[go: up one dir, main page]

JPS592014B2 - Stereoscopic lens - Google Patents

Stereoscopic lens

Info

Publication number
JPS592014B2
JPS592014B2 JP56095231A JP9523181A JPS592014B2 JP S592014 B2 JPS592014 B2 JP S592014B2 JP 56095231 A JP56095231 A JP 56095231A JP 9523181 A JP9523181 A JP 9523181A JP S592014 B2 JPS592014 B2 JP S592014B2
Authority
JP
Japan
Prior art keywords
lens
fine
shape
portions
stereoscopic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56095231A
Other languages
Japanese (ja)
Other versions
JPS57210337A (en
Inventor
清三郎 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP56095231A priority Critical patent/JPS592014B2/en
Publication of JPS57210337A publication Critical patent/JPS57210337A/en
Publication of JPS592014B2 publication Critical patent/JPS592014B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • G03B35/24Stereoscopic photography by simultaneous viewing using apertured or refractive resolving means on screens or between screen and eye

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Description

【発明の詳細な説明】 本発明は平面画像の立体視用レンズに関する。[Detailed description of the invention] The present invention relates to a lens for stereoscopic viewing of planar images.

一般に平面画像を立体視するものとしては人の左右の目
と同じ程度に視角を違えた二つの平面画像を形成してお
き、これを別々に両目で見ることで立体感が得られるよ
うにしたものが一般的であつた。しかしながら、上述の
ような方法では二つの異なつた平面画像を必要とし、一
つの平面画像をもつて立体視することは不可能であつた
Generally, when viewing a flat image in 3D, two flat images are formed with different viewing angles to the same degree as the left and right eyes of a person, and by viewing these images separately with both eyes, a three-dimensional effect can be obtained. Things were common. However, the above-described method requires two different planar images, and it is impossible to perform stereoscopic viewing using one planar image.

そこで、本発明は上述のような欠点に鑑み、これを解消
すべくなされたもので、その要旨とするところは微細レ
ンズ部と、微細平面部とを交互に連続配置した第1面部
を備え、この第1面部と略平行配置に微細レンズ部と微
細平面部とを交互にもしくは微細レンズ部のみを連続配
置した第2面部を備え、一の平面画像で立体視するよう
にしたことにある。
In view of the above-mentioned drawbacks, the present invention has been made to solve this problem. A second surface section is provided approximately parallel to the first surface section in which minute lens sections and minute plane sections are alternately arranged or only minute lens sections are continuously arranged, so that stereoscopic viewing can be achieved using a single plane image.

次に本発明の実施例を図面を参照して詳細に説明する。Next, embodiments of the present invention will be described in detail with reference to the drawings.

第1図及び第2図は本発明に係る立体視用レンズを示す
るもので、図中1は平面画像であり、2は第1レンズ体
、3は第2レンズ体、Aは観察者の眼である。
1 and 2 show a stereoscopic lens according to the present invention, in which 1 is a planar image, 2 is a first lens body, 3 is a second lens body, and A is an observer's It's an eye.

第1レンズ体2は透明なる平面平板の対物面側に多数の
凸レンズ状の微細レンズ部5,5・・・・・・と微細平
面部6,6・・・・・・とが交互に等間隔で連続配置さ
れてレンチキユラ一形状に形成されている。
The first lens body 2 has a large number of convex lens-shaped fine lens parts 5, 5, etc. and fine flat parts 6, 6, etc. arranged alternately on the objective surface side of a transparent flat plate. They are arranged continuously at intervals to form a lenticule shape.

また第1レンズ体2と平行でかつ観察者側に第2レンズ
体3が配置され、この第2レンズ体3は透明なる平面平
板で、その観察者側の面に凹レンズ状の微細レンズ部8
が多数連続配置されている。この微細レンズ部8のピツ
チは第1レンズ体2の微細レンズ部5のピツチと同一に
形成されている。このような立体視用レンズによつて立
体的に見える原理について説明すると、第1レンズ体2
の対物面側の微細レンズ部5の焦点Fの外側に平面画像
1をおき、この画像1の画素Pl,P2からの光線a/
1,atを第1レンズ体2を通して見ると、いま第1レ
ンズ体2の接眼面9に対応させて形成された微細レンズ
部8の第2レンズ体3を、重ね合わせて前記した光線a
′,とa′2を通過させると凹レンズ状の微細レンズ部
8により拡散光線となつて、その延長線上に虚像の点P
/1とP′2を眼Aの二つの視線a1とA2によつて見
ることになり、また画素P3とP4からの光線は第1レ
ンズ体2の微細レンズ5が焦点Fの外側に画像1がある
ために各画素P3〜P4からの光線は微細レンズ部5で
屈折後、集射光線となるが第2レンズ体3の微細レンズ
部8により拡射作用を受けて第1第2レンズ体2,3を
通過する前の光線ド対して平行光線として視線A3とA
4で見るから画素P3とP4はその形状を変えることな
く見ることになる。第3図及び第4図a〜゛cは第二実
施例を示すもので、第1レンズ体2の微細レンズ部5a
が凹レンズ状に形成され、かつモザイク形状に形成され
ている。
Further, a second lens body 3 is arranged parallel to the first lens body 2 and on the observer's side.
are arranged in a row. The pitch of this microlens section 8 is formed to be the same as the pitch of the microlens section 5 of the first lens body 2. To explain the principle of seeing three-dimensionally with such a stereoscopic vision lens, the first lens body 2
A plane image 1 is placed outside the focal point F of the fine lens section 5 on the objective plane side, and light rays a/ from pixels Pl and P2 of this image 1 are
1, at is seen through the first lens body 2, the second lens body 3 of the microlens portion 8 formed to correspond to the eyepiece surface 9 of the first lens body 2 is superimposed on the above-mentioned light ray a.
', and a'2, it becomes a diffused light beam by the concave lens-like fine lens part 8, and a point P of the virtual image is formed on the extension line of the light beam.
/1 and P'2 are seen by the two lines of sight a1 and A2 of the eye A, and the light rays from the pixels P3 and P4 are transferred to the image 1 by the fine lens 5 of the first lens body 2 outside the focal point F. Because of this, the light rays from each pixel P3 to P4 are refracted by the fine lens part 5 and become condensed light beams, but they are diffused by the fine lens part 8 of the second lens body 3 and transferred to the first and second lens bodies. Lines of sight A3 and A as parallel rays to ray D before passing through 2 and 3
4, pixels P3 and P4 are viewed without changing their shapes. 3 and 4 a to 4c show a second embodiment, in which a fine lens portion 5a of the first lens body 2 is shown.
is formed into a concave lens shape, and is also formed into a mosaic shape.

このような立体視用レンズは第4図a〜Cに示すように
(・ま平面画像1の画素P1とP2を眼Aの二つの視線
a1とA2がそれぞれ第1レンズ体2を通して眼Aを右
側へ移してゆくと、画素P1とP2を発して微細レンズ
部5aと平面部6を通る光線alとa/2は眼Aに向う
角度が変つてゆくから画素P1とP2は第4図a−cに
示すように第1レンズ体2を通して見るときは拡射光線
で見るために、その延長線上の点に各々画素幅は、レン
ノチキユラ一形状では左右に、モザイク形状、複眼形状
では上下左右の方向から小さい形状になつて虚像P/1
とP/2がレンズの後方へ遠のくように見える。
Such a stereoscopic lens is constructed as shown in FIGS. As we move to the right, the angles at which the rays al and a/2, which are emitted from the pixels P1 and P2 and pass through the microlens section 5a and the plane section 6 toward the eye A, change, so the pixels P1 and P2 are as shown in Fig. 4a. When viewing through the first lens body 2, as shown in c, the pixel width at each point on the extension line is set to the left and right in the case of a single lens shape, and to the top, bottom, left and right in a mosaic shape or a compound eye shape. Virtual image P/1 becomes smaller in shape from the direction
and P/2 appear to be moving away behind the lens.

また、同じ画素P1とP2を平面部6を通して見るとき
は、画素幅の形状はもとの画素に近い形状の虚像の点P
′1とP′2を見ることになる。このように微細レンズ
部5aから微細平面部6へ視線が移るときは画素幅の形
状はもとの画素幅へと急に大きくなり、平面部6からレ
ンズ部5aへ視線が移るとき突然に画素幅の形状が小さ
くなつて見える。このように画素幅の形状が極度に急変
する光学系作用をレンチキユラ一形状、モザイク形状、
複眼形状の各レンズ体の微細レンズ部と微細平面部を交
互に連続配置によつて視覚させることが本発明の特性で
、かXる視覚現象を両眼視する場合を次に説明する。第
5図及び第6図は第三実施例を示すもので、第1レンズ
体2は球面状の微細レンズ部5cが形成され、第2レン
ズ体3は凹レンズ状の微細レンズ部8aと微細平面部1
0とを交互に連続配置されている。
Furthermore, when viewing the same pixels P1 and P2 through the plane part 6, the shape of the pixel width is the point P of the virtual image, which has a shape close to the original pixel.
'1 and P'2 will be seen. In this way, when the line of sight moves from the fine lens part 5a to the fine plane part 6, the shape of the pixel width suddenly increases to the original pixel width, and when the line of sight moves from the plane part 6 to the lens part 5a, the pixel width suddenly increases. The width of the shape appears to be smaller. In this way, the optical system effect in which the shape of the pixel width changes extremely suddenly can be expressed as a lenticular shape, a mosaic shape,
A feature of the present invention is that the fine lens portions and fine flat portions of each lens body having a compound eye shape are alternately and continuously arranged to provide visual perception, and the case where such a visual phenomenon is viewed binocularly will be described below. 5 and 6 show a third embodiment, in which the first lens body 2 is formed with a spherical fine lens portion 5c, and the second lens body 3 is formed with a concave lens-like fine lens portion 8a and a fine flat surface. Part 1
0 and 0 are consecutively arranged alternately.

この第2レンズ体3の微細平面部8aが第1レンズ体2
の微細レンズ部5cに対応して配置されている。℃・ま
、このような立体視用レンズの対物面の微細レンズ部5
cの焦線F′に合わせて平面画像1をおき、該立体視用
レンズを通して両眼A,Bをもつて該画像1を見ると両
眼の各両視線a1〜A3はそれぞれP1〜P3に著視点
を結ぶから、これによつて第4図に説明した如く、レン
ズ体の微細レンズ部と微細平面部により、右眼A視線は
各々画素幅の形状と結像位置を違えた三つの結像点Ap
′1〜Ap′3を見ることになり、左眼B視線は各々画
素幅の形状と結像位置を違えた三つの結像点Ap′1〜
BP′3を見ることになる。
The fine plane portion 8a of the second lens body 3 is the first lens body 2.
It is arranged corresponding to the microlens section 5c. ℃・Well, the fine lens part 5 on the objective surface of such a stereoscopic lens
When a plane image 1 is placed in alignment with the focal line F' of c, and image 1 is viewed with both eyes A and B through the stereoscopic lens, the lines of sight a1 to A3 of both eyes become P1 to P3, respectively. Since the points of interest are connected, as explained in Fig. 4, the right eye A's line of sight can be divided into three images with different pixel width shapes and imaging positions due to the fine lens part and the fine plane part of the lens body. Image point Ap
'1 to Ap'3, and the left eye B's line of sight sees three imaging points Ap'1 to Ap'1, each with a different pixel width shape and imaging position.
You will see BP'3.

これによつて両眼はそれぞれに異なる形状の画素と異な
る結像位置をもつて両眼で視差することになる。このよ
うに一つの画素を両眼で視差する現象を広さのある画像
面を見る両眼各視線について第7図に示す第四実施例を
使用して説明する。
As a result, both eyes have pixels of different shapes and different image formation positions, resulting in binocular parallax. The phenomenon of parallax of one pixel with both eyes will be explained using the fourth embodiment shown in FIG. 7 with respect to each line of sight of both eyes viewing a wide image plane.

この立体視用レンズは第1レンズ体2の微細レンズ部5
bを凹レンズ状でかつレンチキユラ一形状に形成し、第
2レンズ3の微細レンズ部8bは前記レンズ部5bのピ
ッチより小さくして凹レンズ状でかつレンチキユラ一形
状にして連続配置されている。第7図に示すように、い
ま、図中の平面画像1の表面に第8図に示す平面画11
が表わされているとすると、立体視用レンズを通して両
眼の各視線a1〜A5,bl〜B5をもつて平面画11
の各点G,h,i,j,k部分に両眼の著視点X1〜X
5をおいて互いに斜傾角の異なる視線をもつて見るとき
、右眼の各著視効X1〜X5における各視線A,〜A5
は平面画11の各点g−kを空間の点Alg′,A2h
′,A3l′,A4j′,A5k′に浮き出して見える
ことになり、また、左眼Bの著視点X,〜X5における
各視線b1〜B5は平面画11の各点g−kを空間f)
,焦Blg′,B2h′,B3l′,B4j′,B5k
′に浮き上らせて見ることになる。また両眼A,Bの著
視点X1〜X5まで移動させると視線Al,blにより
透視する部分Alg,b,gが連続して右側に移り、部
分A2h,b2hに到り、同様にA5k,b5kまで両
眼により透視される部分を違えて移動される。これによ
り右眼で見られる連続画像は各点Alg′〜A5k′
を結ぶ線12に平画面11の像として浮き上つて見える
。また左眼により見られる連続画像は各点Blg′〜B
,k′を結ぶ線13に平面画11の像として浮き上つて
見える。この二つの連続画像は画素の収縮程度と、空間
における浮き上る結像位置が全て左右を違えて現われる
ことで両眼視差による立体視が得られるものである。尚
、上述の実施例において、第1レンズ体と第2レンズ体
とを別体としているが、一体的に形成してもよいもので
ある。
This stereoscopic vision lens is a fine lens portion 5 of the first lens body 2.
b is formed in the shape of a concave lens and in the shape of a lenticule, and the fine lens portions 8b of the second lens 3 are formed in a concave lens shape and in the shape of a lenticule with a pitch smaller than that of the lens portion 5b, and are continuously arranged. As shown in FIG. 7, the plane image 11 shown in FIG. 8 is now on the surface of the plane image 1 in the figure.
is represented, a plane image 11 is created with each line of sight a1 to A5, bl to B5 of both eyes through a stereoscopic lens.
Binocular points of view X1 to X at each point G, h, i, j, k of
When viewing with lines of sight with different oblique angles from each other with the angle 5, each line of sight A, ~A5 at each remarkable visual effect X1 to X5 of the right eye.
represents each point g-k of the plane image 11 as a point Alg', A2h in space.
', A3l', A4j', A5k', and each line of sight b1 to B5 at the point of view X, to X5 of the left eye B connects each point g-k of the plane image 11 to the space f)
, Jiao Blg', B2h', B3l', B4j', B5k
′. Furthermore, when the binocular eyes A and B are moved to the points of view X1 to X5, the parts Alg, b, and g seen through by the line of sight Al and bl continuously shift to the right side, reaching parts A2h and b2h, and similarly A5k and b5k. The image is moved to different parts of the body that are seen through both eyes. As a result, the continuous images seen with the right eye are each point Alg' to A5k'
The image appears as an image of the flat screen 11 on the line 12 connecting the two. Also, the continuous images seen by the left eye are each point Blg'~B
, k' appear as an image of the planar image 11. These two consecutive images provide stereoscopic vision due to binocular parallax, depending on the degree of pixel contraction and the fact that the image formation positions that emerge in space appear to be different on the left and right sides. In the above embodiments, the first lens body and the second lens body are separate bodies, but they may be formed integrally.

また、レンチキユラ一形状、モザイク形状、複眼形状に
よる各レンズ体はそれぞれに互いに取り替え、組合わせ
ても本発明の光学系作用は変ることなく、本発明の実施
に使用できるものである。例えば、一方の表面はレンチ
キユラ一形状、他方の表面をモザイク形状か複眼形状に
する等の如きレンズ体も考えられるものであり、更にま
た前記レンチキユラ一形状のレンズ体の2枚を直交させ
てモザイク形状同様の光学系により本発明を実施するこ
ともできる。以上に述べた第1、第2レンズ体は表裏い
づれの面を対物面、接眼面にしても使用することができ
る。本発明は上述のように構成されている。微細レンズ
部と、微細平面部とを交互に連続配置した第1面部を備
え、この第1面部と略平行配置に微細レンズ部と微細平
面部とを交互にもしくは微細レンズ部のみを連続配置し
た第2面部を備えたため、一の平面画像を左右の眼で見
る視線の角度の相違により、左右の眼による結像位置が
異なつて立体感が得られるものである。また、本発明の
立体視用レンズは見る位置が遠近左右に移動しても両眼
の視線はそれぞれに同一画素に著視点をおいて見ている
から同じ画像を連続して広範囲にわたりくりかえして多
人数により立体視観察ができる。
Further, even if the lens bodies having a lenticule shape, a mosaic shape, and a compound eye shape are replaced with each other and combined, the operation of the optical system of the present invention does not change, and the lens bodies can be used in the practice of the present invention. For example, a lens body in which one surface has a lenticule shape and the other surface has a mosaic shape or a compound eye shape can be considered.Furthermore, it is possible to make a mosaic by orthogonally crossing two lens bodies with the lenticule shape. The present invention can also be implemented using an optical system having a similar shape. The first and second lens bodies described above can be used with either the front or back surface serving as the object surface or the eyepiece surface. The present invention is configured as described above. It has a first surface portion in which fine lens portions and fine flat surfaces are alternately and continuously arranged, and the fine lens portions and fine flat surfaces are alternately arranged or only the fine lens portion is continuously arranged approximately parallel to the first surface portion. Since the second surface portion is provided, the imaging position of the left and right eyes differs due to the difference in the viewing angle between the left and right eyes when viewing a single planar image, thereby providing a three-dimensional effect. In addition, with the stereoscopic lens of the present invention, even if the viewing position moves from far to near or to the left or right, the lines of sight of both eyes are focused on the same pixel, so the same image can be continuously repeated over a wide range. Depending on the number of people, stereoscopic observation is possible.

更に、平面画像の動画に応用すると画像の動きによつて
、隠れた部分が現われることから立体感はより効果的と
なるものである。
Furthermore, when applied to a moving image of a flat image, the three-dimensional effect becomes even more effective because hidden parts appear due to the movement of the image.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すもので、第1図及び第2図
は本発明に係る立体視用レンズの斜視図及び光学系を示
す説明図、第3図及び第4図a〜Cは同レンズの第二実
施例を示す斜視図及び光学系を示す説明図、第5図及び
第6図は同レンズの第三実施例を示す斜視図及び光学系
を示す説明図、第7図は同レンズの第四実施例の光学系
を示す説明図、第8図は平面画の正面図である。 1・・・・・・平面画像、・2・・・・・・第1レンズ
体、3・・・・・・第2レンズ体、5,5a,5b,8
,8a,8b・・・・・・微細レンズ部、6,10・・
・・・・微細平面部、9・・・・・・接眼面、11・・
・・・・平面画、12,13・買・線、AラBll眼、
P1ゝP4″1″画素、a′1ya/2゜01″光線、
P′1,P′2・・・・・・虚像の点、a1〜A5,b
,〜B5・・・・・・視線、F・・・・・・焦点、Ap
″1〜APt,bP″1〜BP′3・・・・・・結像点
The drawings show embodiments of the present invention, and FIGS. 1 and 2 are perspective views and explanatory diagrams showing the optical system of a stereoscopic lens according to the present invention, and FIGS. 3 and 4 a to C are FIGS. 5 and 6 are a perspective view and an explanatory diagram showing the optical system of the second embodiment of the same lens; FIGS. 5 and 6 are perspective views and an explanatory diagram showing the optical system of the third embodiment of the lens; FIG. FIG. 8 is an explanatory diagram showing the optical system of the fourth embodiment of the same lens, and FIG. 8 is a front view of the plane image. 1...Flat image, 2...First lens body, 3...Second lens body, 5, 5a, 5b, 8
, 8a, 8b... fine lens section, 6, 10...
...Minute plane part, 9...Ocular surface, 11...
... Plane drawing, 12, 13, buy, line, A la Bll eyes,
P1ゝP4″1″ pixel, a′1ya/2°01″ ray,
P'1, P'2... Points of virtual image, a1 to A5, b
,~B5... Line of sight, F... Focal point, Ap
``1~APt,bP''1~BP'3... Image forming point.

Claims (1)

【特許請求の範囲】 1 微細レンズ部と、微細平面部とを交互に連続配置し
た第1面部を備え、この第1面部と略平行配置に微細レ
ンズ部と微細平面部とを交互にもしくは微細レンズ部の
みを連続配置した第2面部を備えていることを特徴とす
る立体視用レンズ。 2 前記第1面部の微細レンズ部を凸レンズ状に形成し
、前記第2面部の微細レンズ部を凹レンズ状に形成し、
この両微細レンズ部のピッチを同一にしていることを特
徴とする特許請求の範囲第1項に記載の立体視用レンズ
。 3 前記第1面部の微細レンズ部を凹レンズ状に形成し
、前記第2面部の微細レンズ部を凹レンズ状に形成し、
この両微細レンズ部のピッチを同一にしていることを特
徴とする特許請求の範囲第1項に記載の立体視用レンズ
。 4 前記第1面部の微細レンズ部を凸レンズ状に形成し
、前記第2面部の微細レンズ部を凹レンズ状に形成して
微細平面部と交互に連続配置し、かつ前記第2面部の微
細レンズ部を前記第1面部の微細平面部に対応させて配
置していることを特徴とする特許請求の範囲第1項に記
載の立体視用レンズ。 5 前記第1面部の微細レンズ部を凹レンズ状に形成し
、前記第2面部の微細レンズ部を凹レンズ状に形成し、
前記第2面部の微細レンズ部のピッチを前記第1面部の
微細レンズ部のピッチより小さくしていることを特徴と
する特許請求の範囲第1項に記載の立体視用レンズ。 6 前記微細レンズ部をレンチキュラー形状に形成して
いることを特徴とする特許請求の範囲第1項、第2項、
第3項、第4項、又は第5項に記載の立体視用レンズ。 7 前記微細レンズ部を複眼形状に形成していることを
特徴とする特許請求の範囲第1項、第2項、第3項、第
4項、又は第5項に記載の立体視用レンズ。 8 前記微細レンズ部をモザイク形状に形成しているこ
とを特徴とする特許請求の範囲第1項、第2項、第3項
、第4項、又は第5項に記載の立体視用レンズ。
[Claims] 1. A first surface portion in which fine lens portions and fine plane portions are alternately and continuously arranged, and the fine lens portions and fine plane portions are alternately or finely arranged approximately parallel to the first surface portion. A stereoscopic vision lens characterized by comprising a second surface portion in which only lens portions are continuously arranged. 2. The fine lens part of the first surface part is formed in a convex lens shape, and the fine lens part of the second surface part is formed in a concave lens shape,
The stereoscopic vision lens according to claim 1, wherein the pitches of both of the fine lens portions are the same. 3. The fine lens part of the first surface part is formed in a concave lens shape, and the fine lens part of the second surface part is formed in a concave lens shape,
The stereoscopic vision lens according to claim 1, wherein the pitches of both of the fine lens portions are the same. 4. The fine lens portions of the first surface portion are formed in a convex lens shape, the fine lens portions of the second surface portion are formed in a concave lens shape, and the fine lens portions of the second surface portion are arranged continuously and alternately with the fine plane portions, and the fine lens portions of the second surface portion are formed in a concave lens shape. 2. The stereoscopic vision lens according to claim 1, wherein: is arranged to correspond to the fine plane portion of the first surface portion. 5. The fine lens part of the first surface part is formed in a concave lens shape, and the fine lens part of the second surface part is formed in a concave lens shape,
2. The stereoscopic lens according to claim 1, wherein the pitch of the fine lens portions of the second surface portion is smaller than the pitch of the fine lens portions of the first surface portion. 6. Claims 1 and 2, characterized in that the microlens portion is formed into a lenticular shape.
The stereoscopic lens according to item 3, item 4, or item 5. 7. The stereoscopic lens according to claim 1, 2, 3, 4, or 5, wherein the fine lens portion is formed in a compound eye shape. 8. The stereoscopic lens according to claim 1, 2, 3, 4, or 5, wherein the microlens portion is formed in a mosaic shape.
JP56095231A 1981-06-22 1981-06-22 Stereoscopic lens Expired JPS592014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56095231A JPS592014B2 (en) 1981-06-22 1981-06-22 Stereoscopic lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56095231A JPS592014B2 (en) 1981-06-22 1981-06-22 Stereoscopic lens

Publications (2)

Publication Number Publication Date
JPS57210337A JPS57210337A (en) 1982-12-23
JPS592014B2 true JPS592014B2 (en) 1984-01-17

Family

ID=14131981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56095231A Expired JPS592014B2 (en) 1981-06-22 1981-06-22 Stereoscopic lens

Country Status (1)

Country Link
JP (1) JPS592014B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015003431A1 (en) * 2013-07-10 2015-01-15 京东方科技集团股份有限公司 Stereoscopic display device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61105501A (en) * 1984-07-24 1986-05-23 Seizaburo Kimura Lens for stereoscopic display
JPS6132002A (en) * 1984-07-24 1986-02-14 Seizaburo Kimura Prism plate for stereoscopic view
JPS61213837A (en) * 1985-03-20 1986-09-22 Seizaburo Kimura Compound lens for stereoscopic view
JPS6286352A (en) * 1985-10-14 1987-04-20 Seizaburo Kimura Composite prism plate for stereoscopic observation
JP5664466B2 (en) * 2011-06-10 2015-02-04 富士通株式会社 Stereoscopic image display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015003431A1 (en) * 2013-07-10 2015-01-15 京东方科技集团股份有限公司 Stereoscopic display device

Also Published As

Publication number Publication date
JPS57210337A (en) 1982-12-23

Similar Documents

Publication Publication Date Title
JP3980685B2 (en) Private stereoscope display using lenticular lens sheet
US4756601A (en) Three-dimensional image-viewing apparatus
JP2022078037A (en) Naked-eye optical stereoscopic screen
JP2019512109A5 (en)
JP2017187707A (en) Three-dimensional image display device and three-dimensional image display method
KR20060096228A (en) 2-D combined 3-D image display device
JP2018508841A (en) Adjustable optical stereo glasses
JPH0638246A (en) Vision display device
EP1699246A2 (en) Display
JPS592014B2 (en) Stereoscopic lens
CN113589540B (en) Beam expanding optical film, display device and multidirectional beam expanding optical film
US4333707A (en) Method of image enhancement
JP2842735B2 (en) Multi-viewpoint three-dimensional image input device, image synthesizing device, and image output device thereof
JPH09101481A (en) Lenticular display
JP2004226928A (en) Stereoscopic picture display device
JPH0915530A (en) Lenticular display
JPH0682934A (en) Lenticular screen for stereoscopic viewing
JP2820496B2 (en) Stereoscopic display method
JP3418729B2 (en) Screen display device
JPH0145049B2 (en)
JP3577577B2 (en) Aerial stereoscopic device
JPH01102449A (en) Plane prism for stereoscopic vision
JPS5933449A (en) Transmission plate for stereoscopic vision
JPH0428287B2 (en)
JP2867507B2 (en) Binocular optics