[go: up one dir, main page]

JPS59202213A - Production of impact-resistant acrylic polymer - Google Patents

Production of impact-resistant acrylic polymer

Info

Publication number
JPS59202213A
JPS59202213A JP7624083A JP7624083A JPS59202213A JP S59202213 A JPS59202213 A JP S59202213A JP 7624083 A JP7624083 A JP 7624083A JP 7624083 A JP7624083 A JP 7624083A JP S59202213 A JPS59202213 A JP S59202213A
Authority
JP
Japan
Prior art keywords
stage
polymer
methyl methacrylate
polymerization
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7624083A
Other languages
Japanese (ja)
Other versions
JPH0465848B2 (en
Inventor
Kazuhiro Hosoya
和弘 細谷
Kazuya Negi
根木 一弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP7624083A priority Critical patent/JPS59202213A/en
Publication of JPS59202213A publication Critical patent/JPS59202213A/en
Publication of JPH0465848B2 publication Critical patent/JPH0465848B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)

Abstract

PURPOSE:To produce the titled polymer having excellent transparency, surface gloss, flow, moldability, and processability, by forming a methyl methacrylate copolymer and an alkyl acrylate copolymer by three-stage polymerization under specified conditions. CONSTITUTION:A first-stage rigid polymer of a Tg>=25 deg.C is obtained by emulsion-polymerizing a mixture of 80wt% or above methyl methacrylate, 20wt% or below another copolymerizable monomer (e.g., acrylic acid) and 5wt% or below still another copolymerizable polyfunctional grafting monomer (e.g., allyl acrylate). To this polymer is added a monomer mixture comprising 70-95wt% (1- 5C) alkyl acrylate and 5-30wt% copolymerizable monomer (e.g., styrene), and the polymerization for forming a second-stage flexible polymer of a Tg<=25 deg.C is started and, when the conversion reaches 60-90%, a monomer mixture containing 80wt% or above methyl methacrylate and 20wt% or below another copolymerizable monomer is added to form a third-stage rigid polymer of a Tg>=25 deg.C and a MW of 60,000-250,000.

Description

【発明の詳細な説明】 本発明は、改良された耐衝撃性アクリル系重合体、さら
に詳しくは、透明性および耐候性がよく流;Ij#成形
加工性の優れた耐衝撃性を有する耐衝撃性アクリル系重
合体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides improved impact resistant acrylic polymers, more specifically, impact resistant acrylic polymers having excellent impact resistance, transparency and weather resistance; The present invention relates to a method for producing a polyacrylic polymer.

メタクリル樹脂は、透明で美しい外観と耐候性を兼ね備
えていることから、これらの特性を生かして種々の用途
に使用されている。しかし、一般にメタク17.7y樹
脂は、衝撃強度が十分でなくその改良が強く要望されて
いた。
Methacrylic resin has both a transparent and beautiful appearance and weather resistance, and is used for a variety of purposes by taking advantage of these properties. However, Metac 17.7y resin generally does not have sufficient impact strength, and there has been a strong demand for improvement.

従来、メタクリル樹脂の耐衝撃性を改良する方法として
種々の提案がなされている。最も一般的で且つ、効果的
ガ方法としてメタクリル樹脂に常温でゴム状な示す弾性
体を導入することが試みられており、例えばブタジェン
を主成分とする不飽和コム状弾性体、アクリル酸ブチル
、アクリル酸2エチルヘキシルを主成分とする飽和ゴム
状弾性体を粒子状で分散させる方法がとられている。
Conventionally, various proposals have been made as methods for improving the impact resistance of methacrylic resins. The most common and effective method has been to introduce an elastic material that is rubber-like at room temperature into methacrylic resin, such as unsaturated comb-like elastic material whose main component is butadiene, butyl acrylate, A method has been adopted in which a saturated rubber-like elastic material containing 2-ethylhexyl acrylate as a main component is dispersed in the form of particles.

しかし、不飽和ゴム状弾性体の尋人はメタクリル樹脂の
特徴である耐候性が損なわれるため、近年耐候性の面か
ら飽和ゴム状弾性体の尋人が検討されているが、飽和ゴ
ムは弾性的特性が低く且つ硬質樹脂相とのグラフト重合
性も低いため耐衝撃性、透明性、光沢などの外観さらに
はゴム含量が多いため、流動成形加工性が劣るなどの問
題があリ、色々な工夫がなされている。例えば、特公昭
55−27576号公報には3層若しくは多層構造の重
合体と硬質熱可塑性重合体とのブレンドにより透明性を
損わず耐衝撃性を改良されることが示されている。特開
昭51−129449号公報、特開昭53−58554
号公報には3層を有し、かつこれらの各層間にほぼ定率
で変化する濃度勾配を持った中間層を有する構造で衝撃
に対する耐応力白化性を改良した樹脂組成物も知られて
いる。これらの方法は耐応力白化性の改良に関しては確
かに効果が認められるが耐(i ?4性、流動成形加工
性については満足されるものではなかった。笠た、特開
昭56−167712号公報には4層を有し、かつ各層
を架橋させることにより耐衝撃性、表面光沢などの改良
が提案されているが、このような方法では耐応力白化性
が低下してしまい満足されるものではなかった。本発明
者らは、メタクリル樹脂本来の特性を維持したまま耐衝
撃性を付与することについて鋭意研究の結果、特定の重
合条件下で3段重合体を製造することによって上記目的
が達せられることを見出し本発明をするに至った。
However, unsaturated rubber-like elastic material impairs the weather resistance, which is a characteristic of methacrylic resin, so in recent years, saturated rubber-like elastic material has been considered from the viewpoint of weather resistance. It has low physical properties and low graft polymerizability with the hard resin phase, resulting in problems such as poor appearance such as impact resistance, transparency, and gloss, as well as poor flow molding processability due to the high rubber content. Efforts have been made. For example, Japanese Patent Publication No. 55-27576 discloses that impact resistance can be improved without impairing transparency by blending a three-layer or multilayer polymer with a hard thermoplastic polymer. JP-A-51-129449, JP-A-53-58554
A resin composition is also known from Japanese Patent Publication No. 2003-120002, which has a structure having three layers and an intermediate layer having a concentration gradient that changes at a substantially constant rate between these layers, and which has improved stress whitening resistance against impact. Although these methods are certainly effective in improving stress whitening resistance, they are not satisfactory in terms of resistance (i?4) and flow molding processability.Kasata, JP-A-56-167712 The publication proposes improvements in impact resistance, surface gloss, etc. by having four layers and crosslinking each layer, but such a method results in a decrease in stress whitening resistance and is unsatisfactory. As a result of intensive research into imparting impact resistance while maintaining the original properties of methacrylic resin, the present inventors found that the above objective could be achieved by producing a three-stage polymer under specific polymerization conditions. We have discovered that this can be achieved and have come up with the present invention.

即ち、本発明はメタクリル酸メチル羊独重合体又はメタ
クリル酸メチルを主体とする共重合体よりなるTgが2
5℃以上である第1段硬質重合体の存在下に、アクリル
酸アルキルエステルを主体とする共重合体よシなるTg
が25℃以下の第2段軟質重合体を重合するにあたり、
重合率が60〜90重量係に達した時点で、メタクリル
酸メチル阜独重合体又はメタクリル酸メチルを主体とす
る共重合体よりなるTgが25℃以上である第3段硬質
重合体の重合を開始することにより、耐衝撃性アクリル
系重合体の製造方法にある。
That is, the present invention is made of a methyl methacrylate polymer or a copolymer mainly composed of methyl methacrylate and has a Tg of 2.
In the presence of the first stage hard polymer having a temperature of 5°C or higher, Tg of a copolymer mainly composed of an acrylic acid alkyl ester
When polymerizing the second stage soft polymer whose temperature is 25°C or less,
When the polymerization rate reaches 60 to 90% by weight, a third stage hard polymer having a Tg of 25° C. or higher, which is made of a methyl methacrylate-based polymer or a copolymer mainly composed of methyl methacrylate, is started. By starting, there is a method for producing impact resistant acrylic polymers.

このような方法によって得られたアクリル系耐伽撃性重
合体は耐衝撃性の発現性に優れ、且つ透明性、表面光沢
さらには流動成形加工性に極めて優れた特性を有する。
The impact-resistant acrylic polymer obtained by such a method has excellent impact resistance, transparency, surface gloss, and flow moldability.

本発明の耐衝撃性アクリル系重合体の製造方法としては
特に限定されないが、乳化屯合法で実施することが好ま
しい。
The method for producing the impact-resistant acrylic polymer of the present invention is not particularly limited, but it is preferably carried out by an emulsion method.

本発明の耐衝撃性アクリル系重合体は、前記したように
3段階に重合される。第1段硬質重合体はメタクリル酸
メチル牟独重合体又はメタクリル酸メチルを主体と下る
共7ド合体よねなり、Tgが25℃以上である。このメ
タクリル酸メチルを主体とする共重合体は、メタクリル
酸メチル80沖量嗟以上と他の共重合可能な単量体20
1量チ以下の共1層合体であることが好ましく、さらに
5単量体以下の共重合b]能々多官能グラフト性単量体
が爾加竺れる。メタクリル酸メチルと共重合可能な単量
体としては特に限定されないが、アルキル基の炭素数が
2〜4のメタクリル酸アルキルエステル、アルキル基の
炭素数が1〜8のアクリル酸アルキルエステル、メタク
リル酸、アクリル酸、アクリロニトリルの少なくとも1
秒が用いられる。
The impact-resistant acrylic polymer of the present invention is polymerized in three stages as described above. The first stage hard polymer is a monopolymer of methyl methacrylate or a co-7-do polymer consisting mainly of methyl methacrylate, and has a Tg of 25° C. or higher. This copolymer mainly composed of methyl methacrylate contains 80 or more methyl methacrylate and 20 or more copolymerizable monomers.
It is preferable that the copolymer has a copolymerization of 5 monomers or less, and a polyfunctional graftable monomer is preferably added. Monomers copolymerizable with methyl methacrylate are not particularly limited, but include methacrylic acid alkyl esters in which the alkyl group has 2 to 4 carbon atoms, acrylic acid alkyl esters in which the alkyl group has 1 to 8 carbon atoms, and methacrylic acid. , acrylic acid, and acrylonitrile.
Seconds are used.

−ilこ、共】ト:合可能な多官能グラフト性単ゼ゛体
は、反応性の異なる2重結合を有する単量体であり、メ
タクリル酸アリル、アクリル酸アリル、マレイン酸アリ
ル、メタクリル酸ビニル、アクリル酸ビニルなどが用い
られ、添加量が5単量体を越えるとII;1応力白化性
が低下し好ましくない。この第1段硬質重合体のガラス
転移点(’L’g )は25℃以上であり、好ましくは
50℃以上て′あり、Tgが25℃未満であると耐応力
白化性及び…[j熱性が低下してしまい1l−f−1,
シ<ない。
The polyfunctional graftable monomers that can be combined are monomers having double bonds with different reactivities, such as allyl methacrylate, allyl acrylate, allyl maleate, and allyl methacrylate. Vinyl, vinyl acrylate, etc. are used, and if the amount added exceeds 5 monomers, the II;1 stress whitening property decreases, which is not preferable. The glass transition point (L'g) of this first stage hard polymer is 25°C or higher, preferably 50°C or higher, and if Tg is lower than 25°C, stress whitening resistance and... decreases and 1l-f-1,
No.

第2段軟質重合体は、アクリル酸アルキルエステル 以下である。このアクリル酸アルキルエステルを主体と
する共重合体は、アルキル基の炭素数が1〜8のアクリ
ル酸アルキルニスデルで、好′士しくけアクリル酸n−
ブチル、アクリル酔2ーエチルヘキシルの少なくとも1
種70〜9 5 D@%と共重合可能な単量体で、メタ
クリル酸メチルを主体とする硬質重合体と屈折率を合せ
ることにより、透明性の向上を図る必要があることから
、少なくともスチレン卑独又はスチレン又は、その誘導
体を含む混合物5〜30M量係ならびに共重合可能な多
官能架橋性単量体0.1〜15重量係、共重合0丁能な
多官能グラフト性単シ体5重開:φ以下からなる。共重
合可能な多官能架橋性単量体は、反応性が近い2  ′
重結合を有する単量体であり、エチレングリコ−ルジメ
タクリレー+−11,4ブチレングリコールジメタクリ
レート、トリエチレングリコールジアクリレート、1,
6ヘギサンジオールジアクリレートカどの2官能性単量
体、トリメチロールプロ・ξンドリアクリレート、トリ
アリルイソシアヌレートなどの3官能性単量体、ペンタ
エリスリトールテトラアクリレートなどの4官能性単量
体をそれぞれ単独又は絹合せ−C用いることができる。
The second stage soft polymer is an acrylic acid alkyl ester or less. This copolymer mainly composed of an acrylic acid alkyl ester is an acrylic acid alkyl nitride whose alkyl group has 1 to 8 carbon atoms.
At least one of butyl, acrylic 2-ethylhexyl
A monomer that can be copolymerized with Species 70-95 D@%, and it is necessary to improve transparency by matching the refractive index with a hard polymer mainly composed of methyl methacrylate, so at least styrene is used. 5 to 30 M of a mixture containing styrene or a derivative thereof, 0.1 to 15 of a copolymerizable polyfunctional crosslinking monomer, and a polyfunctional grafting monomer capable of copolymerization 5 Heavy open: Consists of φ or less. Copolymerizable polyfunctional crosslinking monomers have 2′
It is a monomer with a heavy bond, and includes ethylene glycol dimethacrylate + -11,4 butylene glycol dimethacrylate, triethylene glycol diacrylate, 1,
Bifunctional monomers such as 6-hegysandiol diacrylate, trifunctional monomers such as trimethylolpro-ξndriaacrylate, triallyl isocyanurate, and tetrafunctional monomers such as pentaerythritol tetraacrylate. Each can be used alone or with silk combination-C.

この第2段瞼質重合体は’rgが25℃以下、好ましく
は0℃以下であり、25℃を越えると1酬衝撃性が低下
し2てし才い好捷しくない。
The second-stage eyelid polymer has an 'rg of 25°C or less, preferably 0°C or less; if it exceeds 25°C, the primary impact strength decreases, which is undesirable.

力叉3段硬質車合体はメタクリル酸メチル単独重合体又
はメタクリル酸メチルを主体とする共重合体J:りなり
、’rgが25℃以上である。このメタクリル69メチ
ルを主体とする共重合体は、メタクリル酸メチル80重
′S′l:tl)以−ヒと他の共重合可能な単fI1体
20 重量Z以下の共重合体であることが好ま]2く、
共重合可能な単量体が20M量チを越えると透明性が世
なわれる。寸だ、第3段硬質重合体は流動成形加工性の
面から連鎖移動剤により分子量を調節することが必要で
あり、分子t1は60000〜250000好ましくは
80000〜200000の範囲にするのがよい。連鎖
移動剤として、アルキルカルボンタン、チオグリコール
酸およびそのエステルを用いる。分子量が60000未
満の場合は機械的強度が低下し、また、250000を
越えた場合は流動成形加工性が低下する。
The three-stage hard wheel assembly is made of a methyl methacrylate homopolymer or a copolymer J mainly composed of methyl methacrylate, and has an rg of 25° C. or higher. This copolymer mainly composed of 69 methyl methacrylate may be a copolymer with a weight Z of less than 20 methyl methacrylate and other copolymerizable monomers. preference] 2,
When the amount of copolymerizable monomer exceeds 20M, transparency deteriorates. In fact, it is necessary to adjust the molecular weight of the third stage hard polymer using a chain transfer agent from the viewpoint of flow molding processability, and the molecule t1 is preferably in the range of 60,000 to 250,000, preferably 80,000 to 200,000. As a chain transfer agent, an alkylcarbontane, thioglycolic acid and its ester are used. If the molecular weight is less than 60,000, mechanical strength will decrease, and if it exceeds 250,000, flow molding processability will decrease.

この第3段硬備軍合体のTgは25℃以上であり、好ま
しくは50℃以上であり、l11gが25℃以下では耐
熱性が低下してし捷い好ましくない。
The Tg of this third-stage hardened combination is 25° C. or higher, preferably 50° C. or higher, and if l11g is 25° C. or lower, the heat resistance decreases and it becomes undesirable.

各段のセr比は特に限定ブれないが、少なくとも第3段
硬質重合体が単独で最外層を形成している心安がある。
Although the Ser ratio of each stage is not particularly limited, there is a sense of security that at least the third stage hard polymer forms the outermost layer alone.

上記各段の重合体を重合するにあたり、第1段硬質重合
体が実質的に終了した時点で、第2段軟質重合体の重合
を開始し、重合率が60〜90重甘襲に達せた時点で、
第3段硬質重合体の重合を開始することが必要である。
When polymerizing the above-mentioned polymers in each stage, the polymerization of the second stage soft polymer was started when the first stage hard polymer was substantially completed, and the polymerization rate reached 60 to 90 polymers. At the time,
It is necessary to initiate polymerization of the third stage hard polymer.

第3段硬質重合体の重合にあたっては、重合速度より早
い速度で単量体混合物を供給することが好捷しい。
In polymerizing the third stage hard polymer, it is preferable to feed the monomer mixture at a rate faster than the polymerization rate.

第3段硬質Jj合体の重合開始時点が上記重合率の範囲
を逸謄した場合、耐衝撃性の著しい発現がみられないた
め、耐衝撃性を維持するためには、軟質3+F合体を多
量に使用する必要があり、このためメタクリル竹4脂本
来の流動成形加工性、耐熱性が低下してし甘う。Tgは
示差熱量計などによシ測定することができる。
If the polymerization start point of the third-stage hard Jj polymer falls outside the above range of polymerization rate, significant impact resistance will not be observed. Therefore, in order to maintain impact resistance, a large amount of the soft 3+F polymer must be used. As a result, the flow molding processability and heat resistance inherent to methacrylic bamboo 4 resin deteriorate. Tg can be measured using a differential calorimeter or the like.

本発明の耐(dB ′s、性アグアクリル系重合体造は
乳化Tl1f合によるのが特に奸才しいことから、乳化
重合法による場合について説明を行う。
Since it is particularly clever to construct the aguacryl-based polymer of the present invention by emulsion Tl1f, the case by emulsion polymerization will be explained.

5jj合潟#は30〜120℃、好址しくけ50〜10
0℃である。
5jj Aigata # is 30-120℃, good location 50-10
It is 0°C.

各段の重付を行う際に新たな粒子が生成しないような条
件を選ぶことが必要であり、この目的のために、いわゆ
るシード■f合法を用いるのが有利である。そして、次
の段の重合を行う際に新たに乳化剤を添力1ニジ々いか
、もし、添加する必要がある場合も新しい粒子が生成し
かい範囲にとどめる必要がある。止シ、い粒子の生成の
有無は電子顕微鏡により容易に知ることができる。
It is necessary to select conditions such that no new particles are generated when weighting each stage, and for this purpose it is advantageous to use the so-called seed f method. Then, when carrying out the next stage of polymerization, it is necessary to add a new emulsifier to the emulsifier, or if it is necessary to add it, it is necessary to limit the addition to a range that does not generate new particles. The presence or absence of formation of particles can be easily determined using an electron microscope.

乳化剤は通常用いられる乳化剤であれば特に限定する必
2)はなく、用いられる乳化剤の例としては長鎖アルキ
ルカルボンry 塩、スルホコハク酸アルキルエステル
塩、アルキルベンゼンスルホン酸塩等である。
The emulsifier is not particularly limited as long as it is a commonly used emulsifier2), and examples of emulsifiers that can be used include long-chain alkyl carbon ry salts, sulfosuccinic acid alkyl ester salts, and alkylbenzene sulfonates.

乳化剤の使用量としては、本発明の耐衝撃性アクリル系
重合体の第2段軟質重合体を実質的に終了させた時の粒
子径が500〜4000人、奸才しくは1000〜30
00人になるように使用することが好ましい。
The amount of the emulsifier to be used is such that the particle size when the second stage soft polymer of the impact-resistant acrylic polymer of the present invention is substantially completed is 500 to 4,000 particles, preferably 1,000 to 30 particles.
It is preferable to use the number so that there are 00 people.

開始剤の種類も特に限定する心労は々< 1ili盾用
いられる水溶性の過イl市酸塩、過御1酸塩等の無機開
始剤を単独で、捷た亜個を岬隼、チオ硫酸塩と和み合せ
てレドックス開始耐糸とし、て用いることもできる。寸
フ3−1*’ m ;/CN¥化物−第1鉄均、有機溝
酸化物1−ナトリウムホルムアルデヒドスルホキシl/
−トのようなレドンクス開始剤糸も用いることができる
It takes a lot of effort to specifically limit the type of initiator. It can also be used as a redox-initiated yarn resistant compound when mixed with salt. Dimension 3-1*'m;/CN ¥ide-ferrous, organic oxide 1-sodium formaldehyde sulfoxyl/
Redonx initiator yarns such as -g can also be used.

乳化重合によシ得られたポリマーラテックスf、、j公
知の方法により凝固、分離、乾燥享れる。
The polymer latex f, , j obtained by emulsion polymerization is coagulated, separated, and dried by known methods.

不発明の多段市合体糺成物は、その1まで、あるいけペ
レット化し、た土で射出成形又は骨量成形すZ7ことに
よりPJT望の成形体を得ることができる。
The uninvented multi-stage aggregate compacted product can be made into pellets and then injection molded or bone molded using clay to obtain the desired molded product for PJT.

1か、通常使用されているアクリル樹脂成形相料とフレ
ンドして月1いろこともできる。このぼ、主の自ピ合?
1)合はそわぞれの使用目的によって適宜選択される。
1, or you can make friends with the commonly used acrylic resin molding materials and make 1 different product per month. Is this the master's self?
1) The case is selected as appropriate depending on the purpose of use.

フレンドするアクリルせY胴成形材料は、公矢[1の重
合方f)、例乏は塊状軍合法、懸s1面合法、乳化重合
法、溶液fif合法などいずれの方法で得ら力かもので
あってもよく、また、ブレンド(d溶融7I−7合など
常用されている方法で行なわれる。
Friendly acrylic Y body molding materials can be obtained by any method such as Kimiya [polymerization method f of 1], examples include bulk polymerization method, suspended S1 surface method, emulsion polymerization method, and solution FIF method. It may also be carried out by a commonly used method such as blending (d-melting 7I-7).

樹脂以外で通常用(へられている紫外線吸収剤、酸化防
止剤、充填剤、染顔料等の添加剤を必秒に応17て添加
することができる。
In addition to resins, conventional additives such as ultraviolet absorbers, antioxidants, fillers, dyes and pigments can be added as necessary.

このようにしてイ!−1られた組成物は流動加工性がよ
く、射出1戎形B”1.ヌは押出成形機により成形して
’l?しれた成形体は、透明性、il+−f衝撃性、面
1候性に1・vオiたものである。
Like this! -1 The resulting composition has good flow processability, and the molded product obtained by injection molding using an extrusion molding machine has transparency, il+-f impact strength, and surface 1. It has a weatherability of 1.v.

次に、実が11例により本発明をさらに詳細に説明する
。実が1例中、面1価撃性の測定はASTMD256に
よる■ノツチ付アイゾツト強度を射出成形により得た試
片で向1定しプζ。流動成形加工性は、A S ’I’
MI)1238により230℃荷東3.8 K9で辿1
躍した(以下、MIと略記する)。分子量は、クロロホ
ルム溶媒中25℃において測定した極限粘度より求めた
。曇価はA8T’MD 1003によりlll!lI定
した。
Next, the present invention will be explained in more detail using 11 examples. In fact, in one example, the surface impact resistance was measured by measuring the notched isot strength according to ASTM D256 using a specimen obtained by injection molding. Flow molding processability is A S 'I'
MI) 230℃ by 1238 3.8 K9 trace 1
(hereinafter abbreviated as MI). The molecular weight was determined from the intrinsic viscosity measured at 25° C. in chloroform solvent. The haze value is lll by A8T'MD 1003! II was determined.

−1だ、実施例中の部又は係は重被部又は重量%を示す
-1. In the examples, the part or part indicates the heavy covering part or weight %.

実施例 1Oeの速流冷却器付き反応容器にイオン交換iK 6
ooog1yヘキシルスルネコハク+Fす)lJウム1
0g投入し、2sorpmの回転数で袖−拌しながら窒
素気流下で70℃に昇温し、自夕繁の影響の々い状態と
し過硫酸カリ4gを添加しブこ後、メタクリル酸メチル
(MMA)760g1メタクリル酸アリノイALMA)
1gからなる単jt;一体混合物を60分にわたって連
続的に函加し、添加終了後さらに20分保持した。
Example 1 Ion exchange iK 6 in a reaction vessel with an Oe rapid flow condenser
ooog1y hexylsurnekohaku+Fsu)lJum1
The temperature was raised to 70°C under a nitrogen stream while stirring at a rotational speed of 2 sorpm, and 4 g of potassium persulfate was added, and after stirring, methyl methacrylate ( MMA) 760g1 methacrylic acid alinoy ALMA)
The monolithic mixture consisting of 1 g was added continuously over a period of 60 minutes and held for an additional 20 minutes after the addition was complete.

この時の重合率+d:98.5%であった。The polymerization rate +d at this time was 98.5%.

続いて、アクリル酸ローブチル(BA)840g 1ス
チレン(sT)22部g、  t、aブチレングリコー
ルジアクリレート8gおよびALMA4gからなる単量
体混合物を90分にわたって連続的に添加し、添加終了
ヶさらに70分イ呆拓°し、MMA 320g、 f(
A 2 g、ローオクチルメルカプタン(n−OM) 
0.8 gからなる#L量体711“合物を20分にわ
たって連続的に添加し、添力1.修J′級60分保持し
95℃に昇温させて重合を完結させた。
Subsequently, a monomer mixture consisting of 840 g of loobyl acrylate (BA), 22 parts g of styrene (sT), 8 g of t,a butylene glycol diacrylate, and 4 g of ALMA was continuously added over 90 minutes, and after the addition was completed, a further 70 g of styrene (sT) was added. MMA 320g, f(
A 2 g, low octyl mercaptan (n-OM)
0.8 g of #L polymer 711'' compound was added continuously over 20 minutes, the addition was maintained at 1. J' grade for 60 minutes, and the temperature was raised to 95° C. to complete the polymerization.

第2桟゛Hの重合で70分保持した時点の第2段+1の
′+1c合率は75%であり、重合完結させたラテック
スの重合イ3は99部チ以上であった。
When the polymerization of the second beam H was held for 70 minutes, the '+1c percentage of the second stage +1 was 75%, and the polymerization rate of the polymerized latex A3 of the completed latex was 99 parts H or more.

得られたラテックスを0.5チ塩化アルミニウム水溶液
中に投入して重合体を凝集させ、脱水、水洗をくり返し
、乾燥を行って3段重合体粉末を得た。
The obtained latex was poured into an aqueous solution of 0.5% aluminum chloride to coagulate the polymer, followed by repeated dehydration, washing with water, and drying to obtain a three-stage polymer powder.

該重合体粉末30部と通常の懸濁重合によってイ仔たM
MA99屯HAI係からなる粒状の共重合体(分子量1
(10000)ケブレンド樹脂として70部をヘンシエ
ルミキザーで20分IHJ混合した後、40咽φのベン
ト付f4′1−i141押出i−+ (m日本製鋼剛製
)”4O−30AB−y 4Hす、L/l)=:(0)
 &用いて240℃でペレット化を行った。該ヘレット
をインラインスクリュー射出成形機(東芝機械■製l5
−758型)を用いて成形温度250℃、射出圧力90
0Kqr/J、金型温度50℃の条件で試験片を作成し
、物性を測定した結果を表−1に示す。流動成形加工性
、透明性、光沢もよく、耐候性のすぐれたものであった
M was produced by ordinary suspension polymerization with 30 parts of the polymer powder.
A granular copolymer (molecular weight 1
(10000) 70 parts of the blended resin was IHJ mixed for 20 minutes using a Henschel mixer, and then extruded into a 40mm φ vented f4'1-i141 i-+ (M made by Nippon Kogo) "4O-30AB-y 4H. L/l)=:(0)
Pelletization was performed at 240°C using &. The helet was molded using an in-line screw injection molding machine (Toshiba Machine 15).
-758 type) at a molding temperature of 250°C and an injection pressure of 90°C.
A test piece was prepared under the conditions of 0 Kqr/J and a mold temperature of 50°C, and the physical properties were measured. Table 1 shows the results. It had good flow moldability, transparency, and gloss, and had excellent weather resistance.

実施例2 共重合体組成としてMMkg6%、アクリル酸メチル(
MA)4チ(分子量120000 )からなるブレンド
樹脂を用いた以外は実施例1と全く同様にして評価を行
った結果を表−1に示す。
Example 2 Copolymer composition: MMkg6%, methyl acrylate (
Table 1 shows the results of evaluation carried out in exactly the same manner as in Example 1 except that a blend resin consisting of MA) 4chi (molecular weight 120,000) was used.

実施例3 内容f4501のステンレス製反応容器にイオン交換水
29000g、ジヘキシルスルホコノ・り酸ナトリウム
50g投入し、150rpmの回転数で攪拌しながら窒
素気流下で70℃に昇温し、酸素の影響のない状態とし
て過硫酸カリ2 OR添加した後、MMA 3600g
、 BA 60 gSALMA 6 gからなる単量体
混合物を60分にわたって連続的に添加し、添加終了後
さらに60分保持した。この時の重合率は985係であ
った。
Example 3 29,000 g of ion-exchanged water and 50 g of sodium dihexylsulfoconophosphate were placed in a stainless steel reaction vessel with contents F4501, and the temperature was raised to 70°C under a nitrogen stream while stirring at a rotation speed of 150 rpm to eliminate the influence of oxygen. After adding 2 OR of potassium persulfate, 3600 g of MMA
, 60 g of BA and 6 g of SALMA were added continuously over 60 minutes and held for an additional 60 minutes after the addition was complete. The polymerization rate at this time was 985%.

過硫酸カリlogを添加し、続いてBA 4060g1
ST 1060g、インシアヌール酸トリアリル50g
およびALMA20gからなる単量体混合物を100分
にわたって連続的に添加し、添加終了後さらに45分保
持し、MMA4860g、 BA540g、 n−0M
16gからなる一f41i量体混合物を90分にわたっ
て連続的に添加し、添加終了後60分保持し、95℃に
昇温でせて重合を完結させた。
Add log potassium persulfate followed by BA 4060g1
ST 1060g, triallyl incyanurate 50g
A monomer mixture consisting of 20 g of ALMA and 20 g of ALMA was added continuously over 100 minutes, and after the addition was completed, the monomer mixture was kept for an additional 45 minutes to form a mixture of 4860 g of MMA, 540 g of BA, and n-0M.
16 g of a monomer mixture of F41 was continuously added over 90 minutes, and after the addition was completed, the mixture was maintained for 60 minutes and the temperature was raised to 95° C. to complete the polymerization.

第2段目〕I3:合で45分保持した時点の第2段目の
重合率は65チでめシ、重合完結させたラテックス重合
率は99.5部以上であった。
2nd stage] I3: The polymerization rate in the second stage after holding the reaction for 45 minutes was 65 degrees, and the polymerization rate of the latex when the polymerization was completed was 99.5 parts or more.

実施例1と同様な処理を行い得られた重合体粉末40部
と共重合体組成としてMMA98チ、MA2%とからな
るブレンド樹脂(分子量1ooooo ) 6部部を実
施例1と同様な方法で評価を行った結果を表−1に示す
40 parts of polymer powder obtained by the same treatment as in Example 1 and 6 parts of a blend resin (molecular weight 1oooooo) consisting of 98% MMA and 2% MA as a copolymer composition were evaluated in the same manner as in Example 1. The results are shown in Table 1.

流動成形加工性、透明性、光沢および1fij候性もす
ぐれたものであった。
The flow molding processability, transparency, gloss and 1fij weatherability were also excellent.

比較例1 実施例3において、第2段目の保持時間を10分にして
、第3股目の単量体混合物の添加を開始した以外は、全
〈実施例3と同様に重合及び試験片の製造を行い、評価
した結果を表−1に示す。
Comparative Example 1 Polymerization and test pieces were carried out in the same manner as in Example 3, except that the holding time in the second stage was changed to 10 minutes and the addition of the monomer mixture in the third stage was started. The results of the evaluation are shown in Table 1.

第2段目重合で10分保持し7た時点の第2段目の重合
率は50%であり、重合梵結させたラテックスの重合率
は99.5部以上であつ、たL耐衝撃性・透明性ともに
劣るものであった。
In the second stage polymerization, the polymerization rate in the second stage after holding for 10 minutes was 50%, and the polymerization rate of the polymerized and bonded latex was 99.5 parts or more.・Both transparency was poor.

比較例2 比較例1の多段重合体80部、ブレンド樹脂40部にし
た以外は全く比較例1と同様に試験片の製造を行い評価
した結果を表−1に示す。耐衝撃性は満足されるものの
、流動成形加工性が大幅に劣るものであった。
Comparative Example 2 A test piece was produced and evaluated in the same manner as in Comparative Example 1, except that 80 parts of the multistage polymer of Comparative Example 1 and 40 parts of the blend resin were used, and the evaluation results are shown in Table 1. Although the impact resistance was satisfactory, the flow molding processability was significantly inferior.

(以下余白) 実施例4 実施例1と同様なル2合方法で、第1段目単量体混合物
がMMA846g、 MA94gからなる4部量体混合
物を60分にわたって連続的に添加し、添加終了後さら
に60分保持した。この勃の重合率は99チであった。
(Left below) Example 4 Using the same method as in Example 1, a tetramer mixture consisting of 846 g of MMA and 94 g of MA was added continuously over a period of 60 minutes as the first stage monomer mixture, and the addition was completed. After that, it was held for an additional 60 minutes. The polymerization rate of this erection was 99.

続いて、nA1o32g、 ST258g、テトラエチ
レングリコールジアクリレート13gおよびALMA 
5 gからなる単量体混合物を80分にわたって連続的
に添加し、冷加終了後さらに90分保持し、MMA59
0g%BA6g部、n −OMl、8部からなる単量体
混合物を30分にわたって連続的に添加し、添加終了後
60分保持し、95℃に昇温させて重合を完結させた。
Subsequently, 32 g of nA1o, 258 g of ST, 13 g of tetraethylene glycol diacrylate and ALMA
A monomer mixture consisting of 5 g was added continuously over 80 minutes, and after cooling was completed, the monomer mixture was kept for an additional 90 minutes.
A monomer mixture consisting of 6 g parts of 0g% BA and 8 parts of n-OMl was continuously added over 30 minutes, and after the addition was completed, the mixture was held for 60 minutes and the temperature was raised to 95° C. to complete the polymerization.

第2段目の重合で90分保持した時点の第2段目の乗合
率は859ISであり、重合完結させたラテックスの重
合率は99.5%以上であった。
When the second stage polymerization was held for 90 minutes, the second stage polymerization ratio was 859 IS, and the polymerization ratio of the latex that was polymerized to completion was 99.5% or more.

得られたラテックスを実施例1と同様な処理を行い重合
体粉末を得た。
The obtained latex was treated in the same manner as in Example 1 to obtain a polymer powder.

該重合体粉末33部とMMA90%、アクリル酸エチル
10チからなる共重合体(分子量100000)67部
をブレンドした後、実施例1と同様な評価を行った結果
を表−2に示す。
After blending 33 parts of the polymer powder with 67 parts of a copolymer (molecular weight 100,000) consisting of 90% MMA and 10% ethyl acrylate, the same evaluation as in Example 1 was performed, and the results are shown in Table 2.

ケl−+1σノ成形加工性、透明性、光沢もよく、耐候
性のすぐれたものであった。
It had good moldability, transparency, and gloss, and had excellent weather resistance.

比較例3 実施例4の車台において、第2段束合の保持時間を10
0分にし、第3段目の重合を開始した以外は、実施例4
と全く同様に1合及び試験片の製造を行い評価した結果
を表−2に示す。
Comparative Example 3 In the chassis of Example 4, the holding time of the second stage bundling was 10
Example 4 except that the third stage polymerization was started at 0 minutes.
Table 2 shows the results of manufacturing and evaluating test pieces in exactly the same manner as above.

第3段目の1合を開始する時点の第2段目のL丁合率は
4%であった。
The L collation rate of the second stage was 4% at the time of starting the first go of the third stage.

成形品の耐衝撃性は大幅に低下しブこものであった。The impact resistance of the molded product was significantly reduced and was dull.

比較例4 比較例3の多段重合体70部、ブレンド樹11ゴ30部
とした以外は全く比較例3と同様に試験片の製造を行い
評価した結果を表−2に示す。11it衝撃性はあるが
流動成形性の大幅に低下したものであった。
Comparative Example 4 A test piece was produced in the same manner as in Comparative Example 3, except that 70 parts of the multistage polymer of Comparative Example 3 and 30 parts of blended wood were used. Table 2 shows the results of the evaluation. Although it had 11it impact resistance, the flow moldability was significantly reduced.

実施例5 実施例3と同様な重合方法で、第1段目単量体混合物が
MMA 2560g、 BA 50 gからなる単量体
混合物を110分にわたって連続的に添加し、添加終了
後さらに60分保持した。この時の車台率は99係であ
った。続いて、BA6700g、 S’r1675g、
 1.6ヘキサンジオールジアクリレート65 、、 
、 ALMA35gからなる単量体混合物を90分にわ
たって連続的に添加し、添加終了後さらに140分保持
しM M A4410g、 BA35g1n−0M13
gからなる単量体混合物を60分にわたって連続的に添
加し、添加終了後60分保持し95℃に昇温させて1部
合を完結させた0 第2段目の重合で1tlLo分保持した時点の第2段目
の重合率は80チであり、重合完結させたラテックスの
重合率は99.5%以上であった。
Example 5 Using the same polymerization method as in Example 3, a first-stage monomer mixture consisting of 2560 g of MMA and 50 g of BA was continuously added over 110 minutes, and after the addition was completed, a monomer mixture was added for an additional 60 minutes. held. The vehicle ratio at this time was 99. Next, BA6700g, S'r1675g,
1.6 hexanediol diacrylate 65,,
, A monomer mixture consisting of 35 g of ALMA was added continuously over 90 minutes, and after the addition was completed, the monomer mixture was kept for an additional 140 minutes to give 4410 g of M M A, 35 g of BA, 35 g1n-0 M13
A monomer mixture consisting of g was added continuously over 60 minutes, and after the addition was completed, it was held for 60 minutes, and the temperature was raised to 95 ° C to complete one part.0 In the second stage polymerization, it was held for 1 tlLo. The polymerization rate of the second stage at that time was 80%, and the polymerization rate of the completed latex was 99.5% or more.

得られたラテックスを実施例1と同様々処理を行い重合
体粉末を得た。
The obtained latex was treated in the same manner as in Example 1 to obtain a polymer powder.

該重合体粉末28部とMMA 95.%、MA5%から
なる共重合体(分子量150000 ) 72部をブレ
ンドした後、実施例1と同様な評価を行った結果を表−
2に示す。
28 parts of the polymer powder and 95 parts of MMA. After blending 72 parts of a copolymer (molecular weight 150,000) consisting of 5% MA and 5% MA, the same evaluation as in Example 1 was conducted.
Shown in 2.

が「、動成形加工性、透明性、光沢もよく、耐候性の一
4″ぐれたものであった。
However, it had good dynamic molding processability, transparency, and gloss, and was 14" superior in weather resistance.

(以下余白)(Margin below)

Claims (1)

【特許請求の範囲】[Claims] (リ メタクリル酸メチル単独重合体又はメタクリル酸
メチルを主体とする共重合体よりなるTgが25℃以上
である第1段硬質軍合体の存在下にアクリル酸アルキル
エステルを主体とする共重合体よりなるTgが25℃以
下の第2段軟質重合体を重合するにあたり、重合率が6
0〜90重量係に達した時点で、メタクリル酸メチル単
独重合体又はメタクリル酸メチルを主体とする共重合体
よりなるTgが25℃以上である第3段硬質重合体の重
合を開始させることを特徴とする耐衝撃性アクリル系重
合体の製造方法
(Re) From a copolymer mainly composed of acrylic acid alkyl ester in the presence of a first stage hard polymer having a Tg of 25°C or higher, which is composed of a methyl methacrylate homopolymer or a copolymer mainly composed of methyl methacrylate. When polymerizing the second stage soft polymer whose Tg is 25°C or less, the polymerization rate is 6.
When the weight ratio reaches 0 to 90, start the polymerization of a third stage hard polymer having a Tg of 25 ° C. or higher, which is made of a methyl methacrylate homopolymer or a copolymer mainly composed of methyl methacrylate. Manufacturing method of featured impact-resistant acrylic polymer
JP7624083A 1983-05-02 1983-05-02 Production of impact-resistant acrylic polymer Granted JPS59202213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7624083A JPS59202213A (en) 1983-05-02 1983-05-02 Production of impact-resistant acrylic polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7624083A JPS59202213A (en) 1983-05-02 1983-05-02 Production of impact-resistant acrylic polymer

Publications (2)

Publication Number Publication Date
JPS59202213A true JPS59202213A (en) 1984-11-16
JPH0465848B2 JPH0465848B2 (en) 1992-10-21

Family

ID=13599645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7624083A Granted JPS59202213A (en) 1983-05-02 1983-05-02 Production of impact-resistant acrylic polymer

Country Status (1)

Country Link
JP (1) JPS59202213A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677407A (en) * 1995-06-07 1997-10-14 Amcol International Corporation Process for producing an oil sorbent polymer and the product thereof
US6248849B1 (en) 1994-10-24 2001-06-19 Amcol Corporation Precipitation polymerization process for producing an oil adsorbent polymer capable of entrapping solid particles and liquids and the product thereof
WO2017086275A1 (en) 2015-11-20 2017-05-26 旭化成株式会社 Methacrylic resin, methacrylic resin composition, film, and production method
DE102017112730A1 (en) 2016-08-30 2018-03-01 Asahi Kasei Kabushiki Kaisha Methacrylic resin composition and optical component
WO2020013203A1 (en) 2018-07-13 2020-01-16 旭化成株式会社 Methacrylic resin, moulded article, optical component or automotive component
WO2020080267A1 (en) 2018-10-16 2020-04-23 旭化成株式会社 Methacrylic resin, method for producing methacrylic resin, methacrylic resin composition, molded body, optical component and automobile component
WO2020241690A1 (en) * 2019-05-28 2020-12-03 株式会社クラレ Acrylic rubber particle and methacrylic resin composition

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248849B1 (en) 1994-10-24 2001-06-19 Amcol Corporation Precipitation polymerization process for producing an oil adsorbent polymer capable of entrapping solid particles and liquids and the product thereof
US6387995B1 (en) 1994-10-24 2002-05-14 Amcol International Corporation Precipitation polymerization process for producing an oil adsorbent polymer capable of entrapping solid particles and liquids and the product thereof
US5677407A (en) * 1995-06-07 1997-10-14 Amcol International Corporation Process for producing an oil sorbent polymer and the product thereof
US5777054A (en) * 1995-06-07 1998-07-07 Amcol International Corporation Process for producing an oil sorbent polymer and the product thereof
WO2017086275A1 (en) 2015-11-20 2017-05-26 旭化成株式会社 Methacrylic resin, methacrylic resin composition, film, and production method
DE102017112730A1 (en) 2016-08-30 2018-03-01 Asahi Kasei Kabushiki Kaisha Methacrylic resin composition and optical component
DE102017112730B4 (en) 2016-08-30 2022-06-30 Asahi Kasei Kabushiki Kaisha Methacrylic resin composition and optical component
WO2020013203A1 (en) 2018-07-13 2020-01-16 旭化成株式会社 Methacrylic resin, moulded article, optical component or automotive component
WO2020080267A1 (en) 2018-10-16 2020-04-23 旭化成株式会社 Methacrylic resin, method for producing methacrylic resin, methacrylic resin composition, molded body, optical component and automobile component
WO2020241690A1 (en) * 2019-05-28 2020-12-03 株式会社クラレ Acrylic rubber particle and methacrylic resin composition

Also Published As

Publication number Publication date
JPH0465848B2 (en) 1992-10-21

Similar Documents

Publication Publication Date Title
US4052525A (en) Multi-layer structure acrylic polymer composition
JPS60229911A (en) Impact-resistant plastic resin composition
JPS62181312A (en) Production of thermoplastic resin composition having improved impact resistance, weather resistance and moldability
CA1266337A (en) Impact resistant methacrylic resin composition
JPS581694B2 (en) thermoplastic resin composition
JPS5936646B2 (en) Method for producing multilayer polymer composition
JPS59202213A (en) Production of impact-resistant acrylic polymer
JPS6221804B2 (en)
KR100626956B1 (en) Graft copolymer composition and thermoplastic resin composition using same
JPS63122748A (en) Methacrylic resin composition
JPH0370747B2 (en)
JPS63120716A (en) Production of impact-resistant resin
JPS6327516A (en) Highly weather-and impact-resistant acrylic resin granular composite material
JP2854696B2 (en) Method for producing nitrile polymer composition
JPH0632961A (en) Preparation of thermoplastic resin composition excellent in impact resistance, weatherability, moldability and appearance
JPS63132956A (en) Impact-resistant resin composition
JP2501015B2 (en) Impact resistance, weather resistance, thermoplastic resin composition
JPS59108056A (en) High shock-resistant thermoplastic resin composition
JPS5918716A (en) Manufacture of thermoplastic resin
JPS62275147A (en) Impact-resistant methacrylate resin composition
JPH03174421A (en) Multilayered structure polymer and resin composition
JPH05214202A (en) Thermoplastic molding material
JPS63254114A (en) Production of methacrylic resin with high impact resistance
JP2854697B2 (en) Method for producing high nitrile polymer composition
JPH04185663A (en) High-impact high-rigidity aas resin composition