラス
とコパー合金との封着体を得られるとして用いられてき
ている。〔これらの符号でよばれているガラスは、書籍
者:マテリアルズオブハイパキュアム テクノロジー 
2巻シリケート(1&terialsof High 
Vacuum Technology Volume2
5ilicates)。
Glasses called by symbols such as FCN have been used because they can provide a stable sealed body of glass and copper alloy. [Glass referred to by these codes is written by: Materials of Hypercuum Technology
2 volumes of silicate (1&terialsof High
Vacuum Technology Volume2
5ilicates).

著者:ウェルナーエスペ(Werner Espe) 
r発行所:1”9) 英国のパーガモン社(Pergamon Press 
Ltd。
Author: Werner Espe
rPublisher: 1”9) Pergamon Press, UK.
Ltd.

0xford ) r発行年:1968年の本の中で、
 7050ガラスは8−!!−ジに、C40ガラスは1
6被−ジに、 FCNガラスは18−!!−ジにそれぞ
れS己載されている。〕しかしこれらのガラスには耐水
性が悪いという欠点がある。
0xford ) r Publication year: 1968 In the book,
7050 glass is 8-! ! - Second, C40 glass is 1
6 pieces, FCN glass is 18 pieces! ! - Each S self is listed in the page. ] However, these glasses have the disadvantage of poor water resistance.

硼酸含有量の多い硼硅酸ガラス中の硼酸成分を少くすれ
ば、耐水性は向上するが、ガラスの熔融が難しくなシ、
またガラスの転移温度が高くなシ過ぎてしまう。この対
策としてガラス中に微量ながら弗素を加えると、ガラス
の耐水性、熔融性は向上し、転移温度も低くなる。この
ことを利用してガラスの特性を改善したものとして米国
コーニング社(Corning Glass Work
s、U、S、A、)製の7052という符号をもったガ
ラスがある。しかしこの7052ガラスは、真空管の封
入作業中に有害な弗素化合物を放出し、それが真空管の
陰極と反応し、陰極からの電子放射を損うという欠点を
持っている。〔このことは、書籍名:マテリアルズアン
ド テクニックス フォア エレクトロンチューブス(
Materials and Techniques 
forE]ectron Tubes) r著者:ワル
ター・エッチ・コール(Waiter H−Kohl 
) 、発行所:米国ニューヨークのラインホルト ノe
プリシング コーポレーション(Re1nhold P
ublishing Corporation) r発
行年:1960年、ペーゾ:563に記載されている。
Reducing the boric acid component in borosilicate glass, which has a high boric acid content, improves water resistance, but it also makes it difficult to melt the glass.
Also, the transition temperature of the glass is too high. As a countermeasure to this problem, adding a small amount of fluorine to the glass improves the water resistance and meltability of the glass, and lowers the transition temperature. Corning Glass Work of the United States has made use of this fact to improve the properties of glass.
There is glass with the code 7052 manufactured by S, U, S, A, ). However, this 7052 glass has the disadvantage that it releases harmful fluorine compounds during the encapsulation process of the vacuum tube, which reacts with the cathode of the vacuum tube and impairs electron emission from the cathode. [This is explained in the book title: Materials and Techniques for Electron Tubes (
Materials and Techniques
forE]ectron Tubes) rAuthor: Walter H-Kohl
), Publisher: Reinhold Noe, New York, USA
Pricing Corporation (Re1nhold P
Publishing Corporation) r Publication year: 1960, pageo: 563.

〕 7052ガラス以外で耐水性の良いガラスとして米国特
許第2,392,314号に記載のガラスもあるが、こ
れも弗素を含有しており、7052ガラスの欠点と同じ
理由で好ましくない。
] There is also the glass described in US Pat. No. 2,392,314 as a glass with good water resistance other than 7052 glass, but this also contains fluorine and is not preferred for the same reason as the drawback of 7052 glass.

この発明の目的は、コパー合金と安全な封着が出来るガ
ラスを提供することにある。
An object of the present invention is to provide a glass that can be safely sealed with a copper alloy.

この発明の他の目的は、耐水性の優れたガラスを提供す
ることにある。
Another object of the invention is to provide a glass with excellent water resistance.

この発明の更に他の目的は、ガラスを加熱封着する際、
真空管の陰極に有害な弗素を放出し々いガラスを提供す
ることにある。
Still another object of the present invention is to heat-seal glass.
The objective is to provide a glass that releases harmful fluorine to the cathode of a vacuum tube.

この発明の構成は1重量百分率でr 5I0261.2
〜65.0 、 AA2035.0〜7.8 、 B2
0320.2〜22.6 。
The composition of this invention is 1% by weight r 5I0261.2
~65.0, AA2035.0~7.8, B2
0320.2-22.6.

Na2O1,0〜1.9 、 K2O1,5〜2.5 
、 Li2O1、O〜2.0゜BaOO〜2.0 、 
ZnOO〜3.8 、 P2O50,2〜1.01As
2o30〜o、3,5b2030〜0.3の範囲内よシ
選んだ前記各成分の合成組成よシなり、30℃〜380
℃間の平均線膨張係数が44〜48 X 10−’/℃
、転移温度が470℃〜480℃であることを特徴とす
るコパー合金封着用ガラスに係るものである。
Na2O1,0~1.9, K2O1,5~2.5
, Li2O1, O~2.0゜BaOO~2.0,
ZnOO~3.8, P2O50,2~1.01As
2o30~o, 3,5b2030~0.3 depending on the synthetic composition of each component selected, 30℃~380℃
The average linear expansion coefficient between ℃ is 44~48 x 10-'/℃
, relates to a copper alloy sealing glass characterized by a transition temperature of 470°C to 480°C.

この発明によるガラスは、その線膨張係数および転移温
度をコパー合金の線膨張係数および転移温度に近づけで
あるので1本発明のガラスをコパー合金に封着した場合
、ガラスが破損することなく安全な封着が可能であシ、
P2O5を添加し、At2o3の使用量を増しr B2
O3の使用量を抑えるようにガラスの組成を選ぶことに
よって、ガラスの転移温度を高めずにガラスの耐水性を
向上させ、さらに弗素成分を含有させないため、ガラス
を真空管容器として使った際、ガラスを加熱封着する折
、真空管の陰極に有害な弗素を放出することがないので
、真空管の寿命を損うこともなく、前に述べた従来のこ
の種のガラスの欠点は概ね取シ除かれる。
The glass according to the present invention has a coefficient of linear expansion and a transition temperature close to those of a copper alloy, so that when the glass according to the present invention is sealed to a copper alloy, the glass will not be damaged and will be safe. Can be sealed,
Add P2O5 and increase the amount of At2o3 used r B2
By selecting the composition of the glass to reduce the amount of O3 used, the water resistance of the glass is improved without increasing the transition temperature of the glass.Furthermore, since it does not contain fluorine components, when the glass is used as a vacuum tube container, the glass When heat-sealing the glass, harmful fluorine is not emitted to the cathode of the vacuum tube, so the life of the vacuum tube is not impaired, and the disadvantages of this type of conventional glass mentioned earlier are largely eliminated. .

(5) 次に本発明のコパー合金封着用ガラスを構成する各種成
分ならびに特性の範囲の限定理由について説明する。
(5) Next, various components constituting the copper alloy sealing glass of the present invention and reasons for limiting the range of properties will be explained.

壕ずSio2はガラスの骨格をなすもので、耐水性の向
」二にも役立つ。しかし含有率が重量百分率で65.0
%より多いとガラスが熔融し難くなシネ可であ、る。ま
た612襲未満では線膨張係数が大きくなシ過ぎ、コパ
ー合金との封着部での残留応力が犬きぐなり、ガラスク
ラック発生が増加し、不適当である。
Moatless Sio2 forms the framework of the glass and is also useful for improving water resistance. However, the content is 65.0 in weight percentage.
If the amount is more than %, the glass is difficult to melt and can be used. On the other hand, if it is less than 612 degrees, the coefficient of linear expansion is too large, the residual stress at the sealing part with the copper alloy becomes too large, and the occurrence of glass cracks increases, which is unsuitable.

A/、03はガラスの失透を抑制し、耐水性を向上させ
るために加えるものであるが2重量百分率で7.8チよ
シ多いとガラスは難溶性となり、ガラス中に脈理、泡等
の発生が増しガラスの品質を低下させ、また5、01未
満では耐水性が急激に悪くなるので好ましくない。
A/, 03 is added to suppress devitrification of glass and improve water resistance, but if it exceeds 7.8% by weight, the glass becomes poorly soluble, causing striae and bubbles in the glass. etc. will increase, degrading the quality of the glass, and if it is less than 5.01, the water resistance will deteriorate rapidly, which is not preferable.

B2O5はガラス熔融性を助けるのみ々らず転移温度を
下げるのに有効な成分であるが1重量百分率で22,6
%を超えるとガラスの耐水性が悪くなり。
B2O5 is an effective component that not only helps glass meltability but also lowers the transition temperature, but at 1% by weight it is 22.6%.
If it exceeds %, the water resistance of the glass will deteriorate.

また202%未満ではガラスの転移温度が高くな(6) シ過ぎてコパー合金との封着部でのがラスクラック発生
が増加し適当でない。
If it is less than 202%, the transition temperature of the glass will be too high (6) and the occurrence of lath cracks will increase in the sealing area with the copper alloy, which is not appropriate.

Na Oはガラスの熔融性の向上表らびにガラスの線膨
張係数を増減するために用いるものであるが。
Na 2 O is used to improve the meltability of the glass and to increase or decrease the linear expansion coefficient of the glass.

重量百分率で1,9係よシ多く加えると線膨張係数が大
きくなり過ぎ、また1、0dl)未満ではガラス熔融性
が急激に悪くなり不適当である。
If the weight percentage is more than 1.9 parts, the linear expansion coefficient becomes too large, and if it is less than 1.0 dl, the glass meltability deteriorates rapidly, which is inappropriate.

KOは* Na2Oと併用することによシミ気的絶縁性
を高めるとともに+ Na2Oと同じようにガラスの熔
融性の向上と線膨張係数を増減する効力があるかに20
を重量百分率で2.5俤より多く加えると線膨張係数が
大きくなシ過ぎ、!、た1、5チ未満ではガラスの熔融
性が悪くななり 、Na2Oの場合と同様に不適当であ
る。
When used in combination with *Na2O, KO improves the thermal insulation properties of the stain and, like +Na2O, has the effect of improving the meltability of glass and increasing/decreasing the coefficient of linear expansion.20
If you add more than 2.5 yen in weight percentage, the coefficient of linear expansion will be too large! If the amount is less than 1.5 inches, the meltability of the glass will deteriorate, and it is unsuitable as in the case of Na2O.

Li2Oは線膨張係数を増減させると共にガラスの熔融
性を著しく向上させるが、多量に使用すると耐水性を劣
化させ重量百分率で2.0%よシ多く加えると線膨張係
数が大きくなシ過ぎ、かつ耐水性も悪くなり、1.0%
未満では線膨張係数が小さく寿如過ぎる。何れにしても
限定範囲をはずれたものはコバー合金との封着部でのが
ラスクラック発生が増加し不適当である。
Li2O increases or decreases the coefficient of linear expansion and significantly improves the melting properties of glass, but if used in large quantities, it deteriorates water resistance, and if more than 2.0% by weight is added, the coefficient of linear expansion becomes too large, and Water resistance also worsens, 1.0%
If it is less than that, the coefficient of linear expansion will be too small and the life will be too long. In any case, if it is outside the specified range, it is inappropriate because it increases the occurrence of lath cracks at the sealing part with the Kovar alloy.

BaOは、ガラスの線膨張係数の増減に対してはNa 
O、KO+ Li2Oはど太き々影響を力えずに熔2 触性の向上に効果があるが2重量百分率で2.0%よシ
多く加えると転移温度が高くなり過ぎる。ただしBaO
の添加が無くてもガラス熔融は可能なので、限定範囲を
0.2%に抑え下限を0チとしだ0ZnOは耐水性を向
上させると共に、少量添加の場合は転移温度を下げる効
力がある。しかし重量百分率で38%より多く加えると
転移温度は逆に高くなシ過ぎ不適当である。またZnO
添加量が0.5%以下では耐水性の向上と転移温度を下
げる効果が薄らぐが、しかしガラス成分にBaOを添加
しない場合には、 ZnOを加えなくても転移温度は4
70℃〜480℃の範囲内に入シ、耐水性も10m9/
El以下で、良好なガラスが得られるので。
BaO has an effect on the increase/decrease in the linear expansion coefficient of glass.
O, KO+ Li2O is effective in improving the meltability without exerting a significant influence, but if more than 2.0% (2% by weight) is added, the transition temperature becomes too high. However, BaO
Since glass melting is possible even without the addition of ZnO, the limited range is limited to 0.2% and the lower limit is set to 0.ZnO not only improves water resistance but also has the effect of lowering the transition temperature when added in small amounts. However, if more than 38% by weight is added, the transition temperature becomes too high, which is inappropriate. Also ZnO
If the amount added is less than 0.5%, the effect of improving water resistance and lowering the transition temperature will be weakened, but if BaO is not added to the glass component, the transition temperature will be 4 even without adding ZnO.
Temperatures range from 70℃ to 480℃, water resistance is 10m9/
Good glass can be obtained below El.

限定範囲の下限を0チとした。The lower limit of the limited range was set to 0.

P2O5は転移温度を低くする効力があるが1重量百分
率で1.0%より多く加えるとガラスが失透し易くなシ
ネ適当である。また0、2%未満では転移温度を下げる
効果が不足する。
P2O5 has the effect of lowering the transition temperature, but if it is added in an amount greater than 1.0% by weight, the glass tends to devitrify, so it is not suitable for cine. Further, if it is less than 0.2%, the effect of lowering the transition temperature is insufficient.

As Oおよび5b203はガラスの熔融、泡取シ。As O and 5b203 are for melting glass and removing bubbles.

3 清澄を助けるために使用するが、それぞれを重量百分率
で0.3%より多く加えても、その効果は特に顕著とな
らない。
3 are used to aid in clarification, but the effect is not particularly noticeable even if each is added in a weight percentage of more than 0.3%.

次にガラスの30℃〜380℃間の平均線膨張係数が4
.4. X 10−7/℃未満でも、また48X10−
ン℃を超えても、コパー合金の線膨張係数との差が大き
くなシ過ぎ1両者を封着した場合ガラスにクラックが発
生し易くなる。
Next, the average linear expansion coefficient of glass between 30℃ and 380℃ is 4
.. 4. Even if it is less than X 10-7/℃, it is also 48
Even if the temperature exceeds 1°C, there is a large difference in linear expansion coefficient from that of the copper alloy, so if the two are sealed together, cracks are likely to occur in the glass.

ガラスの30℃〜380℃間の平均線膨張係数を44〜
48×10−7/℃の範囲内に制限した場合。
The average linear expansion coefficient of glass between 30℃ and 380℃ is 44~
When limited within the range of 48 x 10-7/°C.

ガラスの転移温度が470℃より低く々っても。Even if the transition temperature of the glass is lower than 470°C.

また480℃よシ高くなっても、ガラスとコパー合金封
着体におけるがラスクラックの発生率が多くなる。この
発明は上述の種々のデータを総合して着想したものであ
る。
Furthermore, even if the temperature is higher than 480°C, the incidence of lath cracks in the glass and copper alloy sealed body increases. This invention was conceived by integrating the various data mentioned above.

以下本発明を実施例について説明する。The present invention will be described below with reference to Examples.

第1表〜第9表に示す組成のガラスを得るため。To obtain glasses having the compositions shown in Tables 1 to 9.

(9) 通常の方法に従って、その成分を含むガラス原料を、ガ
ラスの重量成分比が同表の調合比(重量比)欄に記載し
た数値になるように調合した。なおこの調合比(重量比
)を重量百分率に換算して得た値を換算組成(重量百分
率)欄に併記した。それぞれの組成に応じて調合して得
たバッチを小型電気溶融炉にて白金坩堝を用いて10時
間かけて1440℃〜1450℃で加熱熔融して熔融ガ
ラスを成形し、徐冷してガラス試験片を作成した。
(9) According to a conventional method, glass raw materials containing the components were prepared so that the weight component ratio of the glass was the numerical value described in the mixing ratio (weight ratio) column of the same table. The value obtained by converting this blending ratio (weight ratio) into a weight percentage is also written in the converted composition (weight percentage) column. Batch prepared according to each composition is heated and melted at 1440°C to 1450°C over 10 hours using a platinum crucible in a small electric melting furnace to form molten glass, and then slowly cooled and subjected to glass testing. I created a piece.

かくして得られたガラスの特性はそれぞれの表の特性欄
に示されている。ここに記載した線膨張係数は理学電機
株式会社製扁8095−TMA標準型熱膨張計で測定し
た値を30℃〜380℃間の平均値で示した数値である
。また線膨張係数を測定する場合、同じ程度の加熱速度
で温度をあげていくとき、膨張が急増しはじめる温度が
あるが、この温度附近で、これより低温部と高温部とに
おける膨張一温度特性曲線のほぼ直線に近いところの線
を延長し8両直線の交点の温度をもって転移温度とした
。なお各人において線膨張係数、転移温r10) 度欄に記載した数値の小数点以下は誤差を含んだ参考値
である。また耐水性とは第1図に示した石英ガラス製耐
水性試験装置を使って1次のようにして測定した値であ
る。即ち耐水性試験装置のフラスコ1に蒸溜水2を20
0cc入れ、これを電熱器3の上におく。一方熔融して
得たガラスを粉砕し。
The properties of the glasses thus obtained are shown in the properties column of each table. The coefficient of linear expansion described herein is the average value between 30° C. and 380° C. measured using a standard type thermal dilatometer manufactured by Rigaku Denki Co., Ltd., 8095-TMA. In addition, when measuring the coefficient of linear expansion, when increasing the temperature at the same heating rate, there is a temperature at which expansion begins to increase rapidly. A line close to a straight line of the curve was extended, and the temperature at the intersection of the eight straight lines was defined as the transition temperature. In addition, for each person, the linear expansion coefficient and transition temperature r10) The values below the decimal point in the degree column are reference values that include errors. Furthermore, the water resistance is a value measured in a first-order manner using the quartz glass water resistance testing device shown in FIG. That is, 20 minutes of distilled water 2 was added to flask 1 of the water resistance test device.
Add 0cc and place it on top of electric heater 3. Meanwhile, the glass obtained by melting is crushed.

JIS Z 8801(1956)篩によって42メツ
シユ〜28メツシ一間の粒度にそろえ、除歪したガラス
試料4を6グラム〜7グラム化学天秤で精密に秤取し2
石英ガラス製パスケッ)51C入れ1石英ガラス製クー
ラー6の下部にあるカギ7に白金線8でつるす。カギ7
は約120°間隔に3ケ所設置しである。・ぐスケット
5の底9は80メツシユ〜65メツシ一間の熔融石英の
粒子を板状にシンターしたもので作っである。これらを
第1図のように静かにすシ合せ部10を合せて設置する
。クーラー6は、冷水を冷却水人口11に流入させ冷却
水出口12よシ流出させて冷却を行う。電熱器3のスイ
ッチを入れ加熱を始める。蒸溜水2が煮沸しはじめれば
水蒸気ははげしく上昇してクーラー6にあけである孔1
3より冷却部14まで上昇し。
Using a JIS Z 8801 (1956) sieve, the particle size was adjusted to a particle size between 42 mesh and 28 mesh, and 6 grams to 7 grams of the strain-removed glass sample 4 was precisely weighed using a chemical balance.
A quartz glass pass (51C) case is hung from a key 7 at the bottom of a quartz glass cooler 6 with a platinum wire 8. key 7
are installed at three locations approximately 120° apart. - The bottom 9 of the gasket 5 is made of sintered plate-shaped particles of fused silica with a size of 80 mesh to 65 mesh. As shown in FIG. 1, these are gently placed together with the mating parts 10. The cooler 6 performs cooling by causing cold water to flow into a cooling water outlet 11 and flowing out through a cooling water outlet 12. Turn on electric heater 3 and start heating. When the distilled water 2 begins to boil, water vapor rises rapidly and flows through the hole 1 in the cooler 6.
3 to the cooling section 14.

ことで水蒸気は冷却され液化し、クーラー6内の側壁を
つたわってクーラT6の下方にある蛇管15の中を通っ
て落下し、この間蛇管15の外側を上昇する水蒸気によ
り再加熱され沸点近い温度になってバスケット5内に滴
下する。ガラス試料4が常に高温の水に浸シかつ水があ
ふれない程度に電熱器3の温度を調節する。ガラス試料
4が完全に温水に浸ってから3時間加熱を続けた後、す
シ合せ部10をとりはずし、ガラス試料4をビーカーに
移し、乾燥後秤量する。煮沸前の試料重量から煮沸後の
試料重量を減じたものを耐水性試験による減量とし、こ
れを煮沸前の試料重量で除し。
As a result, the water vapor is cooled and liquefied, passes through the side wall of the cooler 6, passes through the corrugated pipe 15 below the cooler T6, and falls.During this time, the water vapor rising outside the corrugated pipe 15 reheats the water vapor to a temperature close to its boiling point. and drips into the basket 5. The temperature of the electric heater 3 is adjusted so that the glass sample 4 is constantly immersed in high-temperature water and the water does not overflow. After the glass sample 4 is completely immersed in warm water and heating is continued for 3 hours, the shim joint 10 is removed, the glass sample 4 is transferred to a beaker, dried, and then weighed. Subtract the sample weight after boiling from the sample weight before boiling to determine the weight loss due to the water resistance test, and divide this by the sample weight before boiling.

試料1グラム当シの重量減をミリグラムで算出した値を
耐水性として各人の特性欄に示した。この特性欄に記載
した数値は、同一ロットに就いて3回測定を繰返して得
た値の平均値である。この値が小さい程耐水性は優れて
いる。
The weight loss calculated in milligrams per gram of the sample is shown in the characteristics column for each person as water resistance. The numerical values listed in this characteristic column are the average values obtained by repeating measurements three times for the same lot. The smaller this value is, the better the water resistance is.

第1表はS + 02以外の成分の割合をほぼ一定にし
ておいて、これに任意量のSiO2を添加した場合に。
Table 1 shows the case where the proportions of components other than S + 02 are kept almost constant and an arbitrary amount of SiO2 is added.

ガラスの線膨張係数、転移温度、耐水性如対するS i
O2の影響を示したものである。以下同様の実験を行っ
た。なお比較参考のために特許請求の範囲以外の組成の
場合も左欄外に※印を付けて記載した。
S i related to the linear expansion coefficient, transition temperature, and water resistance of glass
This shows the influence of O2. Similar experiments were conducted below. For comparative reference, compositions outside the scope of the claims are also marked with an asterisk (*) in the left margin.

S 102を65.0%を超えた量にするとガラスは難
溶融性とな、9,61.2係未満では線膨張係数が48
×10/℃より大きくなる。
When the amount of S102 exceeds 65.0%, the glass becomes difficult to melt, and when it is less than 9.61.2%, the coefficient of linear expansion becomes 48.
It becomes larger than ×10/°C.

以下余白 (13) 第2表はAt203以外の成分の割合をほぼ一定にして
おいて、これに任意量のAt203を添加した場合であ
る。
Margin below (13) Table 2 shows the case where the proportions of components other than At203 were kept almost constant and an arbitrary amount of At203 was added.

At203を7.8係を超えた量にするとガラス熔融に
あたシ難熔性となシ、また5、0%未満では耐水性が急
に悪くなる。
If the amount of At203 exceeds 7.8%, the glass will be difficult to melt, and if it is less than 5.0%, the water resistance will suddenly deteriorate.

以下余日 第3表はB2O3以外の成分の割合をほぼ一定にしてお
いて、これに任意量のB2O3を添加した場合である。
Table 3 below shows the case where the proportions of components other than B2O3 were kept almost constant and an arbitrary amount of B2O3 was added.

B2O3を22.6%を超える量にするとガラスの耐水
性が悪くなシ、また2 0.2 %未満ではガラスの転
移温度が480℃よシ高くなる。
If the amount of B2O3 exceeds 22.6%, the water resistance of the glass will be poor, and if it is less than 20.2%, the transition temperature of the glass will become higher than 480°C.

、以下余白 (17) (18 第4表はN a 20以外の成分の割合をほぼ一定にし
ておいて、これに任意量のNa 20を添加した場合で
ある。
, below, margin (17) (18 Table 4 shows the case where the proportions of the components other than Na 20 were kept almost constant and an arbitrary amount of Na 20 was added thereto.

Na 20が1.9係を超えると線膨張係数が48X1
0−7/℃よシ犬きくなシ、また1、0係未満ではガラ
ス熔融が困難となる。
When Na20 exceeds a coefficient of 1.9, the coefficient of linear expansion is 48X1
If the temperature is less than 0-7/°C, it becomes difficult to melt the glass.

以下余白 (19) 第5表はに20以外の成分の割合をほぼ一定にしておい
て、これに任意量のに2oを加えた場合である。
Margin below (19) Table 5 shows the case where the proportions of the components other than 20 are kept almost constant and an arbitrary amount of 20 is added.

添加したに2oが2.5%を超えると線膨張係数が48
×107℃ よシ大きくなシ、1,5%未満ではガラス
の熔融が困難となる。
If the added 2O exceeds 2.5%, the linear expansion coefficient will be 48.
×107°C If the content is less than 1.5%, it will be difficult to melt the glass.

以下余白 (22) 第6表はL120以外の成分の割合をほぼ一定にしてお
いて、これに任意量のLi2Oを加えた場合である。
Margin below (22) Table 6 shows the case where the proportions of components other than L120 were kept almost constant and an arbitrary amount of Li2O was added thereto.

添加したLi2Oが2゜0%を超えると線膨張係数が4
8X10 7℃ よシ太きくなシ、かつ耐水性も劣化し
10m9/Jを超してしまう。L120が1.0%未満
では線膨張係数が44 X 10”−7/℃よシ小さく
なる・以下余日 (23) (24) 第7表はBaO以外の成分の割合をほぼ一定にしておい
て、これに任意量のBaOを加えた場合である。なおり
aOはガラスの熔融性の向上に効力を持つ成分であるが
、 BaOを加えなくてもガラス熔融は可能なので、 
BaOを含有しない場合も実施例として記載した。
When the added Li2O exceeds 2°0%, the linear expansion coefficient increases to 4.
8X10 7℃ It is very thick and its water resistance deteriorates, exceeding 10m9/J. If L120 is less than 1.0%, the coefficient of linear expansion will be smaller than 44 x 10"-7/℃. This is the case when an arbitrary amount of BaO is added to this.Although aO is a component that is effective in improving the melting properties of glass, it is possible to melt glass without adding BaO.
A case in which BaO was not contained was also described as an example.

BaOを20チを超える量にすると転移温度が480℃
よシ高くなる。BaOを加えなくても特許請求の範囲内
の特性のガラスが得られ、耐水性も良好である。
When the amount of BaO exceeds 20%, the transition temperature increases to 480°C.
It gets really expensive. Even without adding BaO, a glass with characteristics within the claimed range can be obtained, and the water resistance is also good.

以下余日 第8表ばZnO以外の成分の割合をほぼ一定にしておい
て、これに任意量のZnOを加えた場合である。なおり
aOを加えない組成についてもr ZnO以外の成分の
割合をほぼ一定にしておいて、これに任意量のZnOを
加えた場合を同表の下方4行に併記した。
Table 8 below shows the case where the proportions of components other than ZnO were kept almost constant and an arbitrary amount of ZnO was added thereto. Even for compositions in which no aO is added, the proportions of components other than r ZnO are kept almost constant, and cases in which an arbitrary amount of ZnO is added are also listed in the lower four rows of the same table.

BaOを添加したガラスでは、 ZnOを3.8%を超
える量にすると転移温度が480℃よシ高くなり。
In glass with BaO added, when the amount of ZnO exceeds 3.8%, the transition temperature becomes higher than 480°C.

1.0係未満では耐水性が10■/gを超してしまい。If the ratio is less than 1.0, the water resistance will exceed 10 μ/g.

0.5%未満では転移温度も480℃よシ高くなる。If it is less than 0.5%, the transition temperature will also be higher than 480°C.

しかしBaOを加えない組成ガラスについては。However, for composition glasses without BaO addition.

ZnO添加が1.0%未満でも特許請求の範囲内の特性
を持ったガラスが得られ、耐水性も良好である。
Even if the amount of ZnO added is less than 1.0%, a glass having the characteristics within the claimed range can be obtained, and the water resistance is also good.

以下糸口 (27) 第9表ばP2O5以外の成分の割合をほぼ一定にしてお
いて、これに任意量のP2O5を加えた場合である。
The following clue (27) Table 9 shows the case where the proportions of components other than P2O5 were kept almost constant and an arbitrary amount of P2O5 was added thereto.

添加したP2O,が1.0%を超えるとガラスが加熱加
工中に失透し易くなJ、0.2%未満では転移温度が4
80℃よシ高くなる。
If the added P2O exceeds 1.0%, the glass tends to devitrify during heat processing, and if it is less than 0.2%, the transition temperature will be 4.
It will be as high as 80 degrees Celsius.

以下余白 上記第1表〜第9表の実施例のガラスを直径1謹のコパ
ー合金の無空棒に封着し、封着部におけるガラスに存在
する残留応力を光弾性装置を使うて測定したところ、残
留応力は何れも0.3 kid/ltm2以下であった
。一般にガラスと金属との封着部の残留応力は0.9k
g/mm2以下ならば安全である故2本発明のコパー合
金封着用ガラスはコパー合金と充分に安全に封着するこ
とが出来る。
The following margins The glasses of the examples shown in Tables 1 to 9 above were sealed to a blank rod of copper alloy with a diameter of 1 inch, and the residual stress existing in the glass at the sealed portion was measured using a photoelastic device. However, the residual stress was 0.3 kid/ltm2 or less in all cases. Generally, the residual stress in the sealed area between glass and metal is 0.9k.
If it is less than g/mm2, it is safe. Therefore, the copper alloy sealing glass of the present invention can be sealed with a copper alloy sufficiently and safely.

またこの発明のガラスは、耐水性が向上していて、その
値は30〜10.277g、#である。なお冒頭に述べ
た従来からある7050ガラス、C40ガラス、 FC
Nガラスと同様の成分のガラスを試作し。
Further, the glass of the present invention has improved water resistance, and its value is 30 to 10.277 g, #. Furthermore, the conventional 7050 glass, C40 glass, and FC mentioned at the beginning
We prototyped a glass with the same composition as N glass.

この試作ガラスの耐水性を実施例で示したと同様の方法
で測定して得た値は、第10表に示したように72.4
〜110.2m9/、9  であった。これによシ本発
明によるガラスの耐水性は従来のものに比しることがわ
かる。
The water resistance of this prototype glass was measured using the same method as shown in the examples, and the value obtained was 72.4 as shown in Table 10.
~110.2m9/,9. It can therefore be seen that the water resistance of the glass according to the present invention is better than that of the conventional glass.

以下余白 (31) 第10表 更にまた。この発明のガラスには弗素を使用していない
ため、冒頭に述べたような弗素による欠点を生じないの
で、これもこの発明の顕著な効果である。
Margin below (31) Table 10 and more. Since the glass of this invention does not contain fluorine, it does not suffer from the drawbacks caused by fluorine as mentioned at the beginning, which is also a significant effect of this invention.

以」二の実施例では1本発明のガラスをコパー合金と封
着する例について述べたが、この発明のガラスは、コパ
ー合金とほぼ同じ特性を持っているフェル= コ(Fe
rnico) +ターロ(Therlo) 、 o−グ
ー (Rodar) lシールパック(Sealvac
) 、 = o−ケイ(lt’J+]o K) rディ
ルパー・ビー(Dilver P) *パ゛コン(Va
con)なる商標名の合金や、コパー合金とほぼ同じ線
膨張係数を有する他の無機材料例えばC39) モリブデン、鉄・ニッケル合金、他の無機がラス1クラ
ツド金属等との封着にも有効であることは容易に理解し
得るところである。
In the second embodiment below, an example was described in which the glass of the present invention was sealed with a copper alloy.
rnico) + Therlo, o-goo (Rodar) Sealvac
) , = o-K (lt'J+]o K) r Dilver P
It is also effective for sealing with alloys with the trademark name Con), other inorganic materials with almost the same linear expansion coefficient as copper alloys, such as C39) molybdenum, iron-nickel alloys, and other inorganic metals such as lath 1 clad metals. One thing is easy to understand.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に関しての耐水性を測定する装置の断面
図である。 なお図面に使用した符号はそれぞれ下記のとおりである
。 1・・・フラスコ、2・・・蒸溜水、3・・・電熱器、
4・・・ガラス試料、5・・・バスケット、6・・・ク
ーラー。 7・・・カギ、8・・・白金線、9・・・バスケットの
底。 10・・・スリ合せ部、11・・・冷却水入口、12・
・・冷却水出口、13・・・穴、14・・・冷却部、1
′5・・・蛇管。 (33) 手続補正書(自発) 1.事件の表示 昭和58年特許願第7.!5217号 2、発明の名称 金属封着用ガラス 6、補正をする者 名称 日本電気真空硝子株式会社 4、代理人 〒105 住 所 東京都港区西新橋1丁目4番10号6、補正の
内容 (1)明細書筒8頁8行目「0.2Jを[2,DJと訂
正する。 (2)添付図面第1図に朱書の如く引出線を引く。 2 −
FIG. 1 is a sectional view of an apparatus for measuring water resistance in accordance with the present invention. The symbols used in the drawings are as follows. 1... flask, 2... distilled water, 3... electric heater,
4...Glass sample, 5...Basket, 6...Cooler. 7...Key, 8...Platinum wire, 9...Bottom of the basket. 10...Slot joint part, 11...Cooling water inlet, 12.
...Cooling water outlet, 13...hole, 14...cooling part, 1
'5...Snake pipe. (33) Procedural amendment (voluntary) 1. Case Description 1982 Patent Application No. 7. ! 5217 No. 2, Name of the invention: Glass for metal sealing 6, Name of the person making the amendment: Nippon Electric Vacuum Glass Co., Ltd. 4, Agent: 105 Address: 1-4-10-6, Nishi-Shinbashi, Minato-ku, Tokyo, Contents of the amendment ( 1) On page 8 of the specification cylinder, line 8, ``0.2J is corrected to [2, DJ.'' (2) Draw a leader line in red on Figure 1 of the attached drawing. 2 -

Claims (1)

【特許請求の範囲】[Claims] 1、 重量百分率テ、5lo261.2〜65.o、A
t2o35、0 ”’ 7.8 、 B20320.2
〜22.6 、Na201.0−1.9゜KOl、5〜
2.5.Li201,0〜2.0 、 BaOO〜2.
0 、 ZnO0〜3.8 、 P2O50,2〜1.
0 、 As2030−0.3,5b2030〜0.3
の範囲内より選んだ前記各成分の合成組成よシな、9.
30℃〜380℃間の平均線膨張係数が44〜48×l
o−ン℃、転移温度カ470℃〜480℃であることを
特徴とする金属封着用ガラ
1. Weight percentage: 5lo261.2-65. o, A
t2o35, 0''' 7.8, B20320.2
~22.6, Na201.0-1.9°KOl, 5~
2.5. Li201,0~2.0, BaOO~2.
0, ZnO0-3.8, P2O50,2-1.
0, As2030-0.3,5b2030-0.3
9. A synthetic composition of each component selected from within the range of 9.
Average linear expansion coefficient between 30℃ and 380℃ is 44 to 48×l
Glass for metal sealing, characterized in that it has a transition temperature of 470°C to 480°C.
JP7621783A 1983-05-02 1983-05-02 Glass for sealing metal Granted JPS59203737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7621783A JPS59203737A (en) 1983-05-02 1983-05-02 Glass for sealing metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7621783A JPS59203737A (en) 1983-05-02 1983-05-02 Glass for sealing metal

Publications (2)

Publication Number Publication Date
JPS59203737A true JPS59203737A (en) 1984-11-17
JPS6310105B2 JPS6310105B2 (en) 1988-03-03

Family

ID=13599004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7621783A Granted JPS59203737A (en) 1983-05-02 1983-05-02 Glass for sealing metal

Country Status (1)

Country Link
JP (1) JPS59203737A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0978493A1 (en) * 1998-08-01 2000-02-09 Schott Glas Lead-free and cadmium-free glass composition for glazing, enameling and decoration of glasses or glass-ceramics, and method for the production of glass-ceramics coated therewith
US6525300B1 (en) 1999-07-30 2003-02-25 Schott Glas Cooking surface for cooking food having a glass ceramic surface with a glass coating thereon
JP2006520311A (en) * 2003-02-25 2006-09-07 ショット アクチエンゲゼルシャフト Antimicrobial action borosilicate glass
JP4743650B2 (en) * 2000-12-15 2011-08-10 日本電気硝子株式会社 Kovar seal glass for fluorescent lamps
CN113372003A (en) * 2021-07-22 2021-09-10 安徽大学 Method for preparing low-melting-point lead-free glass powder by sol-gel method and application

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247477A (en) * 1988-08-05 1990-02-16 Ishikawajima Harima Heavy Ind Co Ltd Earthquake-insulating and vibration eliminating floor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0978493A1 (en) * 1998-08-01 2000-02-09 Schott Glas Lead-free and cadmium-free glass composition for glazing, enameling and decoration of glasses or glass-ceramics, and method for the production of glass-ceramics coated therewith
US6525300B1 (en) 1999-07-30 2003-02-25 Schott Glas Cooking surface for cooking food having a glass ceramic surface with a glass coating thereon
JP4743650B2 (en) * 2000-12-15 2011-08-10 日本電気硝子株式会社 Kovar seal glass for fluorescent lamps
JP2006520311A (en) * 2003-02-25 2006-09-07 ショット アクチエンゲゼルシャフト Antimicrobial action borosilicate glass
CN113372003A (en) * 2021-07-22 2021-09-10 安徽大学 Method for preparing low-melting-point lead-free glass powder by sol-gel method and application

Also Published As

Publication number Publication date
JPS6310105B2 (en) 1988-03-03

Similar Documents

Publication Publication Date Title
US4870034A (en) Borosilicate glass
US5599753A (en) Borosilicate glass weak in boric acid
JP4454266B2 (en) Borosilicate glass and use thereof
US4186023A (en) Sealing glass composition
EP0109228B1 (en) Glass for envelopes for tungsten-halogen lamps
EP0048120B1 (en) Glass envelopes for tungsten-halogen lamps and production thereof
US4455384A (en) Chemically durable nitrogen containing phosphate glasses useful for sealing to metals
JP3275182B2 (en) Sealing materials and mill additives used in them
US2961328A (en) Refractory glass composition
US3404015A (en) Low thermal expansion glasses
JPS59203737A (en) Glass for sealing metal
JPS59227742A (en) Glass for contrast emphasizing crt filter and crt surface board
JP2000290038A (en) Glass for fluorescent lamp, glass tube for fluorescent lamp and fluorescent lamp
US2948992A (en) Glass compositions and glass-to-metal seals
JPS63156038A (en) Glass for cathode ray tube face plate
EP0131399B1 (en) Glass for cathode ray tube faceplate
US2564950A (en) Glass-to-metal seal and composition thereof
US5100842A (en) Glass compositions
US1942260A (en) Alloy
EP0045359A1 (en) Sealing glass composition
EP1144325A1 (en) Fusion sealed article and method
JPS6272543A (en) glass composition
JPS5814375B2 (en) Glass for sealing
US2929727A (en) Glass compositions and glass-to-metal seals
JPS63218525A (en) Glass for sealing fe-ni-co alloy