[go: up one dir, main page]

JPS59202360A - Heliostatic sensor - Google Patents

Heliostatic sensor

Info

Publication number
JPS59202360A
JPS59202360A JP58076756A JP7675683A JPS59202360A JP S59202360 A JPS59202360 A JP S59202360A JP 58076756 A JP58076756 A JP 58076756A JP 7675683 A JP7675683 A JP 7675683A JP S59202360 A JPS59202360 A JP S59202360A
Authority
JP
Japan
Prior art keywords
light
receiving elements
detecting
light receiving
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58076756A
Other languages
Japanese (ja)
Inventor
Yorinaka Ikenaga
池永 頼央
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP58076756A priority Critical patent/JPS59202360A/en
Publication of JPS59202360A publication Critical patent/JPS59202360A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/783Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To reduce the number of component parts and reduce cost, by a method wherein the second detecting surfaces having opposite surfaces inclined in opposite directions are provided at side edges of the first detecting surface, and a projected wall is provided between light-receiving elements provided on the first detecting surface. CONSTITUTION:The first detecting surface 21, which is a flat rectangular surface, is provided on the front end face of a main body 20, and an angular shaft form projected wall 22 is provided at the center or the first detecting surface 21. The light-receiving elements a1, a2, a3, a4 are provided at the outer periphery of the projected wall 22, the second detecting surfaces 24 having opposite surfaces inclined in opposite directions are provided at side edges of the first detecting surface 21, and light-receiving elements A1, A2, A3, A4 are provided respectively at substantially central parts of the second detecting surfaces 24. Accordingly, a roughly adjusting action can be performed by each of the light- receiving elements A1, A2, A3, A4, while a finely adjusting action can be performed by each of the light-receiving elements a1, a2, a3, a4, it is unnecessitated to provide any sensor for rough adjustment, and the cost can be reduced through reducing the number of component parts.

Description

【発明の詳細な説明】 〈発明の技術分野〉 本発明は、例えば集光板の方位および上下の傾きを調整
する技術に関連し、殊番こ本発明は、太陽の運行を追尾
し、集光板を太陽番こ対面位置させる太陽追尾用センサ
に関する。
Detailed Description of the Invention <Technical Field of the Invention> The present invention relates to, for example, a technique for adjusting the direction and vertical inclination of a light condensing plate. This invention relates to a solar tracking sensor that positions a solar panel facing the sun.

〈発明の背景〉 従来この種センサイこは、90度等角の各位置に合計4
個の受光素子を隣接配備した構造のものが用いられ、集
光板を上下、左右に傾動させ、センサ(こおける各受光
素子の受光量が均衡する位置で集光板の動きを止め、太
陽番こ対する集光板の向きを調整している。ところがこ
の種センサは、集光板の微小角度範囲の調整には適する
が、広い角度範囲に亘る太陽の追尾動作には不向きであ
る。従って従来の装置例では、別途設けた粗調整機構を
もって集光板を太陽の方向へ動かし、ついで上記の太陽
追尾用センサにより集光板の向きを微調整する方式を採
用している。
<Background of the Invention> Conventionally, this type of sensor has a total of 4 sensors at each 90 degree equiangular position.
The light-concentrating plate is tilted vertically and horizontally, and the movement of the light-condensing plate is stopped at a position where the amount of light received by each light-receiving element is balanced. However, although this type of sensor is suitable for adjusting the light condensing plate in a small angular range, it is not suitable for tracking the sun over a wide angular range.Therefore, the conventional device example In this method, a separately provided rough adjustment mechanism is used to move the light condensing plate in the direction of the sun, and then the direction of the light condensing plate is finely adjusted using the above-mentioned sun tracking sensor.

これがため従来方式では粗調整用のセンサが必要となり
、コスト高や構造の複雑化を招く等、幾多の問題があっ
た。
For this reason, the conventional method requires a sensor for rough adjustment, which causes many problems such as increased cost and complicated structure.

〈発明の目的〉 本発明は、粗調整並びに微調整のいずれの調整動作にも
適用できる新規な太陽追尾用センサを提供し、もって集
光装置等の部品点数を減少させ、コストの軽減や構造の
簡易化をはかることを目的とする。
<Object of the Invention> The present invention provides a novel solar tracking sensor that can be applied to both coarse adjustment and fine adjustment operations, thereby reducing the number of parts such as a condensing device, reducing costs and improving the structure. The purpose is to simplify the process.

〈発明の構成および効果〉 」二記目的を達成するため、本発明では、矩形状をなす
平坦な第1検知面の各辺縁に対向面が反対方向へ傾斜す
る第2検知面を形成し、各第2検知面および第1検知面
の各辺縁内側には夫々受光素子を配設すると共に、第1
検知面の各受光素子間には突出壁を形成するよう構成し
た。
<Structure and Effects of the Invention> In order to achieve the second object, the present invention forms a second sensing surface whose opposing surface is inclined in the opposite direction at each edge of the rectangular flat first sensing surface. , a light-receiving element is disposed inside each edge of each of the second detection surface and the first detection surface, and
A protruding wall was formed between each light receiving element on the detection surface.

本発明によれば、第2検知面の各受光素子をもって粗調
整動作を、また第1検知面の各受光素子をもって微調整
動作を夫々行ない得、従来例の如く、粗調整用センサを
別途設ける等の必要がなく、コストの軽減および構造の
簡易化を実現できる等、発明目的を達成した優れた効果
を奏する。
According to the present invention, each light receiving element on the second sensing surface can perform a coarse adjustment operation, and each light receiving element on the first sensing surface can perform a fine adjustment operation, and as in the conventional example, a rough adjustment sensor is separately provided. etc., and achieves the excellent effects of achieving the purpose of the invention, such as reducing costs and simplifying the structure.

〈実施例の説明〉 第1図は集光装置の概略構成を示し、円形軌条4上【こ
長方矩形状の集光板]を摺動自由に立設配備している。
<Description of Embodiments> FIG. 1 shows a schematic configuration of a light condensing device, in which a rectangular light condensing plate is erected on a circular track 4 so as to be freely slidable.

この集光板1には方位調整用モータ41および高度調整
用モータ42が接続され、方位調整用モータ41は集光
板1を円形軌条4に沿い摺動させ、また高度調整用モー
タ42は集光板1を上下に傾動させる。集光板1の上辺
には本発明にかかる太陽追尾用センサ2が取付は配備さ
れ、センサ出力(こ基づき制御装置3が各モータ41,
42を所定角度回動させ、集光板1を太陽10に対面位
置させる。
A direction adjustment motor 41 and an altitude adjustment motor 42 are connected to the light condensing plate 1. The direction adjustment motor 41 slides the light condensing plate 1 along the circular track 4, and the altitude adjustment motor 42 makes the light condensing plate 1 slide. Tilt up and down. A solar tracking sensor 2 according to the present invention is mounted on the upper side of the light condensing plate 1, and the control device 3 controls each motor 41,
42 by a predetermined angle to position the light collecting plate 1 facing the sun 10.

第2図乃至第4図は太陽追尾用センサ2を示し、器体2
0の前端面に矩形状をなす平担な第1検知面21を形成
し、第1検知面21の中央に角軸状の突出壁22を形成
すると共に、各辺縁内側の突出壁22の外周に夫々受光
素子alla2+J+a4 を配設している。第1検出
面21の各辺縁には垂直壁23が形成され、各垂直壁2
3の上端縁には夫々外方へ低く傾斜する第2検知面24
を形成すると共′に、各第2検知面?4の略中央部には
夫々受光素子A4 、4 、 A) 。
2 to 4 show the solar tracking sensor 2, and the device body 2
A flat first sensing surface 21 having a rectangular shape is formed on the front end surface of 0, and a protruding wall 22 having a rectangular shaft shape is formed at the center of the first sensing surface 21. Light receiving elements alla2+J+a4 are respectively arranged on the outer periphery. A vertical wall 23 is formed on each edge of the first detection surface 21, and each vertical wall 2
3 has a second sensing surface 24 that slopes downwardly toward the outside.
At the same time, each second sensing surface ? 4, there are light receiving elements A4, 4, A) at approximately the center of each of them.

A&を配設している。A& is installed.

第5図および第6図は太陽追尾用センサ2の他の実施例
を示す。図示例のセンサ2は、各第2検知面24を第1
検知面21側へ低く傾斜させたものであり、各受光素子
a1〜a4およびA、〜A4は前記第1実施例と同様の
位置に配設してあや・ 第7図は前記制御装置3の回路構成例を示し、第1、第
2の各検知面21.24において、相対する位置の受光
素子A1とA、、A、と7’l−4! dlとa、 1
a5とa、の各出力が夫々対数差動増幅器5の2人力を
構成している。各対数差動増幅器5は、受光素子からの
2人力の対数比に応じた出刃信号を送出するもので、例
えば受光素子A、、A、がらの各入力をr (A、) 
、 I (A、)とすると、対数差動増幅器5の出力P
は次式で表わされる。
5 and 6 show other embodiments of the solar tracking sensor 2. FIG. The sensor 2 in the illustrated example has each second sensing surface 24 connected to the first
The light-receiving elements a1 to a4 and A, to A4 are arranged at the same positions as in the first embodiment. An example of a circuit configuration is shown in which light receiving elements A1 and A, , A, and 7'l-4! are located at opposing positions on each of the first and second detection surfaces 21.24. dl and a, 1
The outputs a5 and a constitute two outputs of the logarithmic differential amplifier 5, respectively. Each logarithmic differential amplifier 5 sends out a cutting signal according to the logarithmic ratio of two forces from the light receiving elements, and for example, each input of the light receiving elements A, , A,
, I (A,), the output P of the logarithmic differential amplifier 5
is expressed by the following formula.

P = K−4n I(A’ ■(ん) 但しKは定数である。P = K-4n I(A' ■(n) However, K is a constant.

各対数差動増幅器5には正極性信号検出器61および負
極性信号検出器6oより成る極性判定回路6が接続され
る。この極性判定回路6は一定のスレシュホールドレベ
ルをもって対数差動増幅器5の出力を判定するもので、
正判定にかかるとき、正極性信号検出器61が、負判定
にかかるとき、負極性信号検出器60が夫々検出信号を
出力する。受光素子A1〜A、にかかる各検出器61.
60からの検出信号は、駆動信号発生回路7,70 へ
入力され、また受光素子a1〜a、にががる各検出器6
1.60の検出信号はゲート回路91〜94を介して駆
動信号発生回路7.70へ入力される。このゲート回路
91〜94は受光素子A1〜A4にかかる各検出器61
.60がらの検出信号により開閉制御され、オア回路8
.80から信号入力があると、「ゲート閉」の禁止状態
が形成される。各駆動信号発生回路7.70は前記の方
位調整用モータ41および高度調整用モータ42を正逆
駆動する駆動信号を出力するもので、図示例の場合、受
光素子A1゜A2およびallaffにかかる駆動信号
発生回路7゜70は方位調整用モータ41の駆動信号H
A(+1゜HA(−) 、 Ha(−1−1、Ha(−
)を、また受光素子A、 、 A、およびas + 2
4にかかる駆動信号発生回路7,70は高度調整用モー
タ42の駆動信号VA(→→r、 VA(−)、 Va
(−1→。
A polarity determination circuit 6 consisting of a positive polarity signal detector 61 and a negative polarity signal detector 6o is connected to each logarithmic differential amplifier 5. This polarity determination circuit 6 determines the output of the logarithmic differential amplifier 5 using a certain threshold level.
When making a positive determination, the positive polarity signal detector 61 outputs a detection signal, and when making a negative determination, the negative polarity signal detector 60 outputs a detection signal. Each detector 61 .
The detection signal from 60 is input to the drive signal generation circuits 7 and 70, and the detection signals from the light receiving elements a1 to a and the respective detectors 6
The detection signal of 1.60 is inputted to the drive signal generation circuit 7.70 via gate circuits 91-94. These gate circuits 91 to 94 are connected to each detector 61 connected to the light receiving elements A1 to A4.
.. Opening/closing is controlled by the detection signal from 60, and the OR circuit 8
.. When a signal is input from 80, a "gate closed" prohibited state is formed. Each drive signal generation circuit 7.70 outputs a drive signal for driving the azimuth adjustment motor 41 and the altitude adjustment motor 42 in the forward and reverse directions, and in the illustrated example, the drive signal applied to the light receiving elements A1, A2 and allaff is The signal generating circuit 7゜70 generates a drive signal H for the direction adjustment motor 41.
A(+1゜HA(-), Ha(-1-1, Ha(-)
), and the light receiving elements A, , A, and as + 2
The drive signal generation circuits 7 and 70 related to 4 generate drive signals VA (→→r, VA(-), Va) of the altitude adjustment motor 42.
(−1→.

Va(−)を夫々出力する。Va(-) is output respectively.

例えは今、受光素子氏およびA3の対向方向に太陽が位
置するとき、受光素子A1の受光用は受光素子A2の受
光量より大きく、また受光素子A5の受光量は受光素子
A、の受光量より大きくなる。
For example, when the sun is located in the direction opposite to the photodetector A3, the amount of light received by the photodetector A1 is greater than the amount of light received by the photodetector A2, and the amount of light received by the photodetector A5 is the amount of light received by the photodetector A. Become bigger.

これにより受光素子A、 、 A、およびA、 、 A
4にかかる各正極性信号検出器61.61が検出信号を
出力し、駆動信号発生回路7,7が駆動信号HA(」→
As a result, the light receiving elements A, , A, and A, , A
Each positive polarity signal detector 61.61 related to 4 outputs a detection signal, and the drive signal generation circuits 7, 7 generate a drive signal HA(''→
.

VA(+1を出力する。かくて方位調整用および高度調
整用の各モータ41 、42が駆動して集光板1を円形
軌導4に沿い摺動させ且つ上向きに傾動させ、集光板1
を太陽10の方向へ向ける(粗調整)。この場合、各ゲ
ート回路91〜94 jこはオア回路8,80より禁止
信号が入力されて「ゲート開」の禁止状態が形成され、
従って受光素子a1〜a、lこかかる駆動信号発生回路
7,7oは動作しない。そして集光板1の作動により、
受光素子A、とA、、A、とA4  の各受光量が一致
するに至ったとき、前記駆動信号HA(+l 、 VA
(−1−1は消失するが、各ゲート回路91〜94は「
ゲート開」となって、禁止状態が解除され、つぎに微調
整動作に移行する。
VA (+1 is output. Thus, each of the motors 41 and 42 for azimuth adjustment and altitude adjustment is driven to slide the light condensing plate 1 along the circular trajectory 4 and tilting it upward, and the light condensing plate 1
Point it toward the sun 10 (coarse adjustment). In this case, each of the gate circuits 91 to 94j receives a prohibition signal from the OR circuits 8 and 80, and a prohibition state of "gate open" is formed.
Therefore, the driving signal generating circuits 7, 7o corresponding to the light receiving elements a1 to a, l do not operate. Then, due to the operation of the light condensing plate 1,
When the amounts of light received by the light receiving elements A, A, A, and A4 match, the drive signal HA (+l, VA
(-1-1 disappears, but each gate circuit 91 to 94
``Gate Open'', the inhibited state is canceled, and then the fine adjustment operation begins.

今、太陽10の位置が受光素子a、、a、の方向に若干
偏っていると仮定すると、受光素子Jya4への太陽光
は突出壁22により遮られる。
Now, assuming that the position of the sun 10 is slightly biased in the direction of the light receiving elements a, , a, sunlight to the light receiving element Jya4 is blocked by the protruding wall 22.

従って受光素子a2より受光素子a、の方が受光量が大
きく、また受光素子a4より受光素子a5の方が受光量
が大きくなる。これにより受光素子”Inε12および
a、、a、にかかる各正極性信号検出器61 、61が
検出信号を出力し、駆動信号発生回路7,7は駆動信号
Ha((1)、 Va(1)を出力する。
Therefore, the light receiving element a receives a larger amount of light than the light receiving element a2, and the light receiving element a5 receives a larger amount of light than the light receiving element a4. As a result, the positive polarity signal detectors 61, 61 connected to the light receiving elements "Inε12 and a, , a" output detection signals, and the drive signal generation circuits 7, 7 output drive signals Ha((1), Va(1) Output.

かくて各モータ41,42が駆動して受光量が均衡する
まで集光板1を微動させ、これにより集光板1は太陽1
0に対面位置する。
In this way, each motor 41, 42 is driven to slightly move the light condensing plate 1 until the amount of light received is balanced.
Position facing 0.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は集光装置の概略構成を示す斜面図、第2図は太
陽追尾用センサの斜面図、第3図はその正面図、第4図
はその側面図、第5図は他の実施例にかかる太陽追尾用
センサの斜面図、第6図はその側面図、第7図は装置の
回路構成を示すブロック図である。 21・・ 第1検知面  24・°°・・第2検知而2
2°°゛′突出壁 A1−A4. a、〜a4  ・・・受光素子特許出願
人  立石電機株式会社 メ゛/ 国 J −62
Fig. 1 is a perspective view showing the schematic configuration of the condensing device, Fig. 2 is a perspective view of the solar tracking sensor, Fig. 3 is its front view, Fig. 4 is its side view, and Fig. 5 is another implementation. FIG. 6 is a perspective view of the solar tracking sensor according to the example, FIG. 6 is a side view thereof, and FIG. 7 is a block diagram showing the circuit configuration of the device. 21... 1st detection surface 24.°°... 2nd detection surface 2
2°°゛′ protruding wall A1-A4. a, ~a4 ... Light receiving element patent applicant Tateishi Electric Co., Ltd. / Country J-62

Claims (1)

【特許請求の範囲】 ■ 矩形状をなす平坦な第1検知面の各辺縁に対向面が
反対方向へ傾斜する第2検知面が形成され、各第2検知
面および第1検知面の各辺縁内側には夫々受光素子を配
設すると共に、第1検知面の各受光素子間には突出壁を
形成した太陽追尾用センサ。 ■ 各第2検知面は外方へ低く傾斜させた特許請求の範
囲第1項記載の太陽追尾用センサ。 ■ 各第2検知面は内方へ低く傾斜させた特許請求の範
囲第1項記載の太陽追尾用センサ。
[Claims] ■ A second sensing surface whose opposing surface is inclined in the opposite direction is formed at each edge of the rectangular flat first sensing surface, and each of the second sensing surface and the first sensing surface A solar tracking sensor in which light-receiving elements are arranged on the inner side of the periphery, and a protruding wall is formed between each light-receiving element on the first detection surface. (2) The solar tracking sensor according to claim 1, wherein each second detection surface is inclined outwardly. (2) The solar tracking sensor according to claim 1, wherein each second detection surface is inclined inwardly.
JP58076756A 1983-04-30 1983-04-30 Heliostatic sensor Pending JPS59202360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58076756A JPS59202360A (en) 1983-04-30 1983-04-30 Heliostatic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58076756A JPS59202360A (en) 1983-04-30 1983-04-30 Heliostatic sensor

Publications (1)

Publication Number Publication Date
JPS59202360A true JPS59202360A (en) 1984-11-16

Family

ID=13614429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58076756A Pending JPS59202360A (en) 1983-04-30 1983-04-30 Heliostatic sensor

Country Status (1)

Country Link
JP (1) JPS59202360A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630810U (en) * 1992-09-24 1994-04-22 日産ディーゼル工業株式会社 Solar cell panel position control device
JP2009294739A (en) * 2008-06-03 2009-12-17 Foundation For Promotion Of Japanese Aerospace Technology Sunlight tracking device
WO2010127615A1 (en) * 2009-05-04 2010-11-11 南京帅瑞科技有限公司 Control system for solar condenser and control method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630810U (en) * 1992-09-24 1994-04-22 日産ディーゼル工業株式会社 Solar cell panel position control device
JP2009294739A (en) * 2008-06-03 2009-12-17 Foundation For Promotion Of Japanese Aerospace Technology Sunlight tracking device
WO2010127615A1 (en) * 2009-05-04 2010-11-11 南京帅瑞科技有限公司 Control system for solar condenser and control method thereof

Similar Documents

Publication Publication Date Title
US4082947A (en) Solar collector and drive circuitry control means
US4367403A (en) Array positioning system with out-of-focus solar cells
US4404465A (en) Array positioning system
US4612488A (en) Apparatus for controlling the directional orientation of a radiation receiver device to a light source
GB1575461A (en) Apparatus for tracking movement of the sun
GB2030413A (en) Photoelectric direction finding and luminous zone tracking
JPS59202360A (en) Heliostatic sensor
CN215449994U (en) Light direction tracking system based on multi-sensor information
WO2008037158A1 (en) Sun azimuth sensor
JP4676298B2 (en) Electric blind control device
JP2002310517A (en) Solar light collector
JPS60122858A (en) solar tracking concentrator
KR102525117B1 (en) Smart Parasol Sun Shade Apparatus with Self-Powered Solar Tracking System
JPS599457A (en) Solar energy collecting device
JPH0695018B2 (en) Solar azimuth detection sensor
JP2009099904A (en) Heliostat solar position sensor mechanism and controller and its tracking control method
JP2007100479A (en) Controlling device of electric blind
JPH0746893Y2 (en) Solar tracking reflector device
JPS5842240Y2 (en) Solar paddle tracking device
SU1456717A1 (en) Orientation photosensor
JPH09196613A (en) Human body position detector
JP6169822B2 (en) Sunlight detection device and solar illumination device using the same
JPS6388402A (en) Sunlight-direction sensor
CN113391650A (en) Light direction tracking system based on multi-sensor information and drive control algorithm thereof
JPS62217112A (en) Sunshine direction sensor