[go: up one dir, main page]

JPS59203093A - Steady rest control device for moving objects - Google Patents

Steady rest control device for moving objects

Info

Publication number
JPS59203093A
JPS59203093A JP7746883A JP7746883A JPS59203093A JP S59203093 A JPS59203093 A JP S59203093A JP 7746883 A JP7746883 A JP 7746883A JP 7746883 A JP7746883 A JP 7746883A JP S59203093 A JPS59203093 A JP S59203093A
Authority
JP
Japan
Prior art keywords
steady rest
current
control device
moving body
swing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7746883A
Other languages
Japanese (ja)
Inventor
大尾 典雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7746883A priority Critical patent/JPS59203093A/en
Publication of JPS59203093A publication Critical patent/JPS59203093A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ship Loading And Unloading (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分り3・〕 本発明は、石炭、鉄鉱石、穀類等を、船よシ陸〔発明の
背景〕 アンローダ等の移動体は、船内の材料金、陸上のホッパ
ーにできるたけ速く移送する勾」が要求される。このた
めには、加減速度の増加、速1川の増加が考えられる。
Detailed Description of the Invention [Aspects of Application of the Invention 3] The present invention is capable of transporting coal, iron ore, grain, etc. from a ship to land. It is required to transfer the material to the hopper as quickly as possible. For this purpose, an increase in acceleration/deceleration and an increase in speed can be considered.

、しかし、これらの%−’+ 2111に比[7て振れ
はまずます大きくなってくる。限らJlだスペースのホ
ッパーに正確に材料を陸拐り゛するにOま、ホッパー上
の停止点で振れがなく庁るように11・1l(i’+、
1することが作業効率上もつとも好゛ましい。
, However, compared to these %-'+2111 [7, the fluctuations become increasingly large. In order to accurately transfer the material into the hopper with a limited space of 11.1L (i'+,
1 is very preferable in terms of work efficiency.

移動体の振れは、移動体の加減速1皮、d仲1、ロープ
長によシ決定される。第1図に船4内の利A・17をホ
ッパー5へ陸揚げする概念アン」を/」・ず。バクーッ
ト3によシ船内の拐料7がつかみ上けも〕!−、パケッ
ト3は上列、し規定位妬(柾イjでへる位ii1. )
 ゛まで上昇すると、トロリー1によシイp゛・イ」が
:;:jりtiきrする。横行の加速開始と共にバケッ
ト3にrj:、  LJ −プ2の長さtにより決定さ
れるノ市期を4=iって振才1が生じる。加速によシ生
じた振れを1仁71.\(ボッ・。
The deflection of the moving body is determined by the acceleration/deceleration rate, distance, and rope length of the moving body. Figure 1 shows the concept of unloading cargo A.17 from ship 4 to hopper 5. Bakut 3 also grabbed the abductor 7 on board]! -, Packet 3 is on the top row, and the specified position is jealous (1)
When the trolley 1 rises to ゛, the shi p゛・i'' becomes tiring. At the start of the acceleration of the traverse, a oscillation 1 occurs in the bucket 3 by setting the period determined by the length t of rj:, LJ-p2 to 4=i. The runout caused by acceleration was reduced to 71. \(Bots.

−5の位置まで減試させる必要がある。第I V!(a
)揚げイノζ!?fを示し、(b)は、船内の材料7が
窒に近い陸揚1−)状、弘モを示す。船4は材料7の重
量により、it)面Jニジの上列1伎置が異なる。この
ため、パケット3の」二り1−規定位置が変る。船内の
材料7が満載の峙は、ロープ2の長さtlに、船内の材
料7が空に近い時は、ロープ2の長さt2になシ、t。
It is necessary to reduce the number of trials to the -5 position. Chapter IV! (a
) Fried Ino ζ! ? f, and (b) shows the landing 1-) shape, Hiromo, where the material 7 inside the ship is close to nitrogen. In the ship 4, the position of the upper row of the surface J differs depending on the weight of the material 7. Therefore, the specified position of packet 3 changes. When the ship is full of materials 7, the length of the rope 2 is tl, and when the ship is almost empty, the length of the rope 2 is t2.

>t2という関係になる。図中6はレール。振れ係式が
成り立ち、船内に材料7が満載された時の振れ周期が、
船内の杓料7が空に近い時の振れ周期より長くなる。第
2図に従来の振れ止め制御ブロック図を示す。代行直流
電動機8の速度制御には、直流’r’、、;勤槓8の電
機子電圧で制御する自動電圧制御系式が線用され、トロ
リー1の横行位置を検出するために、位置検出器9が設
けられる。振れ止めパターン演算回路18は、トロリー
1の横行位置とコントローラ19の速度指令で振れ止め
パターンを決定していた。振れの要因の1つであるロー
プ2の長さtは固定、又は、ロープ長ごとに設定する方
式であった。固定方式の場合、第1図に示すように船内
の材料7が全に近い陸揚げ状態に設定されるため、船内
の材ネ・17が満載された場合は、作業効率の低下をき
たしていた。又、ロープ2の長さごとに設定する方式は
、連続的設定が出来ないため、中間位置の振れ止め41
1度が規定内に入らぬという欠点があった。
>t2. 6 in the diagram is the rail. The swing equation holds true and the swing period when the ship is fully loaded with material 7 is:
The swinging period is longer than when the ladle 7 inside the ship is close to empty. FIG. 2 shows a conventional steady rest control block diagram. For the speed control of the acting DC motor 8, an automatic voltage control system type that is controlled by the armature voltage of the direct current 'r', etc. is used. A container 9 is provided. The steady rest pattern calculation circuit 18 determines the steady rest pattern based on the traversing position of the trolley 1 and the speed command from the controller 19. The length t of the rope 2, which is one of the causes of deflection, has been fixed or set for each rope length. In the case of the fixed method, as shown in Fig. 1, the material 7 in the ship is set to be almost completely unloaded, so when the ship is fully loaded with materials 17, work efficiency decreases. In addition, the method of setting each length of the rope 2 cannot be set continuously, so the steady rest 41 at an intermediate position cannot be set continuously.
There was a drawback that 1 degree was not within the specified range.

なお、第2図中10は主回路lx触器、11は主回路’
(it電圧出器、12はサイリスタ袈換Ef)  13
は電流検出器、14はトランス、15は自動パルス移相
器、16は自動耐流調整器、17は自動電圧調整器であ
る。
In addition, in Fig. 2, 10 is the main circuit lx contactor, and 11 is the main circuit'
(IT voltage generator, 12 is thyristor switch Ef) 13
14 is a current detector, 14 is a transformer, 15 is an automatic pulse phase shifter, 16 is an automatic current regulator, and 17 is an automatic voltage regulator.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例図面を参照して本発明の要点を詳細に説明
する。第3図は本発明による移動体の振れ止め制御装置
の実施例である。横行直流4Ljj・b林。
Hereinafter, the main points of the present invention will be explained in detail with reference to the drawings. FIG. 3 shows an embodiment of a steady rest control device for a moving body according to the present invention. Transverse DC 4Ljj・b Hayashi.

8は、霜、動機軸に直結されだ速度検出器20の速度帰
還と速度指令を自動速度調整器21でつき合わせて制御
する自動速度制御系で駆動される。従来の自動電圧制御
系(AVR)を本発明では自動速度制御系で構成した事
に特徴の1つがめる。自動速度イbす御系は、速度が指
令値に追従するように:fil1作4]する/こめ、ト
ロリー1の振れの外乱が電流波形として検出できる。第
4図にトロリー1の動きによるパケット3の振れと電流
波形の関係を示す。
8 is driven by an automatic speed control system which is directly connected to the frost and motive shaft and controls the speed feedback of the speed detector 20 and the speed command by an automatic speed regulator 21. One of the features of the present invention is that the conventional automatic voltage control system (AVR) is constructed with an automatic speed control system. The automatic speed control system allows the speed to follow the command value, and disturbances caused by the swing of the trolley 1 can be detected as a current waveform. FIG. 4 shows the relationship between the deflection of the packet 3 due to the movement of the trolley 1 and the current waveform.

パケット3の払れによる′11..流値は、モード1の
位置で苓、モード2の位1ii (パケットが進行方向
と逆方向に最大に振れた状態)で最大電流となシ、モー
ド3位iiM (振れが零点に戻った状態)で零、モー
ド4位u′1′で(パケット3が進行方向と順方向に最
大に振れた状態)負の最大電流となシ、1周期の電流波
形となる。すなわち、パケット3の振れ周期と同一の1
5’、流波形力林(出可能となる。直流電動機8の検出
′1は流は、振れ周期による電流波形に) 01J −
1の走行抵抗(負荷)を加え合わせた第4図(b)の波
形となる。第3図のバイパスフィルター回路22にに、
パケット3の振れによる直流電動つ朶8の電流波形から
負荷分と加減速電流分を除去し、振れによる′t1.流
分のみを検出する。バイパスフィルター回路22によっ
て検出された振れによる゛電流分は位相反転回路23に
よシ、逆位相に変換される。振れによる電流位相を反転
した電流分は、関数発生器24全通して速度指令にフィ
ードバックされる。関数発生器24は連層指令から霜、
動板電流までの伝達関数の逆13’、]数となる。第5
図に本発明を杆・:成するバイパスフィルター回路22
、位相反転回路23の出力波形を示す。
'11 due to payment of packet 3. .. The current value is the maximum current at the position of mode 1, the maximum current at the position of mode 2 (the state where the packet swings to the opposite direction to the traveling direction), and the maximum current at the position of mode 3 (the state where the swing has returned to zero). ), the current is zero at mode 4 position u'1' (the state where the packet 3 swings to the maximum in the traveling direction and the forward direction), and the maximum negative current is a one-cycle current waveform. In other words, 1 is the same as the swing period of packet 3.
5', current waveform power line (can be output. Detection '1 of DC motor 8 is current waveform according to swing period) 01J -
The waveform shown in FIG. 4(b) is obtained by adding the running resistance (load) of 1. In the bypass filter circuit 22 of FIG.
The load component and the acceleration/deceleration current component due to the deflection of the packet 3 are removed from the current waveform of the DC motor shaft 8, and 't1. Detect only flow. The current due to the vibration detected by the bypass filter circuit 22 is converted into an opposite phase by the phase inversion circuit 23. The current with the current phase reversed due to vibration is fed back to the speed command through the entire function generator 24. The function generator 24 generates frost from the continuous layer command.
The inverse of the transfer function to the dynamic plate current is 13'. Fifth
The figure shows a bypass filter circuit 22 that embodies the present invention.
, shows the output waveform of the phase inversion circuit 23.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ロープ長lに関係シ・く、かつ、位g
、i−検出装置なしで連続的に振れ止め制ii+1が’
l′Jl’ RLになる。
According to the present invention, there is a relation between the rope length l and the position g.
, i- steady rest system ii+1 continuously without detection device'
l'Jl' becomes RL.

【図面の簡単な説明】[Brief explanation of the drawing]

第11>1t(a)(b)は、船内の月相の状y?、1
による、移;勿体のロープ長の変化を示す概念丙X r
:’(’J 2しjul、凱シくの移動体の振れ止め制
御ブClツクLイi 、i;’j’、” 3し1lSl
5、本発明の移動体の振れ止め?1tIJilの一矢m
y tllのグロック図、41r4図はパケットの振れ
(a)と、電動イ表の一流(b)の1カ係を表わす図、
第5し1に、本つれ、明久侮成する回路の出力波形図で
ある。 22・・・バイパスフィルター回路、23・・・位相反
転回路、24・・・関数発生器。 寥4′図 (OL) 茶り吊
11th>1t(a)(b) is the state of the moon phase inside the ship y? ,1
Concept 丙X r
:'('J2, steady rest control block for moving objects, i;'j','
5. Steady rest for moving object of the present invention? 1tIJil's arrow m
y tll Glock diagram, 41r4 diagram is a diagram showing the swing of the packet (a) and the first position (b) of the electric table,
Fifth and first, it is an output waveform diagram of the circuit that will be constructed by Akihisa. 22... Bypass filter circuit, 23... Phase inversion circuit, 24... Function generator. Figure 4' (OL) Tea hanging

Claims (1)

【特許請求の範囲】 1、自動速就訴整器によ多速度制御される移動体の振れ
止め制御装置において、 負荷の振れによシ生ずる電動機の電流値により、振れに
より生ずる電流分を検出するノ・イパスフィルター回路
と、このバイパスフィルター回路で検出した電流波形と
反転した電流波形を発生する位相反転回路と、この位相
反転回路で検出した電流波形を前記移動体の振れ止め速
度指令に変換する1抑数発生?:;とよ’) ’+1′
4成され、荷役の振れによる前記電動機の寛流を位相反
転し、前記移動体の速度指令にフィードバックすること
によシ、前記移動体の振れ止めを行なうことを特徴とす
る移動体の振れ止め制御装置。
[Scope of Claims] 1. In a steady rest control device for a moving object that is multi-speed controlled by an automatic speed regulator, the current amount caused by the swing is detected based on the current value of the motor that is caused by the swing of the load. a phase inversion circuit that generates a current waveform that is inverted from the current waveform detected by this bypass filter circuit, and converts the current waveform detected by this phase inversion circuit into a steady rest speed command for the moving object. 1 suppression occurrence? :;Toyo') '+1'
A steady rest for a moving body, characterized in that the steady rest of the moving body is carried out by inverting the phase of the relaxation of the electric motor caused by swinging during cargo handling and feeding it back to the speed command of the moving body. Control device.
JP7746883A 1983-05-04 1983-05-04 Steady rest control device for moving objects Pending JPS59203093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7746883A JPS59203093A (en) 1983-05-04 1983-05-04 Steady rest control device for moving objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7746883A JPS59203093A (en) 1983-05-04 1983-05-04 Steady rest control device for moving objects

Publications (1)

Publication Number Publication Date
JPS59203093A true JPS59203093A (en) 1984-11-17

Family

ID=13634815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7746883A Pending JPS59203093A (en) 1983-05-04 1983-05-04 Steady rest control device for moving objects

Country Status (1)

Country Link
JP (1) JPS59203093A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993008115A1 (en) * 1991-10-18 1993-04-29 Kabushiki Kaisha Yaskawa Denki Method and apparatus for controlling prevention of deflection of rope of crane
WO1996033943A1 (en) * 1995-04-26 1996-10-31 Kabushiki Kaisha Yaskawa Denki Method and device for preventing deflection of a rope for a crane or the like

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993008115A1 (en) * 1991-10-18 1993-04-29 Kabushiki Kaisha Yaskawa Denki Method and apparatus for controlling prevention of deflection of rope of crane
US5495955A (en) * 1991-10-18 1996-03-05 Kabushiki Kaisha Yaskawa Denki Method and apparatus of damping the sway of the hoisting rope of a crane
WO1996033943A1 (en) * 1995-04-26 1996-10-31 Kabushiki Kaisha Yaskawa Denki Method and device for preventing deflection of a rope for a crane or the like
US5938052A (en) * 1995-04-26 1999-08-17 Kabushiki Kaisha Yaskawa Denki Rope steadying control method and apparatus for crane or the like
CN1099997C (en) * 1995-04-26 2003-01-29 株式会社安川电机 Method and device for preventing deflection of rope for crane or the like

Similar Documents

Publication Publication Date Title
US4124812A (en) Braking control apparatus for an electric motor operated vehicle
JPS59203072A (en) Controller for alternating current elevator
US4019105A (en) Controlled current induction motor drive
US3500161A (en) Control arrangement for electric motors having a power circuit including a thyristor
GB1456434A (en) Elevator control system
US4078191A (en) Control system for regulating the torque and speed of an electric motor
GB1355515A (en) Method of and arrangement for suppressing pendulum oscillations of a load hanging on a rope and conveyed by a crane trolley
JPS59203093A (en) Steady rest control device for moving objects
US3854076A (en) Dual level plugging circuit
US3781614A (en) Induction motor control system
US3590350A (en) Motor control for skip hoist drive systems and the like
US3543113A (en) Load weight circuit for traction motor control systems
JPS6138118B2 (en)
JPH0840687A (en) Swing stop control method of suspension load
JP2930493B2 (en) Crane steady rest control method
JPH05286527A (en) Control of crane for stocking/delivery work and device therefor
JP2934562B2 (en) Crane speed control method
JP2923159B2 (en) Crane steady rest control method
JPH0638537A (en) Pwm inverter with variable gain adaptive control function
JPH085616B2 (en) Sway control method for overhead crane
US3095976A (en) Cargo handling apparatus
JPS6013403A (en) Traveling machine control device
JPH02110015A (en) Shuttle conveyor travel control device
JPS58197126A (en) Ore loading control system
JPS58202224A (en) Turning speed control device for bucket wheel reclaimer