[go: up one dir, main page]

JPS59193080A - Light emitting semiconductor device - Google Patents

Light emitting semiconductor device

Info

Publication number
JPS59193080A
JPS59193080A JP58065453A JP6545383A JPS59193080A JP S59193080 A JPS59193080 A JP S59193080A JP 58065453 A JP58065453 A JP 58065453A JP 6545383 A JP6545383 A JP 6545383A JP S59193080 A JPS59193080 A JP S59193080A
Authority
JP
Japan
Prior art keywords
stem
semiconductor laser
fixed
cooling device
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58065453A
Other languages
Japanese (ja)
Inventor
Masaaki Sawai
沢井 雅明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58065453A priority Critical patent/JPS59193080A/en
Publication of JPS59193080A publication Critical patent/JPS59193080A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02218Material of the housings; Filling of the housings
    • H01S5/0222Gas-filled housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To enable to regulate the position of installing a semiconductor laser element on the stem with a high accuracy by a method wherein the titled device is constructed in such a manner that a light emitting semiconductor element is arranged on the main surface side of the stem and a thermal cooling device is fixed to the back side of the stem. CONSTITUTION:A heat block 5 is fixed on the pedestal part 16 of the stem 2 via solder 19. Besides, the semiconductor laser element 7 is fixed to the block 5 via sub mount 5a. On the other hand, the thermoelectric cooling device 4 is fixed in the recess of the back surface of the stem 2 via resin material 20. Further, a cap 13 having a transparent window 12 is hermetically fixed to the main surface of the stem 2 and packages each elememt. Since the interposal of the device of a dimensional accuracy such as the thermo-electric cooling device is not allowed in such a structure, the height of the element 7 to the stem 2 becomes constant. Therefore, the write accuracy stabilizes.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は発光半導体装置、特に半導体レーザー装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a light emitting semiconductor device, and particularly to a semiconductor laser device.

〔背月技術〕[Setsuki technology]

周知のように、近年半導体レーザー装置がデジタル・オ
ーディオ・ディスクのピックアップ用の光源、あるいは
光方式のビデオ・ディスク・プレーヤおよび光メモリ−
・ディスクの光源として使用さね始めている(1981
年9月14日付日経エレクトロニクス:138〜152
頁[オーディオ・ディスクの要求に応える半導体レーザ
ー−1)。
As is well known, in recent years semiconductor laser devices have been used as light sources for digital audio disc pickups, optical video disc players, and optical memories.
・Started to use it as a light source for discs (1981)
Nikkei Electronics, September 14th: 138-152
Page [Semiconductor laser that meets the demands of audio discs-1).

しかし、半導体レーザー装置前はこわらの光湧としては
末だ充分な出力が得られているとけいえない。特にプリ
ンタやディスクの@き込み用は大出力が必要である。こ
のため、半導体レーザー素子の出力限界近傍で使用され
ることが多く、特性の安定化が難しい。
However, in front of the semiconductor laser device, it cannot be said that sufficient output is being obtained for a small light source. In particular, large output is required for @ writing to printers and disks. For this reason, semiconductor laser devices are often used near their output limits, making it difficult to stabilize their characteristics.

そこで、本出願人け、第1図にその要部を示す構造の半
導体レーザー装置全開発した。すなわち、この装置は8
本のり一ド1を絶縁的に貫通固定したステム2の主面に
レジン材3を介してペルチェ素子から々る熱電冷却装置
4を固定しfc構造となっていて、熱電冷却装置4の発
熱面をステムに固定している。また、熱電冷却装置4の
上面である吸熱面上に中央部に突出部を有するヒートブ
ロック5が同様にレジン材6を介して固定されている。
Therefore, the present applicant has developed an entire semiconductor laser device having the structure whose main parts are shown in FIG. That is, this device has 8
A thermoelectric cooling device 4 from a Peltier element is fixed to the main surface of a stem 2 through which a glue board 1 is insulatively fixed through a resin material 3 to form an FC structure, and the heat generating surface of the thermoelectric cooling device 4 is formed. is fixed to the stem. Further, a heat block 5 having a protrusion in the center is similarly fixed on the heat absorption surface, which is the upper surface of the thermoelectric cooling device 4, via a resin material 6.

また、このヒートプロ、2り5の突出部の垂直壁に半導
体レーザー素子7がサブマウン)5ai介して固定され
ている。この半導体レーザー素子7は上下端からレーザ
ー光8を発光し、上方のレーザ−光は書込み用に用いら
ねる。また、下方に向かうレーザー光8けヒートプロ、
り5の傾的面に固定さh*受光素子9で光強度が検出さ
れる。また、ヒートプロ、り5には温度検出素子(サー
ミスタ)10が挿入五に挿入されて半導体レーザー素子
7の温度?検出するようになっている。また、各素子の
官給と各リード1内端は図示はしないがワイヤ?介して
接続されている。さらに、ステム2の主面側には透明板
11を取り付けfc透明窓12を有するキャップ13が
各素子、リード等金被うように気密的に固定されている
。なお、この装置はヒートシンク14に取り付けられて
使用される。
Further, a semiconductor laser element 7 is fixed to the vertical wall of the protrusion of the heat processor 25 via a submount 5ai. This semiconductor laser element 7 emits laser light 8 from its upper and lower ends, and the upper laser light is not used for writing. In addition, there is a heat pro with 8 laser beams directed downward.
The light intensity is detected by the h* light receiving element 9 fixed on the inclined surface of the mirror 5. In addition, a temperature detection element (thermistor) 10 is inserted into the heat pro 5 and measures the temperature of the semiconductor laser element 7. It is designed to be detected. Also, the government supply of each element and the inner end of each lead 1 are not shown, but are they wires? connected via. Further, a transparent plate 11 is attached to the main surface of the stem 2, and a cap 13 having an fc transparent window 12 is hermetically fixed to cover the metal elements, leads, etc. Note that this device is used by being attached to the heat sink 14.

このような装置はヒートプロ、ツク5の温度を検出する
ことによって間接的に半導体レーザー素子7の温度を検
出し、熱電冷却装置4による冷却制御1金行ない、半導
体レーザー素子7の高出力化を図っている。
This type of device indirectly detects the temperature of the semiconductor laser element 7 by detecting the temperature of the heat processor 5, performs cooling control using the thermoelectric cooler 4, and increases the output of the semiconductor laser element 7. ing.

しかし、このような技術は下記のような問題点が新に生
じるということが本発明渚によってあきらかにさね女。
However, it is clear from the inventor of this invention that such a technique causes new problems as described below.

(1)、熱雷冷却装置4il−i吸熱面と発熱面間の寸
法精度が粗い。′4*X熱箪冷却装置4けレジン材3゜
6を介してステム2とヒートン0ツク5との間に挿嵌さ
ねる。この鈷呆、基壁面となるステム2の主面あるいは
裏面からのレーザー発振部高さが装簡毎に変化してしま
う。まに1熱嘗冷却装置4けBi、Tθ、sbのよう力
都金属からなる化合物半導体で杉反されている。このた
め、熱霜玲却1装置4?動作さぜると発熱して伸長ツー
る。こねらの緑味、ディスク面き込み時にディスク面と
レーザー発光部との間隔が変化して、書き込み時のスポ
ットデの径が変化し、¥Jき込み精度が但1し7てしま
う。
(1) The thermal lightning cooling device 4il-i has poor dimensional accuracy between the heat absorption surface and the heat generation surface. Insert between the stem 2 and the heat exchanger 5 through the resin material 3.6. Due to this gap, the height of the laser oscillating part from the main surface or back surface of the stem 2, which is the base wall surface, changes depending on the mounting. Each heat cooling device is made of compound semiconductors made of metals such as Bi, Tθ, and SB. For this reason, heat frost removal 1 device 4? When you move it, it generates heat and stretches. Due to the green color of the dough, the distance between the disc surface and the laser emitting part changes when writing on the disc surface, and the diameter of the spot during writing changes, resulting in a 1-7 drop in the writing accuracy.

(21、キャップ13けステム2にハーメチックシール
によって固定されるが、この際、ステム剪も加熱さね、
熱電冷却装置4とステム2およびヒートブロック5全接
続するレジン拐36からガスが発生し、牛嗜体し−ザー
装簡゛の信頼度低下の硬固となる危険性かある。
(21. The 13 caps are fixed to the stem 2 with a hermetic seal, but at this time, the stem shears are also heated.
Gas is generated from the resin tube 36 that connects the thermoelectric cooling device 4, the stem 2, and the heat block 5, and there is a risk that the cows will be fed up and the reliability of the laser installation will be reduced.

(3)、半導体レーザー索子7は、Jλ」のセラミ、り
板間に複数の化合物半導体素子全配設した熱抵抗の大き
な熱電冷却装置4に直接に接して組み立てらhる。ゆえ
に組み立て完了後に半導体レーザー素子の寿命試験(裏
温中でレーザー素子全一定の光出力を保つように駆動し
、動作電流の時間変化を調べるもの。以下スクリーニン
グと称″j)を行なおうとしても、熱雷冷却装置の熱抵
抗の影響が大きく、半導体レーザー素子に苅する正確な
評価データーが得られない。そわゆえ素子組み立て後の
特性検査ができないという欠点がある。
(3) The semiconductor laser cable 7 is assembled in direct contact with the thermoelectric cooling device 4 having a large thermal resistance, in which a plurality of compound semiconductor elements are all arranged between Jλ ceramic plates. Therefore, after completing the assembly, I decided to perform a lifespan test on the semiconductor laser device (a test in which the laser device is driven to maintain a constant optical output in a sub-temperature environment and the change in operating current is examined over time; hereinafter referred to as screening). However, the influence of the thermal resistance of the thermal lightning cooling device is large, making it difficult to obtain accurate evaluation data for semiconductor laser devices.Therefore, there is a drawback that it is not possible to inspect the characteristics of the device after it is assembled.

〔発明の目的〕[Purpose of the invention]

本発明の目的はステム上の半導体レーザー素子の位置が
動作時、変化し難い発光半導体装置を提供することにあ
る。
An object of the present invention is to provide a light emitting semiconductor device in which the position of a semiconductor laser element on a stem does not easily change during operation.

また、本発明の他の目的はステム上の半導体レーザー素
子の取り伺位置を高い精度で規定することか可能な発光
半導体装置を提供することにある。
Another object of the present invention is to provide a light emitting semiconductor device in which the pick-up position of a semiconductor laser element on a stem can be determined with high precision.

ま女、本発明の他の目的は半導体レーザー素子の特性劣
化が起@難す信頼度の高い発光半導体装置を提供するこ
とにある。
Another object of the present invention is to provide a highly reliable light emitting semiconductor device in which deterioration of the characteristics of a semiconductor laser element is difficult to occur.

さらに、本発明の他の目的は素子組立て後であっても、
半導体レーザー素子のスクリーニングが可能力発光半導
体装置を提供することにある。
Furthermore, another object of the present invention is to
An object of the present invention is to provide a light-emitting semiconductor device that is capable of screening semiconductor laser devices.

本発明の前記ならびにそのほかの目的と新規な特徴は、
本明細書の記述および添付図面からあきらかになるであ
ろう。
The above and other objects and novel features of the present invention include:
It will become clear from the description of this specification and the accompanying drawings.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち代表的ガものの概要
を簡単に飲明丁わば、]記のとおりである。
A brief summary of representative inventions disclosed in this application is as follows.

すなわち、本発明はステムのキャップによってパッケー
ジングされる主面側に半導体レーサー素子およびこの半
導体レーザー素子から発光さ冶るレーザー光を受光する
受光素子ならびに半導体レーザー素子の温度を検出する
廿−ミスタを配設し、ステムの主面の裏面側に寸法精度
が粗くかつ創作時伸長する熱電冷却装置をレジン材で固
定した構造とすることによって、半導体レーザー素子の
発光高さを高精度に組み立てるとともに、使用時には熱
電冷却装置の変位によって前記発光部高さが変化しない
ようにし、かつ組立加熱時にけステムのパラゲージング
外にレジン材全介して熱電冷却素子全固定し7であるの
で、レジン材から放出されるガスがパッケージ内にこも
ることはなく、半導体レーザー素子の劣化が防止できる
。さらに、スクリーニング時にけ半4体レーザー素子で
発生しに熱は速かにステムからヒートシンクに伝達する
ため、当今導体レーザー素子の特性の良否検出が行なえ
る。
That is, in the present invention, a semiconductor laser element, a light receiving element that receives the laser light emitted from the semiconductor laser element, and a resistor that detects the temperature of the semiconductor laser element are provided on the main surface side packaged by the cap of the stem. By creating a structure in which the thermoelectric cooling device, which has rough dimensional accuracy and expands during creation, is fixed with resin material on the back side of the main surface of the stem, the light emitting height of the semiconductor laser element can be assembled with high precision. During use, the height of the light emitting part is not changed due to displacement of the thermoelectric cooling device, and during assembly and heating, the thermoelectric cooling element is fully fixed through the resin material outside the paragassing of the stem. This prevents the gas from being trapped inside the package, preventing deterioration of the semiconductor laser element. Furthermore, since the heat generated in the half-quartet laser element during screening is quickly transferred from the stem to the heat sink, it is now possible to detect the quality of the conductor laser element.

〔実施例1〕 第2図は本発明の一実施例による発光半導体装置(半導
体レーザー装置)の要部を示す断面図、第3図は同じく
底面図、第4図は半導体レーザー装置の光出力の温度依
存性を示すグラフである。
[Example 1] Fig. 2 is a sectional view showing the main parts of a light emitting semiconductor device (semiconductor laser device) according to an embodiment of the present invention, Fig. 3 is a bottom view of the same, and Fig. 4 is an optical output of the semiconductor laser device. 2 is a graph showing the temperature dependence of .

この半導体レーザー装置は熱伝導性の艮好な金属、たと
えばCuからなる円板状のステA2に8本のリード1ケ
第3図に示すようにガラスのよう彦絶縁体15を介して
貫通固定している。ステム2けあらかじめプレスによっ
て中央部が突出するように絞り込まね、ステム2の主面
側に台座部16全裏面側に窪み17ケ有している。件か
、ステム2は2本のリード1が取り付けらハる部分も浅
く絞り込まねてワイヤ張り空間18全ステム裏面に有し
、ている。このワイヤ張り空間18は前記窪み17と連
通している。
This semiconductor laser device is fixed to a disc-shaped stem A2 made of a thermally conductive metal such as Cu through a glass insulator 15 as shown in FIG. are doing. The stem 2 is pre-squeezed by pressing so that the central part protrudes, and 17 depressions are formed on the main surface side of the stem 2 and on the entire back surface side of the pedestal section 16. In particular, the stem 2 has a wire tension space 18 on the entire back side of the stem, with the part where the two leads 1 are attached shallowly. This wire tension space 18 communicates with the recess 17.

一方、ステム2の台座部16上には中央部に突出部金有
するヒートプロ1.り5が調料(たとえばPb−8uの
低融点半田’) ] 9 i・介して固定さねて因る。
On the other hand, on the pedestal part 16 of the stem 2, there is a heat pro 1. The material 5 is fixed through a preparation (for example, Pb-8u low melting point solder).

壕に1このヒートプロ、り5の突出部の垂直壁には半導
体レーザー素子7が上下端からし・−ザー光8を発光す
る姿勢でザブマウント5 a 1.(介して固定されて
いる。′!l:女、ヒートプロ2.り5の翰臼面には受
光素子9が固定され、下方に向かうレーザー光8を受光
し、レーザー光強度全検出するようになっている。受光
素子9は傾卵面に取り付けられることから、受光素子面
で反射したレーザー光は後述する透明窓から装色゛外部
に進行しな論ようになっている。この緑味、透明窓から
発光さhるレーザー光8のファーフィールドパターンは
乱ねなくなる。また、ヒートブロック5には挿入子[が
設けらね、この挿入孔には温度検出素子10である−+
1−  ミスタが挿嵌され、ヒートプロ、ツク5を介し
2て半導体レーザー素子7の温度を検出するようになっ
ている。し女がって、挿入孔はできるだけ半導体レーザ
ー素子7Vc近接した位置に設けらねることが望しい。
1. A heat processor is mounted in the trench, and a semiconductor laser element 7 is mounted on the vertical wall of the protruding part of the groove 5 in a position that emits laser light 8 from the upper and lower ends. (Fixed through.'!l: Female, Heat Pro 2. A light receiving element 9 is fixed to the cylindrical surface of the ri 5, and it receives the laser beam 8 directed downward and detects the entire laser beam intensity. Since the light-receiving element 9 is mounted on an oblique surface, the laser light reflected from the light-receiving element surface does not proceed to the outside of the coloring through the transparent window, which will be described later. The far field pattern of the laser beam 8 emitted from the transparent window is not disturbed.In addition, the heat block 5 is not provided with an inserter, and this insertion hole is provided with a temperature detecting element 10.
1- A mister is inserted and the temperature of the semiconductor laser element 7 is detected through the heat pro and the hook 5. For reasons of convenience, it is desirable that the insertion hole be provided as close to the semiconductor laser element 7Vc as possible.

ilc、前記半導体レーサー素子7.受光素子9.サー
ミスタ10の各二電極は特に図示はし、ないがワイヤに
よって前記ワイヤ張り空間18を通る2本のリードリ外
のIJ−ド1の上端に%測的に接続されている。
ilc, the semiconductor laser device 7. Light receiving element 9. Each of the two electrodes of the thermistor 10 is connected by a wire (not specifically shown) to the upper end of the IJ-domain 1 outside the two reeds passing through the wire tension space 18.

他方、ステム2の裏面の窪み17には熱電冷却装置4が
レジン材20を介して固定されている。
On the other hand, a thermoelectric cooling device 4 is fixed to the recess 17 on the back surface of the stem 2 via a resin material 20.

接合利20はレジンあるいは低融点半田等音用いる。熱
電冷却装置4はその吸熱面がステム2の裏面に勾面し、
発熱面が実装時の基板となるヒートシンク14に対面(
′!&触対面対面′jる。甘た、熱雷冷却装置4の2市
極から延在するワイヤ21はワイヤ張り空間18を延在
して2本のり一ド1にそれぞれ接続さねている。
For the joint 20, resin or low melting point solder is used. The thermoelectric cooling device 4 has an endothermic surface sloped to the back surface of the stem 2,
The heat generating surface faces the heat sink 14 which will be the board during mounting (
′! & tactile surface. Furthermore, the wires 21 extending from the two poles of the thermal lightning cooling device 4 extend through the wire tension space 18 and are connected to the two wires 1, respectively.

さらに、ステム2の主面にはガラスのような透明板11
’(i−取り付けて透明窓I2’(+−形Hシ1ζキャ
9.ブ13がリングウェルドによって気密的に固定さね
各素子等全パッケージングしている。
Furthermore, a transparent plate 11 such as glass is provided on the main surface of the stem 2.
(i- Attach the transparent window I2' (+- type H-shape 1ζ cab 9. The tab 13 is airtightly fixed by a ring weld, and all the elements, etc., are packaged.

このような半導体レーザー装置は半導体レーザー素子7
からレーザー光8全たとえばメモリディスクの書き込み
用の光源として使用される。この際、レーザー光8は受
光素子9によってモニターされ、光強度が一定となるよ
うに半導体レーザー素子7は制御される。才た、一方で
は、熱電冷却装置4が作動してヒートブロック5の冷却
を図り半導体レーザー素子7の温度の2一定住を一図る
。熱電冷却装置4の制御はサーミスタ10による温度検
出情報によって成でれる。レーザー光8の光強度(光出
力 Po )は第4図のグラフに示すように、温度が低
い方が光出力が太きい。そこで、熱電冷却装置4によっ
て半導体レーザー素+7を25℃に保ち、高出力のレー
ザー光を発光し、メモリディスクの曹き込み全行なう。
Such a semiconductor laser device has a semiconductor laser element 7.
All of the laser light 8 is used as a light source for writing on a memory disk, for example. At this time, the laser beam 8 is monitored by the light receiving element 9, and the semiconductor laser element 7 is controlled so that the light intensity is constant. On the other hand, the thermoelectric cooling device 4 operates to cool the heat block 5 and to maintain the temperature of the semiconductor laser element 7 at a constant temperature. Control of the thermoelectric cooling device 4 is achieved by temperature detection information from a thermistor 10. As for the light intensity (light output Po) of the laser beam 8, as shown in the graph of FIG. 4, the lower the temperature, the greater the light output. Therefore, the semiconductor laser element +7 is kept at 25° C. by the thermoelectric cooling device 4, and a high-output laser beam is emitted to completely cool the memory disk.

〔効果〕〔effect〕

(1)、熱電冷却装置はステムの裏面に固定され、半導
体レーザー素子はステムの主面上に固定したヒートブロ
ックにサブマウント?介した構造となっていて、熱雷冷
却装置のような寸法精度が低いもの全介在させなりこと
から、半導体レーザー素子のステムに附する高さが一定
となる。したがって、ディスタ面でのレーザー光のスポ
ット径が常に一定と々す、書き込み精度が安定する。
(1) Is the thermoelectric cooling device fixed to the back of the stem, and the semiconductor laser element sub-mounted to the heat block fixed on the main surface of the stem? Since the structure is such that a component with low dimensional accuracy such as a thermal lightning cooling device is completely interposed, the height attached to the stem of the semiconductor laser element is constant. Therefore, the spot diameter of the laser beam on the disk surface is always constant, and writing accuracy is stabilized.

(2)、前記(1)で記載し1cように、動作時伸長す
る熱雷冷却装置はステムと半導体レーザー素子との間に
は存在し2ない。このため、熱雷冷却装置が動作し、レ
ーザー光の光軸方向に数μm変位しても、ステム外にあ
ることと、ステムと熱雷冷却装置との間の接合材がバッ
ファとして作用するため、ステムに対する発光部高さが
変化しない。したがって、前記(1)の効果と相俟って
レーザー光のスポット径が一定となるため、ディスクの
曹き込み精度は安定する。
(2) As described in (1) above and 1c, a thermal lightning cooling device that expands during operation is not present between the stem and the semiconductor laser element. For this reason, even if the thermal lightning cooling device operates and is displaced by several μm in the optical axis direction of the laser beam, it is outside the stem and the bonding material between the stem and the thermal lightning cooling device acts as a buffer. , the height of the light emitting part relative to the stem does not change. Therefore, in combination with the effect of (1) above, the spot diameter of the laser beam becomes constant, and the accuracy of the disk erosion is stabilized.

(3)、キャップのハーメチンクシールの際の熱によっ
て熱電冷却装置固定するレジン材からガスが出ても、パ
ッケージ外であることから、半導体し一ザー素子にこの
ガスが触ねることはない。し女妙Sって、半導体レーザ
ー装置の信頼度が向上する。
(3) Even if gas is emitted from the resin material that fixes the thermoelectric cooler due to the heat generated during the hermetically sealing of the cap, this gas will not come into contact with the semiconductor element because it is outside the package. . Shimetae S improves the reliability of semiconductor laser devices.

(4)、この半導体レーザー装置は1附のセラミック板
間に複数の化合物手導体素子?配酸しfC熱抵抗の大き
な熱雷冷却装置を取り付ける前にスクリーニングを行な
うことができる。i*、2%冷却装置を取り付けた状態
でも伝熱経路はサブフウント。
(4) Does this semiconductor laser device include multiple compound hand conductor elements between one ceramic plate? Screening can be performed before installing a thermal lightning cooling device with large fC thermal resistance. i*, 2% Even with the cooling device installed, the heat transfer path is sub-mounted.

ヒートブロック、ステムとなり第1図の構造のものと比
較して熱抵抗は小さくなる。この結果、スクリーニング
も可能となる。
It becomes a heat block and a stem, and the thermal resistance is smaller than that of the structure shown in FIG. As a result, screening becomes possible.

(5)、熱雷冷却装置はステムの外にあるため、熱雷冷
却装置が故障した場合には容易に交換できる便利さもあ
る。
(5) Since the thermal lightning cooling device is located outside the stem, it is convenient because it can be easily replaced if the thermal lightning cooling device breaks down.

〔実施例2〕 第5図は本発明の他の実施例による発光半導体装置(半
導体レーザー装置)奮示す要部断面図である。
[Embodiment 2] FIG. 5 is a sectional view of a main part of a light emitting semiconductor device (semiconductor laser device) according to another embodiment of the present invention.

この装置はステム2の裏面には最初から熱雷冷却装置を
取り付けておかない半導体レーザー装置であって、ステ
ム2は前記実施例と同様に主面に台座部16.裏面に窪
み17を有し、台座部16上には半導体レーザー素子7
.受光素子9.サイリスタ10を取り付けたヒートブロ
ック5を固定しである。捷た、ステム1に固定したり一
部1の上端はワイヤ(図示せず)を介して前記各素子7
゜9.10の電極とN急曲に接続されてbる。ま女、こ
わけ透明窓12を有するキャップ13でパッケージ外ね
ている。なお、ステム2の一部は窪み17に連通ずるワ
イヤ引き出し空間22が設けられ、窪み17に配設する
熱雷冷却装置の2本のワイヤの引き出し空間となってき
ている。なお、他の各部は前記実施例と同様であること
から説明全省略する。また、符号1名称はそのまま使用
する。
This device is a semiconductor laser device in which a thermal lightning cooling device is not attached to the back surface of the stem 2 from the beginning, and the stem 2 has a pedestal portion 16 on the main surface as in the previous embodiment. It has a recess 17 on the back surface, and a semiconductor laser element 7 is placed on the pedestal part 16.
.. Light receiving element 9. The heat block 5 to which the thyristor 10 is attached is fixed. The upper end of the twisted part 1 is fixed to the stem 1 and connected to each element 7 through a wire (not shown).
It is connected to the electrode of 9.10° and the N sharp bend. The package is removed with a cap 13 having a transparent window 12. A part of the stem 2 is provided with a wire drawing space 22 that communicates with the hollow 17, and serves as a drawing space for two wires of a thermal lightning cooling device disposed in the hollow 17. It should be noted that the other parts are the same as those in the previous embodiment, so a complete explanation will be omitted. Also, the name 1 will be used as is.

このような装置は、最初にヒートシンク14上に熱雷冷
却装置4を発熱面がヒートシンク14に接触するように
載置または固定する。その後、この上に前記半導体レー
ザー装置を熱電、冷却装置4が窪み17に入るように重
ねる。この際、熱伝導度の艮好なシリコングリースある
いはレジン材等の接着剤をステム2と熱雷冷却装置4の
間に介在させる。また、熱雷冷却装置4の端子となるワ
イヤ21はワイヤ引き出し空間22から外に出し、所定
部に接続する。
In such a device, first, the thermal lightning cooling device 4 is placed or fixed on the heat sink 14 so that the heat generating surface is in contact with the heat sink 14. Thereafter, the semiconductor laser device is stacked on top of this so that the thermoelectric and cooling device 4 enters the recess 17. At this time, an adhesive such as silicone grease or resin material having excellent thermal conductivity is interposed between the stem 2 and the thermal lightning cooling device 4. Further, the wire 21 serving as the terminal of the thermal lightning cooling device 4 is taken out from the wire drawing space 22 and connected to a predetermined part.

〔効果〕〔effect〕

この実施例は前記実施例1と同様な効果金奏する。 This embodiment achieves the same effects as the first embodiment.

〔実施例3〕 第6図はさらに他の実施例による発光半導体装置(光通
信用半導体装#)全示す要部断面図、第7図は同じく光
通信システムに組み込んだ例を示す模式図である。
[Embodiment 3] FIG. 6 is a cross-sectional view of the main parts of a light-emitting semiconductor device (semiconductor device for optical communication #) according to another embodiment, and FIG. 7 is a schematic diagram showing an example incorporated into an optical communication system. be.

光通傷用半導体装部は、第2図に示した実施例11の構
造にあって、キャップ13の構造のみが異なる。し女が
って、同一構造と々る他の各部の説明は省略する。
The semiconductor device for optical damage has the structure of Embodiment 11 shown in FIG. 2, except for the structure of the cap 13. For the sake of brevity, explanations of other parts having the same structure will be omitted.

キャップ13はその中央に上部が大径の段付孔23を有
していて、その大径部に管状のセラミ、。
The cap 13 has a stepped hole 23 with a large diameter in the upper part at the center thereof, and a tubular ceramic in the large diameter part.

ジスリープ24′!]l−挿嵌している。また、このセ
ラミ”Iジスリーブ24には光ファイバー25が挿入さ
ね、内端を半導体レーザー素子70発光部(共振器端)
に互着せている。また、段付孔23の小径部には鑞材2
6が埋め込まわ、光フアイバー25ヲ気密的にキャップ
13に固定している。さらに、光ファイバー25の外端
はキヤツジ13から突出するセラミックスリーブ24の
外端と同一面となっている。
Jisleep 24'! ]l-Inserted. An optical fiber 25 is inserted into this ceramic sleeve 24, and the inner end is connected to the light emitting part (resonator end) of the semiconductor laser element 70.
They are wearing each other. In addition, a solder material 2 is provided in the small diameter portion of the stepped hole 23.
6 is embedded, and the optical fiber 25 is hermetically fixed to the cap 13. Further, the outer end of the optical fiber 25 is flush with the outer end of the ceramic sleeve 24 protruding from the carriage 13.

このような光通信用半導体装置27は第7図に示すよう
に光通信システムに組み込まれる。すなわち、装置27
は光通信装置28の基板29上に配設される。基板29
には半導体レーザー素子を駆動制御するレーザー駆動回
路30.熱電冷却装置4全制御して半導体レーザー素子
を常に所望の温度で動作させるベルチェ制御回路31が
組み込まれている。また、サイリスタによる温度モニタ
情報32はベルチェ制御回路31に、光強度モニタ情報
33はレーザー駆動回路30にそれぞれ伝達される。
Such an optical communication semiconductor device 27 is incorporated into an optical communication system as shown in FIG. That is, the device 27
is arranged on the substrate 29 of the optical communication device 28. Board 29
includes a laser drive circuit 30 for driving and controlling the semiconductor laser element. A Bertier control circuit 31 is incorporated which controls the entire thermoelectric cooling device 4 to always operate the semiconductor laser element at a desired temperature. Further, temperature monitor information 32 by the thyristor is transmitted to the Beltier control circuit 31, and light intensity monitor information 33 is transmitted to the laser drive circuit 30, respectively.

このような光通信装置28は変調器34ケ介してアナロ
グ信号35をデジタル信号36として受は入れ、光ファ
イバー25を伝送媒体として受信機37に光信号を送る
。受信機37ではシリコンフォトダイオードのような光
重変換機器38で光信号全電気信号に変換しかつ増幅回
路39で増幅する。その後、デジタル信号36を復調器
40でアナログ信号として通信情報全骨けとる。
Such an optical communication device 28 receives an analog signal 35 as a digital signal 36 via a modulator 34, and sends the optical signal to a receiver 37 using the optical fiber 25 as a transmission medium. In the receiver 37, an optical converter 38 such as a silicon photodiode converts the optical signal into an all-electric signal, and the optical signal is amplified by an amplifier circuit 39. Thereafter, a demodulator 40 converts the digital signal 36 into an analog signal and removes all communication information.

〔効果〕〔effect〕

この実施し1)は罰記実施例1と同様方効掬會奏する2
、そシ1.て、光通信システムに適用丁tは、光フアイ
バー内端とレーザー発光部との間隔が常に一定となり、
レーザー光発振時にもレーザー発光位置が変化しない。
This implementation 1) has the same effect as punishment example 12.
,Soshi1. Therefore, when applied to optical communication systems, the distance between the inner end of the optical fiber and the laser emitting part is always constant,
The laser emission position does not change even during laser beam oscillation.

この女め、レーザー光スボ2トはその口径を変えること
なく光ファイバーに接し、光ファイバーにおける光取り
込み効毘は高くかつ安定する。この結果、安定した光通
信が行なえるようになる。
This woman, the laser beam socket contacts the optical fiber without changing its diameter, and the light absorption efficiency in the optical fiber is high and stable. As a result, stable optical communication can be performed.

旬上本発明者によってなさノ1女発明を実施しlにもと
づき具体的に説明したが、本発明は上記実施例に限定さ
れるものではなく、その要旨を逸鋭し々い範囲で穏々変
更可能であることはいう甘でもない。
Although the invention was recently carried out by the inventor of the present invention and was explained in detail based on Being able to change it is not an easy thing to do.

〔利用分封) 以上の説明では主として本発明者によってなされに発明
全その背雰と々っ女利用分野であるビデオディスクおよ
び光通信技術に適用した場合について説明L7kが、そ
わに限定されるものではなく、たとえば、レーザービー
ムプリンター技術、または、少なくとも仲の分野におけ
る発光技術にも適用可能である。
[Usage division] The above explanation mainly describes the entire background of the invention made by the present inventor and the case where it is applied to video discs and optical communication technology, which are the field of application, but is not limited to that. It is also applicable, for example, to laser beam printer technology, or at least to light emitting technology in the intermediate field.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本出願人の開発による半導体レーザー装置の要
部を示す断面図、 第2図は本発明の一実施例による半導体レーザー装置の
要部會示す断面図、 第3図は同じく底面図、 第4図は半導体レーザー装置の光出力の温度依存性を示
すグラフ、 第5図は本発明の他の実施例による半導体レーザー製筒
の要部断面図、 第6図はさらに他の実施例による半導体レーザー装置の
断面図、 第7図は同じく光通信システムに組み込んだ例を示す模
式図である。 1・・・リード、2・・ステム、3 、レジン利、4・
・・熱電冷却装置、5・−ヒートプロ1.り、5 a1
rブマウント、6・・・レジン材、7・半導体し−づ一
素子、8・・・レーサー光、9 受光;+″イ、】0・
・温度検出素子(サーミスタ)、11・rfb 明4f
z、12・・透明窓、13・キャップ、14 こ−トシ
ンク、15・・・絶縁体、1(i・・台座剖・、17−
・窪み、18・・・ワイヤ張り空間、19 鑵拐、20
 レジ゛/(4,21・・ワイヤ、22・・ワイヤ引き
fil L−空nL  23・・・段付孔、24・セラ
ミ、クヌリーブ、25 光ファイバー、26 調料、2
7・光通イ言用米勇イ4に装置、28・−・光通信装置
、29・基椋、30 ・レーサー駆動回路、31・・・
ペルチェ側位1回路、32・・・温度モニタ情報、33
 光強度モニタ情報、34・・変調器、35・・・アナ
ログ信号、36・・・デジタル信号、37 ・受傷様、
3B・−・光宛変換榛器、39・・増幅回路、40・・
φ調器。 代理人 弁理士 高 払j 明 夫fパ。 第  1  図 第  2 図 第  3  図 21   /7 第  4  図 ン−′菫刀譬−IF(九4ン 第  5  図 第  6  図 第  7 図 S 市
FIG. 1 is a sectional view showing the main parts of a semiconductor laser device developed by the applicant, FIG. 2 is a sectional view showing the main parts of a semiconductor laser device according to an embodiment of the present invention, and FIG. 3 is a bottom view. , FIG. 4 is a graph showing the temperature dependence of the optical output of a semiconductor laser device, FIG. 5 is a cross-sectional view of a main part of a semiconductor laser tube according to another embodiment of the present invention, and FIG. 6 is a still another embodiment. FIG. 7 is a schematic diagram showing an example of incorporating the semiconductor laser device into an optical communication system. 1... Lead, 2... Stem, 3, Resin interest, 4...
・・Thermoelectric cooling device, 5・-Heat Pro 1. 5 a1
R mount, 6... Resin material, 7. Semiconductor element, 8... Racer light, 9 Light reception; +''a, ]0.
・Temperature detection element (thermistor), 11・rfb light 4f
z, 12... Transparent window, 13... Cap, 14 Coat sink, 15... Insulator, 1 (i... Pedestal anatomy..., 17-
・Concave, 18... Wire tension space, 19 Plate, 20
Registry/(4, 21...Wire, 22...Wire drawing fil L-empty nL 23...Stepped hole, 24. Ceramic, Knulieve, 25 Optical fiber, 26 Preparation, 2
7. Optical communication device for communication, 28. Optical communication device, 29. Motomura, 30. Racer drive circuit, 31...
Peltier side 1 circuit, 32...Temperature monitor information, 33
Light intensity monitor information, 34... Modulator, 35... Analog signal, 36... Digital signal, 37 - Injured person,
3B... Optical converter, 39... Amplifier circuit, 40...
φ adjuster. Agent Patent Attorney Akio F. Figure 1 Figure 2 Figure 3 Figure 21/7 Figure 4-' Sumitomo-IF (94 Figure 5 Figure 6 Figure 7 Figure S City

Claims (1)

【特許請求の範囲】 1 ステムと、とのステムのパ、ソケージング部材で被
わわる主面側に配役さfl、*発光半導体素子と、前記
ステムの裏側に固定され女熱雷冷却装置と、を有する発
光半導体装置。 2、前記発光半導体素子は半導体レーザー素子である特
許請求の範囲第1項記載の発光半導体装置°。
[Scope of Claims] 1. A stem, and a light emitting semiconductor element (fl) disposed on the main surface side covered by the sockaging member, and a female thermal lightning cooling device fixed to the back side of the stem; A light emitting semiconductor device having: 2. The light emitting semiconductor device according to claim 1, wherein the light emitting semiconductor element is a semiconductor laser element.
JP58065453A 1983-04-15 1983-04-15 Light emitting semiconductor device Pending JPS59193080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58065453A JPS59193080A (en) 1983-04-15 1983-04-15 Light emitting semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58065453A JPS59193080A (en) 1983-04-15 1983-04-15 Light emitting semiconductor device

Publications (1)

Publication Number Publication Date
JPS59193080A true JPS59193080A (en) 1984-11-01

Family

ID=13287573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58065453A Pending JPS59193080A (en) 1983-04-15 1983-04-15 Light emitting semiconductor device

Country Status (1)

Country Link
JP (1) JPS59193080A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61135171A (en) * 1984-12-05 1986-06-23 Mitsubishi Electric Corp Head of light-emitting diode array
JPH0186260U (en) * 1987-11-30 1989-06-07
JPH01283985A (en) * 1988-05-11 1989-11-15 Shinko Electric Ind Co Ltd Package for mounting light emitting element and manufacture thereof
JPH02189995A (en) * 1989-01-18 1990-07-25 Fujitsu Ltd Manufacture of multilayered printed board
JPH02102749U (en) * 1989-02-01 1990-08-15
JPH03500353A (en) * 1988-03-29 1991-01-24 ブリテツシユ・テレコミユニケイシヨンズ・パブリツク・リミテツド・カンパニー semiconductor device structure
US5268922A (en) * 1991-10-31 1993-12-07 International Business Machines Corporation Laser diode assembly
US5665982A (en) * 1994-07-21 1997-09-09 Nec Corporation Semiconductor photo-device having oblique top surface of stem for eliminating stray light
EP1291987A2 (en) 2001-09-06 2003-03-12 Finisar Corporation Compact laser package with integrated temperature control
JP2005050844A (en) * 2003-07-29 2005-02-24 Seiko Instruments Inc Laser diode module
JP2009059418A (en) * 2007-08-31 2009-03-19 Pioneer Electronic Corp Laser diode output power controller, optical disk drive, and laser diode output power control method
JP2017135158A (en) * 2016-01-25 2017-08-03 三菱電機株式会社 Optical semiconductor device
JP6461436B1 (en) * 2018-02-06 2019-01-30 三菱電機株式会社 Thermoelectric cooler built-in stem

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61135171A (en) * 1984-12-05 1986-06-23 Mitsubishi Electric Corp Head of light-emitting diode array
JPH0186260U (en) * 1987-11-30 1989-06-07
JPH03500353A (en) * 1988-03-29 1991-01-24 ブリテツシユ・テレコミユニケイシヨンズ・パブリツク・リミテツド・カンパニー semiconductor device structure
JPH01283985A (en) * 1988-05-11 1989-11-15 Shinko Electric Ind Co Ltd Package for mounting light emitting element and manufacture thereof
JPH02189995A (en) * 1989-01-18 1990-07-25 Fujitsu Ltd Manufacture of multilayered printed board
JPH02102749U (en) * 1989-02-01 1990-08-15
US5268922A (en) * 1991-10-31 1993-12-07 International Business Machines Corporation Laser diode assembly
US5665982A (en) * 1994-07-21 1997-09-09 Nec Corporation Semiconductor photo-device having oblique top surface of stem for eliminating stray light
US7092418B2 (en) 2001-09-06 2006-08-15 Finisar Corporation Compact laser package with integrated temperature control
EP1291987A2 (en) 2001-09-06 2003-03-12 Finisar Corporation Compact laser package with integrated temperature control
JP2003142766A (en) * 2001-09-06 2003-05-16 Finisar Corp Compact laser package with integrated temperature control
EP1291987A3 (en) * 2001-09-06 2005-04-27 Finisar Corporation Compact laser package with integrated temperature control
JP2005050844A (en) * 2003-07-29 2005-02-24 Seiko Instruments Inc Laser diode module
JP2009059418A (en) * 2007-08-31 2009-03-19 Pioneer Electronic Corp Laser diode output power controller, optical disk drive, and laser diode output power control method
JP2017135158A (en) * 2016-01-25 2017-08-03 三菱電機株式会社 Optical semiconductor device
US9929530B2 (en) 2016-01-25 2018-03-27 Mitsubishi Electric Corporation Optical semiconductor device
JP6461436B1 (en) * 2018-02-06 2019-01-30 三菱電機株式会社 Thermoelectric cooler built-in stem
WO2019155505A1 (en) * 2018-02-06 2019-08-15 三菱電機株式会社 Stem with built-in thermoelectric cooler
TWI687153B (en) * 2018-02-06 2020-03-01 日商三菱電機股份有限公司 Built-in handle body of thermoelectric cooler
CN111670522A (en) * 2018-02-06 2020-09-15 三菱电机株式会社 Built-in tube seat of thermoelectric cooler
DE112018007021B4 (en) 2018-02-06 2022-05-12 Mitsubishi Electric Corporation Shaft with a built-in thermoelectric cooler
US11522336B2 (en) 2018-02-06 2022-12-06 Mitsubishi Electric Corporation Thermoelectric cooler built-in stem

Similar Documents

Publication Publication Date Title
JPS59193080A (en) Light emitting semiconductor device
JP4566506B2 (en) Compact laser package with built-in temperature controller and optoelectronic module
US4768070A (en) Optoelectronics device
US7889770B2 (en) Semiconductor laser device
JP2007184587A (en) Optical assembly composed of plural semiconductor optical devices and active cooling device
US6301278B2 (en) Semiconductor laser devices
JP2000196175A (en) Sub-carrier and semiconductor device
US7218657B2 (en) Optical transmitting module having a can type package and providing a temperature sensor therein
JP6984801B1 (en) Semiconductor laser light source device
US20070127874A1 (en) Optical module with thermo-electric controller in co-axial package
JPS5996789A (en) Photosemiconductor device
JP4917704B2 (en) Semiconductor laser manufacturing method
US20020031150A1 (en) Semiconductor laser module
JPH07302949A (en) Wavelength stabilizing device
JP4079730B2 (en) Semiconductor laser fixing apparatus and semiconductor laser fixing method
JPH05183239A (en) Semiconductor laser
JP2005026333A (en) Semiconductor laser equipment
JP2914406B2 (en) Cooled semiconductor laser array module
JPH0497581A (en) Heat sink of semiconductor device
JPH08213708A (en) Semiconductor laser device
JP2885149B2 (en) Semiconductor laser device
JPS58166750A (en) Cooler for integrated circuit
JPS6015987A (en) Light emitting element
JPS59200481A (en) electronic equipment
JPH11186645A (en) Laser diode module