[go: up one dir, main page]

JPS59202515A - Method and device for guidance of unmanned truck - Google Patents

Method and device for guidance of unmanned truck

Info

Publication number
JPS59202515A
JPS59202515A JP58078015A JP7801583A JPS59202515A JP S59202515 A JPS59202515 A JP S59202515A JP 58078015 A JP58078015 A JP 58078015A JP 7801583 A JP7801583 A JP 7801583A JP S59202515 A JPS59202515 A JP S59202515A
Authority
JP
Japan
Prior art keywords
magnetic detection
bogie
guidance
guide
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58078015A
Other languages
Japanese (ja)
Other versions
JPH036524B2 (en
Inventor
Osamu Suzuki
修 鈴木
Masao Niki
仁木 将雄
Mitsugi Abe
阿部 貢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
Ishikawajima Harima Heavy Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawajima Harima Heavy Industries Co Ltd filed Critical Ishikawajima Harima Heavy Industries Co Ltd
Priority to JP58078015A priority Critical patent/JPS59202515A/en
Publication of JPS59202515A publication Critical patent/JPS59202515A/en
Publication of JPH036524B2 publication Critical patent/JPH036524B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0265Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using buried wires
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0261Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using magnetic plots

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Warehouses Or Storage Devices (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は誘導帯に沿い無人台車を走行させる際に方向が
ずれたような場合に自動的に制御させるようにして誘導
させる無人台車の誘導方法及び装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and device for guiding an unmanned trolley by automatically controlling the direction when the unmanned trolley moves along a guidance zone if the unmanned trolley deviates from its direction. .

無人台車とは、台車上に電源を持ち自動的に走行できる
ようにした台車をいい、かかる′無人で走行できるよう
にした装置は、現在、自動0庫の周辺設備、生産ライン
における物品搬送設備、自動加工ラインにおける搬送設
備等に数多(使用されており、その特長は、専用の軌条
を持たないことにある。専用の軌条を持たないというこ
とは、工場一般通路を走行できるためフォークリフトや
人間と共用のスペースが使えること、走行ルートの変更
が容易であること、等の点で有利である。
An unmanned trolley is a trolley that has a power source on it and is able to run automatically.Currently, such devices that are able to run unmanned are used in peripheral equipment of automatic warehouses and goods transport equipment in production lines. It is used in many conveyance equipment in automatic processing lines, etc., and its feature is that it does not have dedicated rails.The fact that it does not have dedicated rails means that it can run on general factory aisles, so it is not suitable for forklifts, etc. Advantages include being able to use a space shared with humans and being able to easily change the running route.

従来、無人台車の走行方式としては、電磁誘導方式、光
学式誘導方式が実用化されている。
Conventionally, electromagnetic induction methods and optical guidance methods have been put into practical use as driving methods for unmanned trolleys.

電磁誘導方式は、第1図に示す如く、走行而aの床に埋
め込んだ誘導線すに電流を流すことによって生ずる誘導
磁界を、台車Cに取り付けた一対の検出器d、dで検出
し、その検出強度が同等となるように走行方向を制御す
ることにより、誘導線に沿い台車を走行させるようにす
るものである。すなわち、走行面aに埋め込まれた誘導
線l)に電流を流すと、誘導磁界eが発生し、この誘導
磁界eを一対の検出器d、dで検出しながら走行する方
式であり、検出器d、dの中心が誘導線すよりいずれか
の方向へずれると、検出器d、dの検出する強度に差が
生じるので、その差が零となるように台車の走行方向を
制御することにより台車を誘導線すに沿って走行させる
ことができるようにしである。
As shown in Fig. 1, the electromagnetic induction method uses a pair of detectors d and d attached to a trolley C to detect the induced magnetic field generated by passing an electric current through an induction wire embedded in the floor of a moving vehicle a. By controlling the running direction so that the detection intensities are the same, the trolley is made to run along the guide line. That is, when a current is passed through the induction wire l) embedded in the running surface a, an induced magnetic field e is generated, and the system runs while detecting this induced magnetic field e with a pair of detectors d and d. If the centers of d and d shift in either direction from the guide line, there will be a difference in the intensity detected by detectors d and d, so by controlling the running direction of the trolley so that the difference becomes zero, This allows the trolley to run along the guide line.

又、この電vA誘導方式では、台車を複雑なルートに従
って分岐したり合流させたりする誘導を行わせるに当り
、誘導線すに流す電流をルート毎に周波数の異なる交流
とし、その交わる点において次に走行するルートの周波
数を台車に対して地上から送信指令することにより台車
を分岐したり合流させたりする方式がある。すなわち、
第2図に示す如く、台車CをA点に移動する場合は、分
岐点fにおいて台車Cに対し周波数F1の誘導線b1に
沿い走行するように指令を与えることにより、台車Cは
誘導線b+に従ってA点へ移動することができるように
してあり、又、誘導線す電を走行している台車を分岐点
りでB点へ移動させる場合は、分岐点Qで台車に対して
周波数F2の誘導線に沿って走行するよう指令を与えれ
ば、台車は誘導線b2に従いB点へと分岐する。各分岐
点における台車への指令信号の伝送方法としては、地上
より無線や光や音波等で信号を送信する方式や走行路面
下の1個所に複数のコイルを埋め、各々のコイルの励磁
、非装置により一定のパターンを表示し、台車がこのパ
ターンを検出することにより走行指令とする方式等があ
る。そのほか、誘導線の周波数はすべて同一とし、台車
の進行にしたがって順次径路を切替えて台車を誘導する
方式もある。
In addition, in this electric vA induction method, when guiding the bogies to branch or merge along a complicated route, the current flowing through the induction wire is an alternating current with a different frequency for each route, and at the point where they intersect, the following There is a method of branching or merging the bogies by transmitting the frequency of the route to be traveled to the bogies from the ground. That is,
As shown in FIG. 2, when moving the cart C to point A, by giving a command to the cart C at the branch point f to run along the guide line b1 of frequency F1, the cart C moves to the guide line b+ In addition, when moving a bogie running on a guide line to point B at a branch point, the bogie is set to have a frequency of F2 at a branch point Q. If a command is given to run along the guide line, the trolley will branch to point B along the guide line b2. Methods of transmitting command signals to the bogies at each branch point include transmitting signals from the ground using radio, light, or sound waves, or burying multiple coils in one place under the running road surface and excitation and de-energization of each coil. There is a method in which a device displays a certain pattern and the truck detects this pattern and issues a travel command. In addition, there is a method in which the frequencies of the guide wires are all the same, and the route is sequentially switched as the cart advances to guide the cart.

しかしながら、かかる誘導方式では、次の如き問題点が
ある。
However, this guidance method has the following problems.

■ 誘導線すを走行路面下に埋め込む必要があるため、
敷設工事が複雑となり、又、ルートの移設や変更、誘導
線すの断線の発見と修理、等が困難である。
■ Since the guide wire needs to be buried under the running road surface,
The installation work is complicated, and it is difficult to relocate or change the route, discover and repair broken guide lines, etc.

■ 周波数の異なる誘導用電源装置並に電気工事等が必
要で、台車の走行するルートの制御設備が複雑である。
■ Induction power supplies with different frequencies and electrical work are required, and the control equipment for the route the bogie travels is complex.

■ 走行面aの沈下や急激な振動等により誘導線が断線
する。
■ The guide wire breaks due to subsidence of the running surface a or sudden vibration.

■ 誘導線近くの電導体により磁界が悪影響を受けるた
め、走行路面の構造に制約が多い。
■ Because the magnetic field is adversely affected by conductors near the guide wire, there are many restrictions on the structure of the road surface.

たとえば、鉄筋コンクリート床等では、鉄筋と誘導線は
、成る値以上離す必要があるため、走行面と鉄筋との距
離を必要以上に大きくとる必要がある。
For example, on a reinforced concrete floor, etc., the reinforcing bars and guide wires need to be separated by at least a certain value, so it is necessary to make the distance between the running surface and the reinforcing bars larger than necessary.

■ 誘導磁界の強さには実用上限度があるため、車体と
誘導線の許容ずれ限度が小さい。
■ Since there is a practical upper limit to the strength of the induced magnetic field, the allowable deviation limit between the vehicle body and the guiding wire is small.

次に、光学式誘導方式は、走行面の床面に光反射体を設
置し、台車から発する光をこの光反射体で反射させ、反
射光と台車の相対位置を検出することにより台車を誘導
する方式である。
Next, in the optical guidance method, a light reflector is installed on the floor of the running surface, the light emitted from the bogie is reflected by this light reflector, and the bogie is guided by detecting the relative position of the reflected light and the bogie. This is a method to do so.

すなわち、第3図に示す如く、台車Cの側に設けた光源
りから発した光を走行面a上の反射体iにより反射させ
、その反射光を検出する受光部jの位置により台車Cと
反射体iの相対関係を検出し、そのずれ量に応じて台車
の走行方向を制御させる方式である。kは走行車輪であ
る。
That is, as shown in FIG. 3, light emitted from a light source provided on the side of the cart C is reflected by a reflector i on the running surface a, and the position of the light receiving part j that detects the reflected light is used to determine whether the cart C or This method detects the relative relationship between the reflectors i and controls the running direction of the truck according to the amount of deviation. k is a running wheel.

この方式では、例えば第4図に示す如く、光源りから発
した光を受光部Jの左側部分で検出した場合、台車Cは
反射体iよりも右側へずれたことになるので、そのずれ
量に応じた走行方向修正指令を台車Cに与えるようにし
、台車Cを左側へ寄せるよう軌道修正させる。
In this method, for example, as shown in Fig. 4, when the light emitted from the light source is detected at the left side of the light receiving part J, the cart C is shifted to the right side of the reflector i, so the amount of shift is A running direction correction command is given to the bogie C in accordance with this, and the trajectory is corrected so that the bogie C moves to the left side.

その他の光学式としては、反射体からの反射量を一対の
受光部で検出し、その反Illが同一となるよう位置制
御する方式もある。
As another optical method, there is a method in which the amount of reflection from a reflector is detected by a pair of light receiving sections, and the position is controlled so that the opposite Ill is the same.

かかる光学式誘導方式により、台車Cを複雑なルー1へ
に従って分岐したり合流させたりする場合には、左右分
岐、直進走行にそれぞれ専用の受光部を設ける、管種々
の方式があり、又、各分岐点にお゛ける台車への指令信
号としては、地上より無線や光や音波等で信号を送信す
る方式や、誘導用反射の付近に別の反射部を設けてその
反射光を前記受光部で受光し、そのパターンを検出する
ことにより走行指令とする方式等がある。
In the case where the trolley C is branched or merged along a complicated route 1 using such an optical guidance method, there are various methods in which dedicated light receiving sections are provided for left and right branching and for straight running, respectively. As a command signal to the bogie at each branch point, there are methods of transmitting signals from the ground using radio, light, sound waves, etc., or a method of installing another reflecting part near the guiding reflection and receiving the reflected light from the above-mentioned light. There is a method in which a travel command is issued by receiving light at a part and detecting the pattern.

しかし、これらの光学式誘導方式では、次の如き問題点
がある。
However, these optical guidance systems have the following problems.

1) 誘導体へのゴミ等の付着により光の反射が阻害さ
れ易い。
1) Reflection of light is likely to be inhibited by the adhesion of dust, etc. to the derivative.

2) 誘導体表面の損傷により光の反射が阻害され易い
2) Light reflection is likely to be inhibited due to damage to the dielectric surface.

3) 走行面の凹凸が多い場合、反射体の設置が困難で
設置されたち・のでも剥れ易い。
3) If the running surface is uneven, it is difficult to install the reflector and the reflector is easily peeled off.

以上のように従来の電磁誘導方式、光学式誘導方式のい
ずれも多くの問題点を有しており、いずれの方式も誘導
体の耐久性、移設性及びその機能の安定性に問題がある
と共に誘導体の設置方法が複雑である。
As mentioned above, both the conventional electromagnetic induction method and the optical induction method have many problems. The installation method is complicated.

又、上記従来のいずれの方式においても、台車を直角に
移動しようとすると、通常の誘導用センサーと同一構造
のものを台車側面に設置する必要がある。
Furthermore, in any of the conventional systems described above, if the cart is to be moved at right angles, it is necessary to install a sensor with the same structure as a normal guidance sensor on the side of the cart.

しかし、このようにしたのでは、双方のセンサーは同一
の機能精度をもつ必要があp、通常走行と直角移動の精
度が同一である必要がない場合は不経済となる。
However, this arrangement requires that both sensors have the same functional accuracy, and is uneconomical if the accuracy of normal travel and right-angle movement does not need to be the same.

本発明は、かかる従来の問題点に鑑み、誘導方式として
新しい方式を導入し、機能の多様化と省力化を図ると同
時に通常の走行路に直角の方向へ移動するだめの専用セ
ンサーを設け、直角移動を簡素化しようとしてなしたも
のである。
In view of these conventional problems, the present invention introduces a new method as a guidance method, diversifies functions and saves labor, and at the same time provides a dedicated sensor for moving in a direction perpendicular to the normal travel path. This was done to simplify orthogonal movement.

以下、本発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

第5図乃至第9図に示す如く、無人台車を走行させよう
とする方向へ延びる磁気を帯びた誘導帯(1)を走行面
(2)に敷設し、直角方向へ交叉する点(3)の手前位
置に磁気コード板(4)を設置する。
As shown in Figures 5 to 9, a magnetic guide band (1) extending in the direction in which the unmanned vehicle is to run is laid on the running surface (2), and a point (3) where it intersects at right angles. Install the magnetic code board (4) in front of the

一方、無人台車(5)は、車体部(6)と荷台部(7)
とからなり、車体部(6)には、左右側に走行駆動輪(
8)を各−々独立した走行駆動モータ(9)によシ単独
に正転、逆転方向へ駆動されるように備え、該車体部(
6)の上部に位置させた荷台部(7)を、車体部(6)
の中心に立てた旋回軸α0で旋回自在に支持させる。荷
台部(7)には、前端部及び後端部に、キャスタ一式の
従動輪0])を取シ付ける吉共に、磁気検出セジサーα
■及び0→を取シ付け、更に荷台部(7)の左右両側面
部に、上記磁気検出センサーα邊αうよりも簡易にし且
つ該磁気検出センサーα■0つと同一の出力レベルとし
た直角方向移動専用の誘導用磁気検出センサーα→及び
α→を、直角方向に1びる誘導帯(1)の幅と同一かこ
れよシ広い間隔で配設する。更に、本発明では、台車(
5)に、上記磁気検出センサーα→αりやα)α→と接
続しである演算装置0υと、該演算装置α→で算出され
た値によシ走行駆動モータ(9)の回転制御を行うよう
指令を出す走行駆動制御装置OQと、その他バッテリー
等を搭載し、上記演算装置αGには、磁気検出センサー
α■α廊からの信号で台車(5)のずれ量を算出する機
能のほか、コード板(4)通過時の磁気検出センサー0
■α匂からの信号で台車(5)が交叉点(3)に接近し
ていると吉を表示するようプロゲラ、ムが組み込まれて
いる。
On the other hand, the unmanned trolley (5) has a body part (6) and a loading platform part (7).
The vehicle body part (6) has running drive wheels (
8) so as to be driven independently in the forward and reverse directions by independent travel drive motors (9), and the vehicle body (
The loading platform (7) located on the top of the vehicle body (6)
It is supported so as to be able to rotate around a pivot axis α0 set at the center. The loading platform (7) has a set of casters with driven wheels 0]) attached to the front and rear ends, as well as a magnetic detection stager α.
■ and 0 → are installed, and the magnetic detection sensor α side α is installed on both left and right sides of the loading platform (7), and the magnetic detection sensor α side α is simpler than the other side, and the output level is the same as that of the magnetic detection sensor α■ 0 in the right angle direction. Magnetic detection sensors α→ and α→ for guidance exclusively for movement are arranged at intervals that are equal to or wider than the width of the induction band (1) extending in the perpendicular direction. Furthermore, in the present invention, the trolley (
5), the rotation of the travel drive motor (9) is controlled by the arithmetic device 0υ connected to the magnetic detection sensor α→α) and the value calculated by the arithmetic device α→. It is equipped with a travel drive control device OQ that issues commands to move, and other batteries, etc., and the arithmetic unit αG has the function of calculating the amount of deviation of the bogie (5) based on the signal from the magnetic detection sensor α■α corridor. Magnetic detection sensor 0 when passing code plate (4)
■A progera is installed to display a lucky sign when the truck (5) approaches the intersection (3) based on the signal from α.

上記磁気検出センサーα■αうは、多数の磁気検出素子
αりより構成されておシ、各磁気検出素子α力は、一定
の磁力をもつ誘導−帯(1)の磁界0→(第7図及び第
8図参照)以上の強さに反応するような高さ位置で且つ
横方向へ所定のピッチで配設し、該各磁気検出センサー
α■(lはそれぞれ演算装置α瞳に接続され゛て演算装
置αυ内で番地として表示されるようにしてあり、いず
れかの磁気検出素子α′I)が磁気を検出すると尚該素
子0乃に対応する番地が表示され、又同時に尚該表示さ
れた番地と基準位置の番地との間の距離が演算されるよ
うにする。又、直角移動専用の磁気検出センサー030
→が磁気を検出するとこの検出信号により演算装置0υ
から走行駆動制御装置0Qへ指令が与えられるようにす
る。
The above-mentioned magnetic detection sensor α■α is composed of a large number of magnetic detection elements The magnetic detection sensors α■ (l are connected to the arithmetic unit α pupil, and It is displayed as an address in the arithmetic unit αυ, and when any magnetic detection element α'I) detects magnetism, the address corresponding to that element 0 is displayed, and at the same time, the display is The distance between the specified address and the reference position address is calculated. In addition, magnetic detection sensor 030 exclusively for right-angle movement
When → detects magnetism, this detection signal causes the arithmetic unit 0υ
A command is given to the traveling drive control device 0Q from the drive control device 0Q.

なお、本発明では、誘導帯(1)、(1)の磁極をN極
とすると、磁気検出センザーα■α本α4αΦもN極と
1〜、コード板(4)は上面にN極とS極を適宜配列さ
せて先端側の磁気検出センサー0■がコード板(4)の
極性の磁界を検出すると、そのON信号のパターンで交
叉点(3)があることが演算装置α→で表示され、交叉
点(3)で台車(5)を一旦停止させ得る制御指令を制
御装置α0を介し走行駆動モータ(9)へ与え得るよう
にしである。
In addition, in the present invention, if the magnetic poles of the induction bands (1) and (1) are N poles, the magnetic detection sensor α■α book α4αΦ also has N poles and 1~, and the code plate (4) has N poles and S poles on the top surface. When the magnetic detection sensor 0■ on the tip side detects the magnetic field of the polarity of the code plate (4) by arranging the poles appropriately, the arithmetic unit α→ will indicate that there is a crossing point (3) in the pattern of the ON signal. , a control command capable of temporarily stopping the bogie (5) at the intersection point (3) can be given to the traveling drive motor (9) via the control device α0.

台車(5)が交叉点(3)に向う寸での誘導について説
明するに、今、磁気検出センサーα■(6)の中央部が
誘導帯(1)の中心に一致している状態を基準きする吉
、各磁気検出素子αつのうち、磁気検出センサー0■の
中央部にある複数個の磁気検出素子0乃が誘導帯(1)
の磁気を検出し、これが演算装置0→内で中心部の番地
として表示される限り、演算装置α啼ではずれ量が零古
して割算されているため、検出センサー0■の中央吉誘
導帯(1)の中・L・が一致した状態で台車(5)は走
行させられる。
To explain the guidance as the trolley (5) approaches the intersection point (3), we will now refer to the state in which the center of the magnetic detection sensor α (6) coincides with the center of the guidance band (1). Among the magnetic detection elements α, the plurality of magnetic detection elements 0 in the center of the magnetic detection sensor 0 are inductive bands (1).
As long as the magnetism of is detected and this is displayed as the center address in the calculation device 0→, the amount of deviation is zero and divided by the calculation device α, so the central Yoshi induction of the detection sensor 0■ The cart (5) is run with the middle and L of the band (1) aligned.

台車(5)が走行中に、たとえば右側へずれたとすると
、第8図に示す如く台車(5)に設けた磁気検出センサ
ーα■の中央(C)より左側に位置する複数の磁気検出
素子07)が誘導帯(1)の磁気を検出することになる
。今、磁気検出センサー(12の中央(C)から磁気を
感知している第n−1番目の磁気検出素子α力までの距
離を11、同じく第7+2番目の磁気検出素子α力まで
の距離を12とすると、磁気検出センサーα→の中央(
C)から誘導帯(1)の中心線上までの距離りは、L−
二〇」」穫で表わされ、この距離りが誘導帯(1)から
のずれ量となる。
For example, if the truck (5) shifts to the right side while traveling, a plurality of magnetic detection elements 07 located on the left side of the center (C) of the magnetic detection sensor α■ provided on the truck (5) as shown in FIG. ) will detect the magnetism of the induction band (1). Now, the distance from the center (C) of the magnetic detection sensor (12) to the n-1st magnetic detection element α force sensing magnetism is 11, and the distance to the 7th + 2nd magnetic detection element α force is also 11. 12, the center of the magnetic detection sensor α→ (
The distance from C) to the center line of the guide band (1) is L-
It is expressed as 20'', and this distance is the amount of deviation from the guidance zone (1).

上記第ル一番目から第n2番目までの磁気検出素子αη
が磁気を検出していることにより、演算装置0→では上
記第n−1番目から第n2番目の番地表示がされると共
に上記L−b±bの計算が行われて磁気検出センサーα
2の中央(C)を基準としたときの右又は左への実際の
ずれ量が求められる。
The above-mentioned magnetic sensing elements αη from the first to the nth
is detecting magnetism, the arithmetic unit 0→displays the above n-1st to n2th addresses, and calculates the above L-b±b, and the magnetic detection sensor α
The actual shift amount to the right or left when the center (C) of 2 is used as a reference is determined.

ずれ量が求められると、そのずれ量が零となるような制
御指令が走行駆動制御装置aQから走行駆動モータ(9
)へ送られ、左右の駆動輪(8)の回転を制御して台車
の方向制御を行う。上記走行駆動モータ(9)からは走
行駆動制御装置0→や演算装置(1→へ信号がフィード
バックされ、ずれ量が零となるまで方向制御が行われ、
台車(5)の磁気検出センサー(1つの中央が誘導帯(
1)の中心と一致するよう台車(5)が自動的に誘導さ
れる。
Once the amount of deviation is determined, a control command that makes the amount of deviation zero is sent from the travel drive control device aQ to the travel drive motor (9).
), which controls the rotation of the left and right drive wheels (8) to control the direction of the truck. Signals are fed back from the travel drive motor (9) to the travel drive control device 0→ and the arithmetic unit (1→), and direction control is performed until the amount of deviation becomes zero.
The magnetic detection sensor of the trolley (5) (the center of one is the induction band (
The trolley (5) is automatically guided to match the center of 1).

次に、台車(5)が交叉点(3)で90度方向を変換す
る場合は、次のような方法で行う。
Next, when the cart (5) changes direction by 90 degrees at the intersection point (3), the following method is used.

台車(5)が交叉点(3)の手前まで来ると、前端部の
磁気検出センサーα→がコード板(4)上を通過する。
When the trolley (5) comes before the intersection (3), the magnetic detection sensor α→ at the front end passes over the code plate (4).

このとき、コード板(4)上面に配列されている磁極を
磁気検出センサーα■が検出する。コード板(4)上面
の磁気パターンを予め決め、このパターンが間近かに交
叉点(3)の存在を表示するものとしてプログラミング
されているため上記磁気検出センサーα■がコード板(
4)の磁気を検出することにより、演算装置αGで交叉
点(3)のあることが表示され、走行駆動モータ(9)
に交叉点に設けた停止指令点(図示せず)で停止するよ
う指令が与えられる。これにより台車(5)がコート板
(4)を通過した後、停止すると、停止位置が交叉点(
3)であるというこさになる。
At this time, the magnetic detection sensor α■ detects the magnetic poles arranged on the upper surface of the code plate (4). The magnetic pattern on the top surface of the code plate (4) is predetermined, and this pattern is programmed to indicate the presence of the nearby intersection point (3), so the magnetic detection sensor α■ detects the code plate (
By detecting the magnetism of 4), the arithmetic unit αG displays that there is an intersection point (3), and the travel drive motor (9)
A command is given to stop at a stop command point (not shown) provided at an intersection point. As a result, when the cart (5) stops after passing the coat plate (4), the stopping position will be at the intersection point (
3).

台車(5)が交叉点(3)に差しかかり停止すると、図
示しない固定装置で荷台部(7)を一時固定した後、走
行駆動輪(8)を互に反対方向へそれぞれ回転駆動させ
る。これにより車体・部(6)は旋回軸(10)を中心
として荷台部(7)の下で回転させられる3、第5図に
示す如く、車体部(6)が90度方向変換させられ、走
行駆動輪(8)が二点鎖線で示す如く直角方向の誘導帯
(1)と平行に移動させられると、各走行駆動モータ(
9)を同一方向へ同速で駆動させ、走行駆動輪(8)を
同一方向へ回転させてX方向又はY方向へ走行させる。
When the truck (5) approaches the intersection (3) and stops, the loading platform (7) is temporarily fixed by a fixing device (not shown), and then the driving wheels (8) are driven to rotate in opposite directions. As a result, the vehicle body section (6) is rotated under the loading platform section (7) around the pivot axis (10) 3. As shown in FIG. 5, the vehicle body section (6) is rotated by 90 degrees. When the traveling drive wheels (8) are moved parallel to the guide band (1) in the perpendicular direction as shown by the two-dot chain line, each traveling drive motor (
9) are driven in the same direction at the same speed, and the travel drive wheels (8) are rotated in the same direction to travel in the X direction or Y direction.

この際、磁気検出センサーαつ及びα■は荷台部(7)
に固定されているので、荷台部(7)を固定して車体部
(6)のみを90度回転させる方式では、誘導帯(1)
に浴い直角方向へ走行するときの誘導をすることはでき
ない。
At this time, the magnetic detection sensors α and α■ are located on the loading platform (7).
Therefore, in a method in which the loading platform (7) is fixed and only the vehicle body (6) is rotated 90 degrees, the guide band (1)
It is not possible to guide the vehicle when traveling at right angles to the vehicle.

しかし、本発明では、直角移動用センサー01α→が別
個に台車(5)に設けであるので、台車(5)が誘導帯
(1)に沿い走行して来て直角方向に移動するききは、
別に設けた上記センサー0304により誘導帯(1)に
清い誘導させるようにする。
However, in the present invention, since the orthogonal movement sensor 01α→ is separately provided on the cart (5), when the cart (5) runs along the guide zone (1) and moves in the orthogonal direction,
The separately provided sensor 0304 ensures clear guidance to the guidance zone (1).

上記において、直角方向への誘導に通常走行用の誘導用
磁気検出センサーαつ0■の機能が必要でない場合は、
第10図に示す如く、台車(5)の荷台部(7)に磁気
検出センサーαつα9)を設け、感知磁力を電圧に変え
、その電圧の差を求めることにより第11図の如く誘導
帯(1)の中心からのずれ量を求め、その値を走行駆動
制御装置αつへ送9、センサー(19)α9)の中心、
すなわち、台車の誘導点が誘導帯(1)の中心と々るよ
う制御することができる。
In the above, if the function of the magnetic detection sensor for guidance for normal driving is not required for guidance in the right angle direction,
As shown in Fig. 10, magnetic detection sensors α and α9) are installed on the loading platform (7) of the cart (5), and the sensed magnetic force is converted into voltage. (1) Find the amount of deviation from the center and send the value to the traveling drive control device α9, the center of the sensor (19) α9),
That is, it is possible to control the guide point of the truck so that it reaches the center of the guide zone (1).

なお、第5図では、直角移動用センサー03α→をそれ
ぞれ台車(5)の側面に設置しているが、台車(5)の
中心部のみに一対のセンサーを取シ付けて誘導するよう
にしてもよい。
In Fig. 5, the right-angle movement sensors 03α→ are installed on the sides of the cart (5), but a pair of sensors are attached only to the center of the cart (5) for guidance. Good too.

以上述べた如く本発明によれば、台車に、通常走行時の
誘導用磁気検出センサーのほかに直角移動時の誘導用磁
気検出、センサーを別個に取シ付け、磁気融導帯の交叉
部で直角方向へ誘導できるようにしであるので、次の如
き優れた効果を奏し得る。
As described above, according to the present invention, in addition to the magnetic detection sensor for guidance during normal running, the magnetic detection sensor for guidance during right-angle movement is separately attached to the trolley, and Since it can be guided in the right angle direction, the following excellent effects can be achieved.

(i)  直角移動用のセンサーさして、通常走行時の
誘導用磁気検出センサーよシも簡単々ものを使用してい
るので、直角移動用センサーの構造を簡単にすることが
できる。
(i) Since the sensor for right-angle movement uses something as simple as the magnetic detection sensor for guidance during normal driving, the structure of the sensor for right-angle movement can be simplified.

(11)誘導帯かちのずれ量を同一電圧レベルとするこ
とによシ通常走行用の誘導制御装置を使用することがで
きる。
(11) By setting the deviation amount of the guide band to the same voltage level, the guidance control device for normal running can be used.

(iii)  誘導帯の交叉部の表示が簡単にできて交
叉部での直角方向への誘導切替が容易である1、(1■
)誘導帯は走行面に敷設するだけでよいので、誘導帯の
設置、移設が簡単である0、 ()誘導帯は設置面下に存在する磁性体の影響を受けな
い。
(iii) The intersection of the guide bands can be easily displayed and the guide can be easily switched to the right angle direction at the intersection.
) Since the guide strip only needs to be laid on the running surface, installation and relocation of the guide strip is easy. () The guide strip is not affected by the magnetic material that exists under the installation surface.

(vi)  誘導帯表面に損傷が生じても磁気が存在す
る限シ誘導に悪影響を与えるよう々ことがない。
(vi) Even if the surface of the induction band is damaged, it will not adversely affect the induction as long as magnetism is present.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は従来方式の概略図、第5図は本発明
の装置の平面図、第6図は第5図の側面図、第7図は磁
気検出センサーと誘導帯の関係を示す正面図、第8図は
磁気検出センサーがずれた状態を示す正面図、第9図は
本発明の装置のブロック図、第10図は本発明の他の例
を示す説明図、第11図は第10図による場合のずれ量
の検出状態を示す図である。 (1)(1)・・誘導帯、(3)・・・交叉点、(4)
・・・コード板、(5)・・・台車、(6)・・・車体
部、(7)・・・荷台部、(8)・・・走行駆動輪、(
10・・・旋回軸、α力06α304・・・磁気検出セ
ンサー、α力・・・演算装置、0Q・・・走行駆動制御
装置、α力・・磁気検出素子。 (ト)寸 城       城
Figures 1 to 4 are schematic diagrams of the conventional system, Figure 5 is a plan view of the device of the present invention, Figure 6 is a side view of Figure 5, and Figure 7 shows the relationship between the magnetic detection sensor and the induction band. 8 is a front view showing a state in which the magnetic detection sensor is shifted, FIG. 9 is a block diagram of the device of the present invention, FIG. 10 is an explanatory diagram showing another example of the present invention, and FIG. 11 10 is a diagram showing a detection state of the amount of deviation in the case of FIG. 10. FIG. (1) (1)...Induction zone, (3)...Cross point, (4)
... code plate, (5) ... bogie, (6) ... car body, (7) ... loading platform, (8) ... traveling drive wheel, (
10... Rotating axis, α force 06α304... Magnetic detection sensor, α force... Arithmetic device, 0Q... Traveling drive control device, α force... Magnetic detection element. (g) castle castle

Claims (1)

【特許請求の範囲】 1) 誘導帯に沿い台車を走行させる無人台車の誘導方
法において、磁気を帯びた誘導帯の磁気を検出しながら
台車を該誘導帯に沿い走行させる誘導を行い、上記誘導
帯と直交する別の誘導帯では別に用意した直角移動専用
のセンサーで台車の方向ずれがないよう誘導することを
特徴とする無人台車の誘導方法。 2) 多数の磁気検出素子を配設させてなる直進用の磁
気検出センサーと、該センサーとは異なる直角移動用セ
ンサーとを台車に取り付け、上記磁気検出センサーから
の信号を受けて台車のずれ闇を算出し台車のずれがなく
なるよう指令を発する演算装置と、該演算装置からの指
令にもとづき台車の駆動部を制御する制御装置とを台車
に備え、走行路面に磁気を帯びた誘導帯を直交して敷設
してなることを特徴とする無人台車の誘導装置。
[Scope of Claims] 1) In a method for guiding an unmanned trolley in which a bogie runs along a guide zone, the bogie is guided to run along the guide zone while detecting the magnetism of the magnetic guide zone, and the above-mentioned guidance is performed. A method for guiding an unmanned trolley, characterized in that in another guidance zone perpendicular to the belt, a separately prepared sensor dedicated to right-angle movement is used to guide the trolley so that there is no deviation in direction. 2) A magnetic detection sensor for straight movement, which is composed of a large number of magnetic detection elements, and a sensor for perpendicular movement, which is different from the sensor, are attached to the cart, and the sensor detects the deviation of the cart by receiving the signal from the magnetic detection sensor. The bogie is equipped with a calculation device that calculates the amount and issues commands to eliminate the deviation of the bogie, and a control device that controls the drive section of the bogie based on the instructions from the calculation device, and a magnetic guide strip is perpendicular to the running road surface. A guidance device for an unmanned trolley, characterized in that it is installed by
JP58078015A 1983-04-30 1983-04-30 Method and device for guidance of unmanned truck Granted JPS59202515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58078015A JPS59202515A (en) 1983-04-30 1983-04-30 Method and device for guidance of unmanned truck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58078015A JPS59202515A (en) 1983-04-30 1983-04-30 Method and device for guidance of unmanned truck

Publications (2)

Publication Number Publication Date
JPS59202515A true JPS59202515A (en) 1984-11-16
JPH036524B2 JPH036524B2 (en) 1991-01-30

Family

ID=13649963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58078015A Granted JPS59202515A (en) 1983-04-30 1983-04-30 Method and device for guidance of unmanned truck

Country Status (1)

Country Link
JP (1) JPS59202515A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184507A (en) * 1986-02-08 1987-08-12 Makome Kenkyusho:Kk Unmanned vehicle guidance system
JPH0612119A (en) * 1991-08-16 1994-01-21 Shikoku Sogo Kenkyusho:Kk Guiding device for running work wagon
EP3456663A3 (en) * 2015-02-06 2019-06-12 Gebhardt Fördertechnik GmbH Pallet conveyor
GB2558182B (en) * 2016-07-27 2022-04-13 A Tech Fabrications Ltd Autonomous guided vehicle system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184507A (en) * 1986-02-08 1987-08-12 Makome Kenkyusho:Kk Unmanned vehicle guidance system
JPH0612119A (en) * 1991-08-16 1994-01-21 Shikoku Sogo Kenkyusho:Kk Guiding device for running work wagon
EP3456663A3 (en) * 2015-02-06 2019-06-12 Gebhardt Fördertechnik GmbH Pallet conveyor
GB2558182B (en) * 2016-07-27 2022-04-13 A Tech Fabrications Ltd Autonomous guided vehicle system

Also Published As

Publication number Publication date
JPH036524B2 (en) 1991-01-30

Similar Documents

Publication Publication Date Title
KR900008065B1 (en) Driving guidance device of driverless car
JPH036522B2 (en)
JPS59214918A (en) Unmanned trolley guidance method and device
JPS59202515A (en) Method and device for guidance of unmanned truck
JPS6256522B2 (en)
JPH036521B2 (en)
JPH056688B2 (en)
JPS59202513A (en) Unmanned trolley guidance device
JPS60107113A (en) Guiding method of unmanned track
JPS59202516A (en) Unmanned trolley guidance method and device
JPS59229625A (en) Unmanned trolley guidance method and device
JPS62111306A (en) S-shaped traveling carrier car
JPS59202512A (en) Method and device for guidance of unmanned truck
JPS60105016A (en) Method and device for guiding unmanned truck
JPS60193023A (en) Guide device for unmanned truck
JPS61110210A (en) Automated guided vehicle taxiway and its driving system
JPS59112314A (en) Unmanned lift truck
JPS63314613A (en) Drive controller for unmanned vehicle
JP2632045B2 (en) Mobile vehicle guidance equipment
JPS63165908A (en) Trackless unmanned vehicle equipment
JPS63115207A (en) Traveling guide device for unattended vehicle
JPS63111505A (en) Traveling guiding device for unmanned vehicle
JPS63273112A (en) Running control information instructing device for automatic running truck
JPH0481209B2 (en)
JP2582655B2 (en) Moving body course deviation detection device