JPS59194045A - Injection timing controller - Google Patents
Injection timing controllerInfo
- Publication number
- JPS59194045A JPS59194045A JP58068169A JP6816983A JPS59194045A JP S59194045 A JPS59194045 A JP S59194045A JP 58068169 A JP58068169 A JP 58068169A JP 6816983 A JP6816983 A JP 6816983A JP S59194045 A JPS59194045 A JP S59194045A
- Authority
- JP
- Japan
- Prior art keywords
- injection timing
- duty ratio
- injection
- engine
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002347 injection Methods 0.000 title claims abstract description 37
- 239000007924 injection Substances 0.000 title claims abstract description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000000446 fuel Substances 0.000 claims description 21
- 238000002485 combustion reaction Methods 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 238000002425 crystallisation Methods 0.000 claims 1
- 230000008025 crystallization Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 9
- 230000005284 excitation Effects 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 238000001514 detection method Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 239000002828 fuel tank Substances 0.000 description 2
- 102100028717 Cytosolic 5'-nucleotidase 3A Human genes 0.000 description 1
- 241000219745 Lupinus Species 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/32—Controlling fuel injection of the low pressure type
- F02D41/34—Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
- F02D41/345—Controlling injection timing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
本発明は、ディーげル機関の燃料用銅装置にお(プる噴
躬時明制御装置に関する。
従来、ディーゼル機関の噴射時期制御装動として、機関
の回転数、燃料噴射格、冷入り水温等の運転条件を運転
条件検出器で検出すると共に、運転条11に応じた目標
噴射u;J明を算出し、この目標噴θ]時期データに基
づいて噴射ポンプの噴射時期調節手段を電気的に間ルー
プ制御する制御装置が提案されている。
しかし、この種の装置では算出された目標噴射時期デー
タが制御パルス信号のパルスデューラーイ比に変換され
て制御が行なわれるため、電源どなるバッテリ電圧が変
化した場合には、lli’i rに1時期調flD手段
となる電磁アクチコエータの1lil制御但が目標噴射
時期データに応じて正確に制御できなくなり、これによ
り、機関の出力、燃費、JJI気ガス成分、或は騒音な
どの性能悪化を生ずる問題があった。
そこで、本発明は、運転条件に応じて算出された目標噴
射時期に対応Jる制御信号のパルスデj−ブイ比をバッ
テリ電圧により補i]シ、電源となるバッテリ電灯の変
動の影響をa、1射vilす1制御に′3えず、(次間
の運転条1′1に応じた良好な噴射時期制御を行ない寄
る噴射時期制御装置を提供覆ることを目的どづる。
このために本発明は、第1図の基本構成図に示す如く、
機関の運転条件を゛電気的に検出・」る運転条1′1検
出器J1ど、この運転条1′1データに)1(づいて目
標燃お1噴CFI 11.% +I11に対応しIこタ
イマ位置を決めるILめの制ill+仏舅のパルスデコ
ーティ比を綽出し、このパルスy’ J、 −j−イ比
をバッテリ電圧eにJ:tづさ補正1J8萌陣手段すど
、演算手段1+ h+ +ろ出力2)れ駆動回路Cを経
て増幅された制御化Yコにより燃λ’411lr5川ポ
ンプの噴射1.51!IJを調節J゛る1て1用11f
f明調節丁段(1とを1111”IえてIiA J戊し
lこ。
以下、本発明の実施例を図面に基づい−C説明覆る。
第2図は本実施例の全体構成図であり、運転条(4検出
器が回転数セン4〕1、吸気圧レンリ3、アクレル間度
しンザ5、水温レンリ−7、吸気温レンυ9、燃わ)温
しンザ11からなり、各レンリからの検出データは演締
手段としての電気的制御回路30に取り込まれ、目標噴
射時期jiji C’>の制御パラメータとしで使用さ
れる。
電気的制御回路30は、運転条イ′1検出器からの検出
データを制御パラメータとして取り込み、機関の目標噴
射時期に対応する制御信号用のバルスデ、ノーシーr比
を算出し、さらに、このパルスデコーティ比をバッテリ
電圧13に応じて補正Jる。
27は、CPU 19から出力される制御信号を電流増
幅勺る駆動回路で、第3図に示J如く、スイッチング(
〜ランジスクを倫え、制御信号入力側を抵抗器を介して
1〜ランジスタのベースに接続し、:]レクタ回路に噴
射時期」j1節手段とイ蒙る電磁フ〒29の励磁コイル
に接続する。なJ3、コイルの他端はバッテリ13に接
続されるかバッテリ13の電圧を検出し、デジタル餡と
してCPU19に取込む!こめに、バッテリ電圧検出回
路がA / D変換器25に接続される。
第4図はポツンコV「型分配燃わ1噴躬ポンプの要部[
111面を示し、ここζ゛は、VE型分配哨6+lポン
ゾの噴射時期制御手段どして、油圧タイマに作用りる油
圧を電磁弁21〕にてバイパスさけてタイマビス1〜ン
39を作動する装置が採用される。づイiわら、31(
よ噴射ポンプのハウジング、33はローシリングで、図
示されてない)Jイスカムと対向し、シャツ1〜を介し
て[]−ラG35を支持する。。
ローラ35どフ工イスヵl\は図示しイ1いカ1\ズブ
リングにより接触し、機関のクランク軸に係切するボン
J駆幼’I)]1にJ、ってノ「イスノJムに回転運動
が与えられると、ノ丁イスカムはローラ35に密j)2
シで回転し、回転31F動と11復運動が起り、燃オ′
31の加圧ど分配が行なわれる。37は油圧シリングで
、1■1中されlこタイマビス1〜ンJ35)はビン4
1を介しく1]−シリング33に3−I!結され、タイ
7ピス1−ン39の位置は油圧シリング37の油L1に
ょっ(牛しる力とコイルぽ4a43とのつり合い(・ン
火まる1、/15〕は油圧シリシタ3フ内の油圧を燃ゎ
1タンク側へ戻すバイパス路で、このバイパス路45に
電磁弁29が設けられる。/17はタイマビス1〜ン3
9に設けられたAリフイスで、ポンプ至内/19)の燃
料油圧がここを通して加圧シリンダ37内へ導入される
。51はベーン型の燃(31フイードポンプで、燃料タ
ンクの燃料がこのポンプにより照射ポンプ内へ供給され
る。53はA−パフロー配管55に設りられたチェック
バルブで、ポンプ空49内の圧力の過上昇を防止する。
拳
第5図は電磁弁2つの断面を示し、57はスデータコア
、59はルーピンクコア、61はその間に挿入されIc
圧縮コイルはね、63は励磁コイルである。励磁コ、イ
ル63に通電されると、11−ピングコア59はコイル
ばねG1をj1縮りる方向、つまり図の右方向に移動し
、その先端の弁44V65を聞き、バイパス路45に燃
料を流づ。従って、励磁コイル63に流れる電流のパル
スデコ−fi’ −(比が増大づると、弁体65の開く
時間が増し、油圧シリング37内の圧力を減少させてコ
イルばね43の戻り力によりタイマビス1〜ン39を図
右方向へ移動ざヒ、ローラリング33を反時泪方向にI
rl1動させてl!r! 04時期は遅角側へ制御され
る。逆に電磁弁29に供給される電流のパルスデニl−
ティ比が小さいと、電磁弁29はバイパス路45を閉鎖
刀る方向に作動し油のバイパスを減少さUることから、
油圧シリンダ37の油圧が増大し、タイマビス1ヘン3
9はコイルばね43にうち勝つCノを側へ移動し、これ
によりローラリング33が時計方向に回動じ、噴射n;
) I!lJは進角側へ制御される。
従つ(、電磁ブ↑29の駆動信シシのバルスア′1−ア
イ比によって第6図に示1J、うに、進角量が決定され
ることになる。
なお、この1;’+のタイマビス1−ン30の動さは、
第7図に示づにうに、ス1〜口−りが(立1−立2)で
表わされ、これによりほぼ360X (立1−立2)/
2π1゛度の範囲℃進角量(よ遅角調節が可能となり、
この角度は、第8図に示すj、う(こ、ディーげル磯関
が必要とする進角量にポンプの取付りt;1差、部品の
摩1察等にJ:る経時変化を見込んで設定されている。
第2図に示づ−ように、鳴川時期制御/lI装装置のL
l制御回路30は、演算手段となるCPU(中火処理ユ
ニッ1〜)19、プログラムデータや各種のマツプデー
タを書込んだROM(読出し専用メ[す)21、RAM
(、ランダムアクしスメし=す)23、入力した回転
数信号を矩形パルス信号に波形整形覆る波形整形回路1
7、運転条)41検出器のその他の各種センサから送ら
れるアナログ検出信号をア゛ジタル信号に変l!i!I
づるA/D変換器25、及び制御信23を電流増幅して
電磁弁29に供給り゛る駆1リノ回路27を備える。そ
して、各種レン−りから検出される運転条件に基づいて
目標燃料1n川時朋に対応づ゛るタイマ位置を決定する
ための制御僧尼のパルスデコーティ比を演算し、これを
バラブリ電圧にJ:り補正した後、電流増幅された駆動
出力を電磁弁29へ送るように動作覆る。
運転条件検出器において、回転数センナ1は、例えば、
機関のクランク軸に係切する歯Φ状インダクタに電磁ピ
ックアップを対向設置して(1η成づることができ、吸
気圧センサ3は機関のインアークマニホールド内の負圧
を検出づ゛るL[カレンリにより、アクレル間度センザ
5はアクレルペダルの「111込み量をボiンシ口メー
タにJ:り検出器る検出器により、−それぞれ構成する
ことかでさる。さらに、水温センサ7は冷N1水記を検
出づるリーミスタ式のC品度検出器にJ、す、吸気温セ
ンサ−9は(大関の吸気タフ1〜内の湿度を検出づる4
〕−−ミスタ式のiiM 1.r<検出器ニJ: リ、
また、燃II ’4W t ン+J゛11 L;L 噴
躬ポンプ内などの燃λ′81の湿度を検出Jるリーミス
タ式の調1哀検出器などにJ、り構成でさる。
次に、第9図の71]−ヂI・−1〜、第10図のグラ
フを参照しυ噴q1時期制御装買の動作を説明り−る。
先−リ゛、CPU19はRO’M21内に予め格納され
たプログラムによって処理を実行りるが、RON421
内にI;11、演亦処理に必要な回転数N「どアクレル
開1哀αをパラメータどづる制御信円の1.↓木デコー
ティ比のデータマツプ、冷却水温−IWをパラメータと
りろ水ifM ?iti止l′11dWのデータマツプ
、吸気i晶1−Δをパラメータどづる吸気温補正1dA
のデータマツプ、吸気圧Pをパラメータ、とりる吸気圧
補正量dPのデータマツプ、及びバラブリ電圧VBをパ
ラメータとJるバッテリ電圧補正昂dVBのデータマー
ツブが予め格納されている。
先ず、機関のキースイッチ等が投入されると、作動を聞
々fHL、ステップ101でCP U 19のレジスタ
、RAM23、入出カポ−1〜を初期状態にレッ]〜覆
る。
次に、ステップ102を実行し、伯の割込みルーチン−
64jVられた回転数データN[を取り込み、ステップ
103でアクレル間度はン4)5からA/D変換器25
を介して送られた検出信号からアクレル間度αのデータ
を取込む。さらに同様に、ステップ104にて水温セン
サ7からの水温アークTWを、ステップ105にて吸気
圧センサ3からの吸気圧データPを、またステップ10
6でThe present invention relates to an injection timing control device for a diesel engine fuel copper device. Conventionally, as an injection timing control device for a diesel engine, engine speed, fuel injection rating, cold water temperature, etc. The operating condition detector detects the operating conditions such as, and calculates the target injection u; A control device that performs loop control has been proposed.However, in this type of device, the calculated target injection timing data is converted to the pulse Durer ratio of the control pulse signal for control, so the battery voltage If this changes, the 1li'ir control of the electromagnetic acticoator, which serves as the 1st timing flD means, will no longer be able to be accurately controlled according to the target injection timing data, and this will cause engine output, fuel consumption, and JJI There has been a problem of deterioration of performance such as gas components or noise.Therefore, the present invention has been developed to change the pulse debug ratio of the control signal corresponding to the target injection timing calculated according to the operating conditions based on the battery voltage. Supplementary i) In order to reduce the influence of fluctuations in the battery electric lamp that serves as the power source, a, 1 injection vil 1 control is not required. The purpose of the present invention is to provide a timing control device.For this purpose, the present invention has the following features as shown in the basic configuration diagram of FIG.
The operating condition 1'1 detector J1, which electrically detects the operating conditions of the engine, uses this operating condition 1'1 data)1 (corresponding to the target fuel injection CFI 11.% +I11). This timer position is determined by calculating the pulse decoty ratio of ill+butsu and this pulse y' J, -j-i ratio to battery voltage e, J:t, correction 1J8 moejin means, calculation. Means 1 + h + + filtration output 2) is amplified through the drive circuit C and the fuel λ'411lr5 river pump injection 1.51! Adjust IJ 11f for 1
f Bright adjustment stage (1111"I and IiA J 戊shilko). Hereinafter, the embodiments of the present invention will be explained based on the drawings. Fig. 2 is an overall configuration diagram of the present embodiment, The operating condition (4 detectors are rotation speed sensor 4), intake pressure sensor 3, accelerator temperature sensor 5, water temperature sensor 7, intake temperature sensor υ9, combustion) temperature sensor 11, The detected data is taken into an electric control circuit 30 as a control means and used as a control parameter for the target injection timing jiji C'. The data is taken in as a control parameter, the pulse decoty ratio is calculated for the control signal corresponding to the target injection timing of the engine, and the pulse decoty ratio is further corrected according to the battery voltage 13. 27 is a CPU This is a drive circuit that current amplifies the control signal output from 19, and performs switching (J) as shown in Figure 3.
Connect the control signal input side to the base of the transistor through a resistor, and connect it to the excitation coil of the electromagnetic filter 29, which controls the injection timing to the receiver circuit. J3, the other end of the coil is connected to the battery 13 or detects the voltage of the battery 13 and inputs it to the CPU 19 as a digital paste! At this time, a battery voltage detection circuit is connected to the A/D converter 25. Figure 4 shows the main parts of the Potsunko V type distribution combustion 1 injection pump [
111 is shown, where ζ゛ is the injection timing control means of the VE type distributor 6+l ponzo, and the hydraulic pressure acting on the hydraulic timer is bypassed by the solenoid valve 21 and the timer screws 1 to 39 are operated. The device is adopted. Zuii Wara, 31 (
The housing of the injection pump, 33, is a low sill ring, which faces the J iscam (not shown) and supports the []-RA G35 through the shirt 1~. . The roller 35 is in contact with the engine crankshaft as shown in the diagram, and is engaged with the engine crankshaft. When rotational motion is applied, the knife is tightly attached to the roller 35j)2
The rotation 31F movement and 11 return movement occur, and the combustion
31 pressure distribution is performed. 37 is a hydraulic shilling, and 1.
1 through 1] - 3-I to 33 shillings! The position of the tie 7 piston 1-39 is the oil L1 of the hydraulic cylinder 37. A solenoid valve 29 is provided in this bypass path 45 which returns the oil pressure to the fuel tank 1 side.
The fuel pressure inside the pump/19) is introduced into the pressurizing cylinder 37 through the A-refrigerator provided at 9. 51 is a vane-type fuel pump (31 feed pump), and the fuel in the fuel tank is supplied to the irradiation pump by this pump. To prevent excessive rise. Figure 5 shows the cross section of two solenoid valves, 57 is a data core, 59 is a lupin core, and 61 is an Ic inserted between them.
The compression coil is a coil, and 63 is an excitation coil. When the excitation coil 63 is energized, the 11-pin core 59 moves in the direction of compressing the coil spring G1 by j1, that is, in the right direction in the figure, and listens to the valve 44V65 at its tip to flow fuel into the bypass path 45. zu. Therefore, as the pulse decoder fi'-(ratio of the current flowing through the excitation coil 63 increases, the time for which the valve body 65 is open increases, the pressure inside the hydraulic cylinder 37 decreases, and the return force of the coil spring 43 causes the timer screws 1 to 1 to Move the ring 39 to the right in the figure, and move the roller ring 33 in the counterclockwise direction.
Move rl1! r! 04 timing is controlled to the retarded side. Conversely, the pulse current supplied to the solenoid valve 29 is
When the tee ratio is small, the solenoid valve 29 operates in the direction of closing the bypass passage 45, reducing the oil bypass.
The oil pressure of the hydraulic cylinder 37 increases, and the timer screw 1hen 3
9 moves C which hits the coil spring 43 to the side, thereby rotating the roller ring 33 clockwise and injecting n;
) I! lJ is controlled to the advance side. Therefore, the advance angle amount is determined by the pulse a'1-eye ratio of the drive signal of the electromagnetic valve ↑29, as shown in FIG. -The movement of the ring 30 is
As shown in FIG.
2π1° range °C advance angle (retard adjustment is possible,
This angle is calculated based on the amount of advance angle required by Diegel Isoseki, the difference in pump installation (t), the wear of parts (J), etc. over time, as shown in Figure 8. As shown in Figure 2, the L of the Narukawa timing control/lI equipment is
The control circuit 30 includes a CPU (medium heat processing unit 1 to) 19 serving as a calculation means, a ROM (read-only memory) 21 in which program data and various map data are written, and a RAM.
(Random access is recommended) 23. Waveform shaping circuit 1 that shapes the input rotational speed signal into a rectangular pulse signal
7. Operating conditions) Convert analog detection signals sent from other various sensors of the 41 detector into digital signals! i! I
The control signal 23 is provided with an A/D converter 25, and a driver circuit 27 that amplifies the current of the control signal 23 and supplies it to the solenoid valve 29. Then, based on the operating conditions detected from various ranges, the pulse decorty ratio of the control unit is calculated to determine the timer position corresponding to the target fuel level, and this is applied to the fluctuation voltage. : After correction, the current amplified drive output is sent to the solenoid valve 29. In the operating condition detector, the rotation speed sensor 1 is, for example,
An electromagnetic pickup is installed facing the toothed Φ-shaped inductor connected to the engine's crankshaft (1η), and the intake pressure sensor 3 detects the negative pressure in the in-arc manifold of the engine. Accordingly, the accelerator temperature sensor 5 is configured with a detector that detects the accelerator pedal's ``111'' amount on a water outlet meter. The intake air temperature sensor-9 is connected to the Reamister-type C quality detector that detects the air temperature.
]--Mr. style iiM 1. r<detector J: ri,
In addition, it can be configured as a Leemistor-type sensor that detects the humidity of the fuel λ'81 inside the fuel injection pump or the like. Next, the operation of the υ injection q1 timing control device will be explained with reference to the graphs 71]-もI-1~ of FIG. 9 and FIG. 10. First, the CPU 19 executes processing according to a program stored in advance in the RO'M21, but the RON421
In I; 11, the rotation speed N required for the operation process is 1. ↓ Data map of the wood decoty ratio, take the cooling water temperature - IW as the parameter, water ifM? Data map of iti stop l'11 dW, intake temperature correction 1 dA using intake i crystal 1-Δ as a parameter
A data map of the intake pressure correction amount dP, which takes the intake pressure P as a parameter, and a data map of the battery voltage correction amount dVB, which takes the fluctuation voltage VB as a parameter, are stored in advance. First, when the key switch of the engine is turned on, the operation is turned on and off, and in step 101, the registers of the CPU 19, the RAM 23, and the input/output capo 1 are returned to their initial states. Next, step 102 is executed, and the interrupt routine -
64jV is taken in, and in step 103 the accelerator speed is changed from 4)5 to the A/D converter 25.
Data on the accelerator distance α is acquired from the detection signal sent via the . Furthermore, in the same way, the water temperature arc TW from the water temperature sensor 7 is obtained in step 104, the intake pressure data P from the intake pressure sensor 3 is obtained in step 105, and the intake pressure data P from the intake pressure sensor 3 is obtained in step 10.
At 6
【よ吸気温セン→ノ9から吸気温データTAをそれ
ぞれA/D変換器25を介して取込む。
次に、ステップ107を実行し、ステップ102と1.
03に、て取込んだ回転数N IEとアクじル聞l身α
のデータをパラメータとしてROM21内に格納された
(−1標噴川11谷!I11に対応りる制御11:弓の
パルスデコ〜ティ比のマツプデータから1に本デコーデ
ィu−[’ll Oを検索づる。また同様にステップ1
08で、11ら記スデップ104.105.106にて
回出された水温1−W1吸気j工P、吸気品「△の各7
’−夕をパラメータとしてflOM21内のマツプデー
タから−でれそれに対応しlこ補正量dW、、+1△、
(11)を検索りる。
次に、ス−】ツブ゛109を実行し、スうツブ107−
Q 算出した基本デユーアイ比Doにスj−ツブ108
で淳出した補正量d W 、 (1△、(I Pを加え
、基本デユーアイ比Doを水温、吸気圧、吸気温のj゛
−夕により補正りる。
次に、ステップ110でバッフす13の電IE V口を
Δ7・′D変換器25を介して取込み、ステップ111
でバッテリ電圧V Bをパラメータどづる補止!is
d V B (1)ノ゛−タマップから第11図に示り
ような補正1’i%(IVBを算出り゛る。イして、ス
テップ゛1]2では、ステップ109で補正したデユー
アイ比D1にざらにこの補正Lid\/Bを加、えて?
+Ii Tlされ、目標噴射時期に対応したタイマ位置
を制御するための制御信号の最終的なデユーアイ比D2
が算出される。ステップ113ではこのアユ−ディ比D
2がCPU 19内の出カポ−1〜にセラl−され、こ
こからパルスデユーアイ比D2の制御fB @が駆動回
路27に出力され、駆動回路27て電流増幅された駆動
出力は電磁弁29に送られ、電磁づ↑290聞弁時開弁
制御される。そして、上記スデ・ツブ’102〜113
が繰り返し実行される3、ここで?urMti29の開
弁時間が長くなるように制御され1.:場合、油圧タイ
マの曲りニジリング37内の油圧は降下し、タイマビス
1〜ン39が右方向へ移動し℃ローラリング33が反曲
i1方向へ回動され、燃Jil噴釦11i明が遅角側へ
制御される。また、電磁弁29の111弁@間が知くな
るようにtli制御された場合、油圧シリンダ37内の
i[1IITは」−賓8し、タイマピストン39が左方
向へ移動してローラリング33が時il+方向へ回動し
、燃料噴射時!111が進角側へ制御される。
このように、上記ス゛アップ110てバッテリ電圧VB
を検出し、このバッテリ電圧V [3cr=arcづく
補正量+IVF3を算1]1シ、この補正tii d\
/Bを用いてデユーアイ比D1を補正゛づることから、
第10図に示りJ、うに制御信号Cのデユーアイ比]−
〇/丁が一定であっても、電源どなるバッテリ電圧が標
71ルベルから一トがあるいは下降した場合、電磁’J
Tの励Tri ?H流■が同様に変化づることから、゛
lπ磁弁の量弁11.′1間がT1又は12に変化りる
が、このj:う41バツデリ電圧の変動にj;る開弁時
間の誤差を補正りるため、運転条1′1に応じた目標噴
射n、’r +11]を−jH現1Jることができる。
なお、1人間の運転条1′1として、回転数と燃第31
噴川ポンプの°燃斜唱Ω4吊を用いることも可1jシで
あり、この場合、噴射mセン4)15どしては、VE型
分配ポンプぐあればスピルリング位置を、また朝型ポン
プであれば制御ラック(イ装置を検出づ−るボテンシI
メータ等の位置検出器を使用できる。
以上説明したように、本発明の噴0’J tRj il
l’J制御装置(JJ、れば、機関の運転条件に応じη
弾出Jるg(,1躬時期制御用の制御信号のパルスデコ
ーテイ比を噴射時期調節手段の電源となるバッテリ雷1
fにJ、(づき補正するように構成したから、バッテリ
電圧が変動した場合にも、運転条件に応じた目標11C
)躬時期を正確に実現するj:うに制御することがでさ
、機関の出力、燃費、排気ガス成分などにお()る良好
な性能を確保できる。[Intake temperature sensor → Take in intake temperature data TA from No. 9 via the A/D converter 25. Next, step 107 is executed, and steps 102 and 1.
In 03, the rotation speed N IE and the axle height α
This data was stored in the ROM 21 as a parameter (-1 mark Funegawa 11 Valley! Control 11 corresponding to I11: Search for this decoding u-['ll O from the map data of the pulse deco-tee ratio of the bow. .Similarly, step 1
In 08, the water temperature 1-W1, which was circulated in steps 104, 105, and 106, and the intake product "△" were 7 each.
' - from the map data in flOM21 using - evening as a parameter.
Search for (11). Next, execute step 109 and step 107-
Q Subj 108 to the calculated basic duty ratio Do.
The correction amount d W , (1△, (I P ) extracted in step 1 is added, and the basic duplex ratio Do is corrected by the water temperature, intake pressure, and intake air temperature. Next, in step 110, the buffer is Take in the electric power IE V port through the Δ7・'D converter 25, and step 111
Add the battery voltage VB as a parameter! is
d V B (1) From the node map, calculate the correction 1'i% (IVB) as shown in FIG. Roughly add this correction Lid\/B to D1?
+Ii Tl, the final due-eye ratio D2 of the control signal for controlling the timer position corresponding to the target injection timing
is calculated. In step 113, this Ayudhi ratio D
2 is sent to the output capacitors 1 to 1 in the CPU 19, from which the control fB of the pulse duty ratio D2 is output to the drive circuit 27, and the drive output current amplified by the drive circuit 27 is sent to the solenoid valve 29. The valve is controlled to open when the solenoid valve ↑290 is heard. And the above Sude Tsubu '102-113
is executed repeatedly 3, here? The valve opening time of urMti29 is controlled to be longer.1. :, the oil pressure in the bending ring 37 of the hydraulic timer drops, the timer screws 1 to 39 move to the right, the °C roller ring 33 is rotated in the bending i1 direction, and the fuel injection button 11i is retarded. Controlled to the side. In addition, when the solenoid valve 29 is controlled so that the distance between the 111 valve and the valve 111 becomes known, the i[1IIT in the hydraulic cylinder 37 becomes "-8", the timer piston 39 moves to the left, and the roller ring 33 rotates in the il+ direction, and fuel is injected! 111 is controlled to the advance side. In this way, the above-mentioned startup 110 increases the battery voltage VB
Detect this battery voltage V [Calculate 3cr = correction amount by arc + IVF3] 1], this correction tii d\
Since the due-eye ratio D1 is corrected using /B,
As shown in FIG. 10, the duplex ratio of the control signal C]-
Even if the voltage is constant, if the battery voltage drops from the standard 71 lvl, the electromagnetic 'J'
T's encouragement Tri? Since the H flow ■ changes in the same way, the quantity valve 11 of the lπ solenoid valve. '1 changes to T1 or 12, but in order to correct the error in the valve opening time due to the fluctuation of the voltage, the target injection n,' according to the operating condition 1'1 is r +11] can be -jH present 1J. In addition, as the driving condition 1'1 for one person, the rotation speed and fuel number 31
It is also possible to use the 4-way suspension of the Fukawa pump. If the control rack (i.
A position detector such as a meter can be used. As explained above, the jet 0'J tRj il of the present invention
l'J control device (JJ, if η
The pulse decoupling ratio of the control signal for timing control is determined by the battery lightning 1 that serves as the power source for the injection timing adjustment means.
Since the configuration is configured to correct f by J, even if the battery voltage fluctuates, the target 11C according to the operating conditions
) Accurately controlling the timing of failure can ensure good performance in terms of engine output, fuel efficiency, exhaust gas components, etc.
第1図は本発明の基本構成図、第2図ないし第11図は
本発明の一実施例であり、第2図は全体構成図、第3図
は駆動回路周辺の接続図、u; 4図及び第7図はそれ
ぞれ分配型燃料噴射ポンプの1要部…i而図、第5図は
電磁弁の断面図、第6図はパルスデー7−アイ比と進角
度のグラフ、第8図LJ機関回転数と進角度のグラフ、
第9図は噴射時期制御を示すフO−ヂャー1−1第10
図は制御(iH号Cど電磁弁の励磁電流■とイの量弁状
態を承り波形図及びタイミング図、第11図はバラi−
り電圧と補正量のグラフである。
a・・・運転条件検出器、b・・・演粋手段、C・・・
駆動回路、d・・・噴射時期調節手段、e・・・バッチ
リド・・回転数センサ、3・・・吸気圧センサ、5・・
・アクレル間度しンサ、7・・・水611?ンザ、9・
・・吸気温センサ−111・・・燃オ4ン1品しンリ−
113・・・バラjす。
代理人 弁理士 定立 勉
ほか1名
第10図
VB
ハツチ1ノ′皐庁FIG. 1 is a basic configuration diagram of the present invention, FIGS. 2 to 11 are examples of the present invention, FIG. 2 is an overall configuration diagram, and FIG. 3 is a connection diagram around the drive circuit. Figure 7 and Figure 7 are a diagram of one main part of a distribution type fuel injection pump, Figure 5 is a sectional view of a solenoid valve, Figure 6 is a graph of the pulse-day ratio and advance angle, and Figure 8 is LJ. Graph of engine speed and advance angle,
Figure 9 shows fuel oil 1-1 No. 10 showing injection timing control.
The figure shows the waveform diagram and timing diagram of the excitation current of the solenoid valves such as iH and C according to the valve status.
It is a graph of the voltage and the amount of correction. a... Operating condition detector, b... Actual means, C...
Drive circuit, d...Injection timing adjustment means, e...Batch lid...Revolution speed sensor, 3...Intake pressure sensor, 5...
・Acrelma Doshinsa, 7...Water 611? Nza, 9.
・・Intake temperature sensor-111・・4 combustion engine 1 item
113...rose. Agent: Patent attorney Tsutomu Setatetsu and 1 person Figure 10 VB Hatsuchi 1'No' Office
Claims (1)
と、前記運転条件データに基づいて目標燃3゛)1噴射
口ろル」に対応したタイマ位置を決めるための制n++
<tq″;3のパルスデコーテr比を鋒出し、該パル
スデューーアで比をハラ7り電圧に応じて補正する演綽
手段と、該演し)手段から出力され駆動回路を経て増幅
された制御悟りを受()て燃料用銅ポンプの噴射+1¥
!Iを調Di)づる噴射n、1期調力1)手段とを備
えたことを特徴とJる噴射11.’i I!rJ制陣装
置。 2 前記運転条件として機関の回転数とアクレル間度を
用いた!l:ij jll晶求の範囲第1項記載の噴射
時期制御装置。 3 前記運転条!−1として(幾関の冷7.11水(品
、吸入空気密度、及び燃1′81温度を用いた特許請求
の範囲第1項記載の噴射時期制御装置。 4 iiQ記運転条件として機関の回転数と燃利噴用
ポンプの燃料鳴躬吊を用いた特も′1請求の範囲第1項
記載の噴射時期制御装置。[Claims] 1. An operating condition detector that electrically detects the operating conditions of the engine, and a timer position for determining the position of a timer corresponding to the target fuel level based on the operating condition data. Control n++
<tq''; Injection of fuel copper pump +1 yen
! J-injection 11.J-injection 11. 'i I! rJ control device. 2 The engine speed and accelerator spacing were used as the operating conditions! l: ij jll crystallization range The injection timing control device according to item 1. 3. The above operating provisions! -1, the injection timing control device according to claim 1 using cold 7.11 water, intake air density, and combustion temperature.4 ii. The injection timing control device according to claim 1, which uses the rotational speed and the fuel noise of the fuel injection pump.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58068169A JPS59194045A (en) | 1983-04-18 | 1983-04-18 | Injection timing controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58068169A JPS59194045A (en) | 1983-04-18 | 1983-04-18 | Injection timing controller |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59194045A true JPS59194045A (en) | 1984-11-02 |
Family
ID=13365992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58068169A Pending JPS59194045A (en) | 1983-04-18 | 1983-04-18 | Injection timing controller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59194045A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997043532A1 (en) * | 1996-05-14 | 1997-11-20 | Robert Bosch Gmbh | Fuel-metering system for a spark-ignition internal combustion engine |
-
1983
- 1983-04-18 JP JP58068169A patent/JPS59194045A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997043532A1 (en) * | 1996-05-14 | 1997-11-20 | Robert Bosch Gmbh | Fuel-metering system for a spark-ignition internal combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6170475B1 (en) | Method and system for determining cylinder air charge for future engine events | |
RU2230931C2 (en) | Internal combustion engine knocking elimination method | |
JPS6211173B2 (en) | ||
JPS597017B2 (en) | Electronically controlled fuel injection internal combustion engine | |
US5241857A (en) | Method for correcting the measuring errors of a hot-film air-mass meter | |
US5615657A (en) | Method and apparatus for estimating intake air pressure and method and apparatus for controlling fuel supply for an internal combustion engine | |
JP4082744B2 (en) | Operating system for internal combustion engines such as automobiles | |
JP4174821B2 (en) | Vehicle control device | |
US4995366A (en) | Method for controlling air-fuel ratio for use in internal combustion engine and apparatus for controlling the same | |
GB2382668A (en) | Fuel supply control means for an internal combustion engine | |
US20050056260A1 (en) | Method and apparatus for predicting a fuel injector tip temperature | |
JPS59194045A (en) | Injection timing controller | |
JPS60216045A (en) | Intake-air amount controller for internal-combustion engine | |
US4972340A (en) | Engine control system | |
JPS6125961A (en) | Control of negative-pressure adjusting valve for exhaust gas recirculation control | |
JP3873608B2 (en) | Internal combustion engine control device | |
JPH0737777B2 (en) | Fuel control device | |
JP2709061B2 (en) | Engine idle speed control device | |
JPH10318047A (en) | Controller for diesel engine | |
JP2764515B2 (en) | Fuel supply device for internal combustion engine | |
JP3627462B2 (en) | Control device for internal combustion engine | |
JPS59115445A (en) | Electronic control for linear solenoid type idle-speed control valve of engine equipped with supercharger | |
JP2567320Y2 (en) | Fuel supply device for internal combustion engine | |
JPH0230946A (en) | Duty solenoid control device | |
JP2003083140A (en) | Fuel injection device |