[go: up one dir, main page]

JPS59190377A - Electrolyzing method - Google Patents

Electrolyzing method

Info

Publication number
JPS59190377A
JPS59190377A JP58066198A JP6619883A JPS59190377A JP S59190377 A JPS59190377 A JP S59190377A JP 58066198 A JP58066198 A JP 58066198A JP 6619883 A JP6619883 A JP 6619883A JP S59190377 A JPS59190377 A JP S59190377A
Authority
JP
Japan
Prior art keywords
catholyte
cathode chamber
gas
cathode
linear velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58066198A
Other languages
Japanese (ja)
Inventor
Tsutomu Nishio
勉 西尾
Yasushi Samejima
鮫島 靖志
Minoru Shiga
稔 志賀
Toshiji Kano
叶 敏次
Takashi Yamada
山田 傑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP58066198A priority Critical patent/JPS59190377A/en
Priority to EP83112168A priority patent/EP0110425A3/en
Priority to KR1019830005742A priority patent/KR840007607A/en
Priority to BR8306681A priority patent/BR8306681A/en
Priority to ES527793A priority patent/ES527793A0/en
Priority to IN1496/CAL/83A priority patent/IN162062B/en
Priority to US06/558,661 priority patent/US4586994A/en
Publication of JPS59190377A publication Critical patent/JPS59190377A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To obtain efficiently and stably alkali hydroxide of high quality for a long term by electrolyzing an aqueous soln. of alkali chloride in a horizontal electrolytic cell having a cation exchange membrane as a diaphragm while specifying the linear velocity of a catholyte in the cathode chamber and the gaseous partial ratio. CONSTITUTION:A horizontal electrolytic cell provided with an anode chamber on a horizontally stretched cation exchange membrane and a cathode chamber under the membrane is used. A cathode plate in the cathode chamber is impermeable to gas and liq. Electrolysis is carried out while regulating the initial linear velocity of a catholyte fed to the cathode chamber in the chamber to >=8cm/sec and the gaseous partial ratio at a position close to the catholyte discharging outlet to <=0.6. Low electrolytic voltage can be maintained by said initial linear velocity, and stable electrolysis can be continued for a long period by said gaseous partial ratio.

Description

【発明の詳細な説明】 本発明は主としてアルカリ金属ハロゲン化物水溶液、特
に塩化アルカリ塩水溶液の電解槽に関する。更に詳しく
は、電解隔膜として陽イオン交換膜を用いた水平型電解
槽において、長期安定的に高品質の苛性アルカリを効率
良く得るtめの゛電解方法齋こ関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention primarily relates to an electrolytic cell for an aqueous alkali metal halide solution, in particular an alkali chloride salt aqueous solution. More specifically, the present invention relates to an electrolytic method for efficiently producing high quality caustic alkali stably over a long period of time in a horizontal electrolytic cell using a cation exchange membrane as an electrolytic diaphragm.

水平型電解槽は、水平に張設された隔膜番こよって上部
の陽極室と下部の陰極室とに区画されている。水平型電
解槽の最も典型的ケ水銀法電解槽は、比較的高濃度の水
酸化す) IJウム浴液が得られるのでこれまで広く利
用されてき几。
A horizontal electrolytic cell is divided into an upper anode chamber and a lower cathode chamber by a horizontally stretched diaphragm. The most typical type of horizontal electrolyzer is the mercury method electrolyzer, which has been widely used because it produces a relatively high concentration of hydroxide bath solution.

しかし乍ら、陰極に用いる水銀が環境汚染物質であるた
め、近い将来休止されるべき運命1こある。ところで従
来広く活用されてきた水銀性電解槽及び耐相装置を悉く
スクラップ化することは経済的、産業政策的1こも決し
て好ましいことではなく、一方、当業界にとっても極め
て深刻な問題である。かかる状況下において、水銀性電
解槽及び附属設備をスクラップ化することなく、他の安
全な電解槽に転換することは極めて望ましいことである
However, since the mercury used in the cathode is an environmental pollutant, there is one possibility that it will have to be discontinued in the near future. By the way, scrapping all of the mercury electrolytic cells and phase-resistant devices that have been widely used in the past is not at all desirable from an economic or industrial policy standpoint, but it is also an extremely serious problem for the industry. Under such circumstances, it is highly desirable to convert mercury-based electrolytic cells and auxiliary equipment to other safer electrolytic cells without scrapping them.

かかる見地から、本出願人は鋭意研究を進め水銀性電解
槽を有利に陽イオン交換膜性電解槽に転換し得る技術を
開発し、先に特許出願を行なった(特願昭57−131
377等)。即ち、特願昭5’7−1.31377号は
実質的に水平に張設された陽イオン交換膜により上部の
陽極室と下部の陰極室とに区画され、前記陽極室は実質
的に水平な陽極を有してなり、蓋体と、該陽極を囲むよ
うに周設され定陽極室側壁と、該陽イオン交換膜の上面
とにより囲繞され、且つ陽極液の導入口および排出日並
に陽極ガス排出1]とを具備してなり、前記陰極室は実
質的に平坦な表面を有する陰極板と、該陰極板を囲むよ
うに周設された陰極室側壁と、該陽イオン交換膜の下面
とにより囲繞され、且つ陰極液の導入口および陰極ガス
と陰極液との混相液の排出口を具備して構成されること
を特徴とする電解槽を要旨とするも、のである。刀)〃
)る構造の電解槽を用いて電解を行なうには、陰極室で
発生する陰極ガスを速やかに陰極液流の中に巻き込ませ
ること、また陰極室内での気液分離を阻止することが極
めて重要なポイントである。そこで本出願人はこの点に
ついて、陰極室に供給する電解液の初期線速度がガスの
滞溜及び電解電圧と密接な関係を有し、陰極室内での初
期線速度が約8ovSeC以上の条件下で電解すること
により、ガスの滞溜を防止し得、低い電解電圧で高品質
の苛性アルカリを製造し得ることを見出した(特願昭5
7−16’0438号)。
From this perspective, the applicant has conducted extensive research and developed a technology that can advantageously convert a mercury-based electrolytic cell into a cation-exchange membrane electrolytic cell, and has previously filed a patent application (Japanese Patent Application No. 57-131).
377 etc.). That is, Japanese Patent Application No. 5'7-1.31377 is divided into an upper anode chamber and a lower cathode chamber by a cation exchange membrane stretched substantially horizontally, and the anode chamber is substantially horizontally stretched. The anode is surrounded by a lid body, a fixed anode chamber side wall surrounding the anode, and the upper surface of the cation exchange membrane, and has an anolyte inlet and a discharge date. anode gas discharge 1], the cathode chamber comprises a cathode plate having a substantially flat surface, a side wall of the cathode chamber surrounding the cathode plate, and a side wall of the cation exchange membrane. The electrolytic cell is surrounded by a lower surface and includes an inlet for a catholyte and an outlet for a mixed phase liquid of cathode gas and catholyte. sword)〃
) In order to perform electrolysis using an electrolytic cell with a structure of This is a great point. Therefore, in this regard, the present applicant has proposed that the initial linear velocity of the electrolyte supplied to the cathode chamber is closely related to gas retention and electrolysis voltage, and that the initial linear velocity in the cathode chamber is approximately 8 ovSeC or higher. It was discovered that by electrolyzing with
No. 7-16'0438).

しかし乍ら、初期線速度を8Cm/seC以」二に保持
してもガス量が増加するとガスの微細気泡どうしか会合
し、陰極室内で気液分離を起こし、分離したガスが陽イ
オン交換膜の下面を覆い電解電圧を増加させる。更には
、該膜の振動を惹き起こ(−1長期安定的な運転を阻害
し、遂には膜を破損させるに至る。
However, even if the initial linear velocity is maintained at 8 Cm/sec or higher, as the gas amount increases, gas microbubbles will somehow come together, causing gas-liquid separation in the cathode chamber, and the separated gas will be transferred to the cation exchange membrane. Cover the bottom surface of the electrode and increase the electrolytic voltage. Furthermore, it causes vibration of the membrane (-1), which impedes long-term stable operation and eventually leads to membrane damage.

本発明者らはかかる実情に鑑み鋭意研究の結果、陰極ガ
スと陰極液との気液分率を一定の値以下Iこコントロー
ルすることにより、上記の如きガス9M気泡どうしの会
合を防止し得、従って膜の振動やこれに起因する膜の破
損を阻止し得ることを見出し、本発明を完成させるに至
った。
In view of the above circumstances, the present inventors conducted extensive research and found that by controlling the gas-liquid fraction between the cathode gas and the catholyte below a certain value, it is possible to prevent the above-mentioned gas 9M bubbles from meeting each other. Therefore, it was discovered that vibration of the membrane and damage to the membrane caused by this can be prevented, and the present invention was completed.

即ち、本発明は実質的に水平ζこ張設された陽イオン交
換膜の上部に陽極室を、下部に陰極室をそれぞれ備え、
該陰極室の陰極板がガス・液卵透過性である水平型電解
槽を用い、前記陰極室へ供給される@極液の該陰極室内
での初期線速度がB ’ on7s ec以上で且つ陰
極液出口付近でのガス分率が0.6以下で電解を行なう
ことを特徴とする電解方法を内容とする。
That is, the present invention includes an anode chamber in the upper part and a cathode chamber in the lower part of the cation exchange membrane which is installed substantially horizontally,
A horizontal electrolytic cell in which the cathode plate of the cathode chamber is gas/liquid permeable is used, and the initial linear velocity in the cathode chamber of the catholyte supplied to the cathode chamber is B' on7 sec or more, and the cathode The content is an electrolysis method characterized in that electrolysis is carried out at a gas fraction of 0.6 or less near the liquid outlet.

本発明において、初期線速度とは次の意味である。即ち
、陰極室に供給された陰極液は、陰極室内を流れる間に
電解により発生したガスを同伴する為、一般番こは流速
は出口に近づく程速くなる。陰極液入口近傍でのガスを
全く含まないか、含んでも僅かな状態での陰極液の線速
度を初期線速度と呼ぶ。即ち、初期線速度はガス発生が
実質的に無い場合の陰極液の線速度を意味する。陰極液
流通路の断面積が流通路全面にわたり実質的に同じであ
るときは、初期線速度は陰極液入口近傍での線速度に等
しい。しかし陰極液流通路の断面積が異なる場合は、ガ
ス発生がない場合の陰極液の平均線速度で表わされる。
In the present invention, the initial linear velocity has the following meaning. That is, since the catholyte supplied to the cathode chamber entrains gas generated by electrolysis while flowing within the cathode chamber, the flow rate generally increases as it approaches the outlet. The linear velocity of the catholyte near the catholyte inlet when it does not contain any gas or contains only a small amount of gas is called the initial linear velocity. That is, the initial linear velocity means the linear velocity of the catholyte when there is substantially no gas generation. When the cross-sectional area of the catholyte flow path is substantially the same throughout the flow path, the initial linear velocity is equal to the linear velocity near the catholyte inlet. However, when the cross-sectional areas of the catholyte flow passages are different, it is expressed by the average linear velocity of the catholyte in the absence of gas generation.

第1図は陰極液の初期線速度と電解電圧との関係を示す
グラフである。
FIG. 1 is a graph showing the relationship between the initial linear velocity of the catholyte and the electrolytic voltage.

第1図より明らかなり1」く、電解液の供給量を増加し
ていくと急激に電圧が低下し、その後ゆるやかな低下を
示し、爾後概々平衡に達する。
It is clear from FIG. 1 that as the amount of electrolyte supplied increases, the voltage drops rapidly, then shows a gradual drop, and then roughly reaches equilibrium.

第1崗lこ見られる曲線の屈曲点は電流密度には殆ど関
係なく、一般的な陽イオン交換膜法電解権)電流密度(
l O〜70 A/(ini’ ) T、略同シ流量範
囲で現われることが本発明者らにより明ら力)にされ友
。第1の屈曲点1での急激な電圧の低下は、陽イオン交
換膜下面でのガスの滞溜が流速の増加lとともない急激
に減少する為に起こると推定される。第1の屈曲点力)
ら第2の屈曲点までのゆるやかな電圧の低下は、発生ガ
スの電極表面及び陽イオン交換膜表面へのイ」着が流量
の増加にともない減少する為であると推定される。
The bending point of the curve seen in the first graph has almost no relation to the current density, and the current density (
It is clear from the inventors that the flow rate range is approximately the same as 10 to 70 A/(ini') T. It is presumed that the rapid voltage drop at the first bending point 1 occurs because the accumulation of gas at the lower surface of the cation exchange membrane rapidly decreases as the flow rate increases. 1st bending point force)
It is presumed that the gradual drop in voltage from 1 to 2 to the second bending point is due to the fact that the adhesion of the generated gas to the electrode surface and the cation exchange membrane surface decreases as the flow rate increases.

本発明者らの研究結果によれば、第1の屈曲点は初期線
速度約81sec以上で現われ、第2屈曲点は約29 
cm/BeC以上で現われる。
According to the research results of the present inventors, the first bending point appears at an initial linear velocity of about 81 seconds or more, and the second bending point appears at about 29 seconds.
Appears above cm/BeC.

即ち、低い電解電圧を維持する為には、まず第1に陰極
液を陰極室へ供給する初期線速度を約8cTvSeC以
上、好ましくは約20 cTvsec以上で運転するこ
とが必要である。
That is, in order to maintain a low electrolytic voltage, it is first necessary to operate at an initial linear velocity for supplying the catholyte to the catholyte chamber at about 8 cTvSec or higher, preferably at about 20 cTvsec or higher.

更に長期安定的に電解を継続する為の第2の条件は該陰
極室内の陰極液出口付近でのガス分率Rが06以下で運
転することが必要である。
Furthermore, the second condition for continuing electrolysis stably for a long period of time is that it is necessary to operate at a gas fraction R of 0.6 or less near the catholyte outlet in the cathode chamber.

ここで、ガス分率R(例えば85°Cで電解する場合)
は次式により表わされる。
Here, the gas fraction R (for example, when electrolyzing at 85°C)
is expressed by the following equation.

R= G/(L+G ) 但し、Gは陰極yt y、 a生量(yyl/Hr )
 テ、0.4I8(電気化学当量)XKAH(キロアン
ペア・時間)X 358/273 (温度補償)で求め
られる。Lは陰極液循環流量(y)l/Hr )である
R= G/(L+G) However, G is the cathode yt y, a yield (yyl/Hr)
Te, 0.4I8 (electrochemical equivalent) x KAH (kiloampere hour) x 358/273 (temperature compensation). L is the catholyte circulation flow rate (y)l/Hr).

このように陰極液の陰極室内での初期線速度がB a5
sec以上で且つ陰極室出口付近でのガス分率が0.6
以下で電解を行なうことにより、陰極液の比抵抗及び電
圧降下を小ならしめ、低い電圧で膜の損傷もなく長期安
定的な運転が可能となる。また、この際の電流密度は1
0〜70A/dtyfである。
In this way, the initial linear velocity of the catholyte in the cathode chamber is B a5
sec or more and the gas fraction near the cathode chamber exit is 0.6
By performing the electrolysis below, the specific resistance of the catholyte and the voltage drop are reduced, and long-term stable operation is possible at low voltage without damaging the membrane. Also, the current density at this time is 1
0 to 70 A/dtyf.

ガス分率Rが0.6を超すと初期線速度が8a/sec
以上であっても、単位陰極液中のガス量が増加し通電部
分が減少する為に、電解電圧が上昇するに加えガスの徽
M気泡どうしが会合し、陰極室内で気液分離を起こし、
分離したガスが陽イオン交換膜の下面を覆い電解電圧を
増加させる。更には気液分離したガスと陰極液との流れ
が脈流を起こすことにより陰極室出口付近の該膜に振動
を惹き起こし、膜の破損を発生させ長期運転を不可能に
させる。又、膜の振動はそれに接触する陽極に伝わり、
導電棒を介してセルカバーlこ振動を発生させる為、セ
ル自体をも補強しなければならないという事態を発生さ
せる。更lこは又、陰極室出口直前付近でのガス分率R
が大きいと、陰極室入日付近での陰極液に対し電気抵抗
が大きくなる為、同−電解槽内で電流分布が発生し、電
解性能上好ましくない結果をもたらす。
When the gas fraction R exceeds 0.6, the initial linear velocity is 8a/sec.
Even with the above, the amount of gas in the unit catholyte increases and the current-carrying area decreases, so not only does the electrolytic voltage rise, but the gas bubbles come together, causing gas-liquid separation in the cathode chamber.
The separated gas covers the lower surface of the cation exchange membrane and increases the electrolysis voltage. Furthermore, the flow of the separated gas and catholyte causes pulsation, which causes vibrations in the membrane near the cathode chamber outlet, causing damage to the membrane and making long-term operation impossible. Also, the vibration of the membrane is transmitted to the anode in contact with it,
Since vibration is generated in the cell cover via the conductive rod, a situation arises in which the cell itself must also be reinforced. Additionally, the gas fraction R near the cathode chamber exit
If the voltage is large, the electrical resistance to the catholyte near the entrance to the cathode chamber becomes large, which causes current distribution in the electrolytic cell, resulting in unfavorable results in terms of electrolytic performance.

本発明に好適な陽イオン交換膜としては、例えば、陽イ
オン交換基を有するパー71レオロカーボン重合体f)
)らなる膜を挙げることができる。
Cation exchange membranes suitable for the present invention include, for example, Par71 rheolocarbon polymer f) having cation exchange groups.
).

スルホン酸基を交換基とするパーフルオロカーボン重合
体よりなる膜は、前記の如く米国のイー・アイ・デュポ
ン・テ゛・ニモアス・アンドカンパ= −(E、 1.
 Du Pont de Nemours &comp
any )より商品名「ナフィオン」として市販されて
おり、その化学構造は次式に示す通りである。
As mentioned above, a membrane made of a perfluorocarbon polymer having a sulfonic acid group as an exchange group is manufactured by E.I.
Du Pont de Nemours &comp
Any) is commercially available under the trade name "Nafion", and its chemical structure is as shown in the following formula.

かかる陽イオン交換膜の好適な当量重量は1.。A suitable equivalent weight of such a cation exchange membrane is 1. .

00乃至2.O’00、好ましくは1.100乃至1゜
500であり、ここに当量重量とは、交換基当量当りの
乾燥膜の重量(fりである。また、上記交換膜のスルホ
ン酸基の一部又は全部をカルボン酸基に置換した陽イオ
ン交換膜その他慣用されている陽イオン交換膜も本発明
に適用することができる。これらの陽イオン交換膜は透
水率が著しく小さく、水力学的流れを通さずに水分子3
〜4個を有するす) IJウムイオンを通すのみである
。本発明においては、上記の膜の他1こ所謂S P E
 (5olj−d Po工ymer Electrod
e ) 4月」いることができる。
00 to 2. O'00, preferably 1.100 to 1.500, where the equivalent weight is the weight (f) of the dry membrane per equivalent of exchange group. Alternatively, cation exchange membranes in which all of the cation exchange membranes are substituted with carboxylic acid groups and other commonly used cation exchange membranes can also be applied to the present invention. 3 water molecules without passing through
~4) It only passes IJium ions. In the present invention, in addition to the above-mentioned membrane, one so-called SPE
(5olj-d Po engineering Electrod
e) May be in April.

本発明に使用されるガス・液卵透過性電極の形状は、電
解液の流れを妨害しないものであれば特に制限はない。
The shape of the gas/liquid permeable electrode used in the present invention is not particularly limited as long as it does not interfere with the flow of the electrolyte.

実質的に平坦な表面を有するものでもよいし、電解液の
流れlこ沿って凸状筋を具えた凸凹構造を有するもので
あっても良い。更に適宜間隔をおいて小突起を有しても
よい。
It may have a substantially flat surface, or it may have an uneven structure with convex striations along the flow of the electrolyte. Furthermore, small protrusions may be provided at appropriate intervals.

凸凹構造は、例えば平板に並行なみそをけずり出す、平
板に丸棒、角棒等よりなる細い棒状体を溶接により取り
付け、又は一体的に突設して凸凹構造とすることが出来
る。更にまた、陰極板そのものを波板を使用して作るこ
とが出来る。凸凹の形状は特に制限はなく、矩形波状、
梯形波状、正弦波状、円形状、ザイクロイド状等が単独
又は組合せて使用すること75玉出来る。
The uneven structure can be obtained by, for example, scraping out parallel miso on a flat plate, attaching a thin rod-shaped body such as a round bar or square bar to the flat plate by welding, or by integrally protruding it. Furthermore, the cathode plate itself can be made using a corrugated plate. There are no particular restrictions on the shape of the unevenness, such as rectangular wave,
75 beads can be used individually or in combination with trapezoidal, sinusoidal, circular, zykroid, etc. shapes.

また凸凹は液の流れ方向にそって必ずしも連続である必
要はなく、途中で切れていても良い。
Further, the unevenness does not necessarily have to be continuous along the flow direction of the liquid, and may be cut in the middle.

凸凹構造を有するガス・液卵透過性陰極板を使用する場
合は、凸部とイオン交換膜と力≦隣接又は接触している
ことが好ましい実施態様である。
When using a gas/liquid permeable cathode plate having a concavo-convex structure, it is a preferred embodiment that the convex portions and the ion exchange membrane are in force≦adjacent to or in contact with each other.

上記ガス・液弁透過性電極の材質に!鉄、ステンレスス
チール、ニッケル、二・ソケル合金等75”好適に使用
できる。また、これらの電極の表面に水素過電圧を低下
せしめる高番こ白金族金属、その導電性酸化物または鉄
族金属等のコーティングを施すことも更(こ好ましい。
The material of the above gas/liquid valve permeable electrode! Iron, stainless steel, nickel, Ni-Sokel alloy, etc. can be suitably used. Also, high-grade platinum group metals, their conductive oxides, or iron group metals, etc., which reduce hydrogen overvoltage, can be used on the surface of these electrodes. It is also preferred to apply a coating.

陽イオン交換膜の上方に配置される陽極(ま、発生する
ガスを速やカに上方番こ取りのぞ〈為、多孔性電極、例
えばエキスノくンデ・ソドメタル、網状、ルーバー状電
極、丸棒を並べたスノ(ゲ・ソテイー状電極等を用いる
ことも出来るし、非多孔性電極を用い、電極と陽イオン
交換膜の間]こ電解液を供給循環することも出来る。上
記陽極は、チタン、ニオブ、タンタル等の金属の単体寸
たは゛合金を基体とし、その表面に白金族金属、その導
電性酸化物等をコーティングしたものが好適に使用出来
る。
The anode placed above the cation exchange membrane (in order to quickly remove the generated gas from the upper part) is a porous electrode, such as an electrode, a mesh electrode, a louvered electrode, a round electrode, etc. It is also possible to use a wire-like electrode with rods lined up, or to supply and circulate the electrolyte between the electrode and the cation exchange membrane using a non-porous electrode. A substrate made of a single metal or an alloy of metals such as titanium, niobium, tantalum, etc., whose surface is coated with a platinum group metal, a conductive oxide thereof, etc. can be suitably used.

蒸上の通り、本発明によれば陰極室内での気液分離を防
止し、その結果膜の振動や破損を防止することができ、
低電圧で高品質の苛性アル−カリを長期安定的に得るこ
とが可能となる。
As mentioned above, according to the present invention, gas-liquid separation in the cathode chamber can be prevented, and as a result, vibration and damage of the membrane can be prevented.
It becomes possible to stably obtain high quality caustic alkali over a long period of time at low voltage.

以下、実験例1こより本発明を説明するが、これらによ
り本発明を限定するものではない。
The present invention will be explained below with reference to Experimental Example 1, but the present invention is not limited thereto.

実施例 陽イオン交換膜として「ナフィオン901(Du Po
nt社製)」を長さ1.、 g m X幅70C)nO
:)水平型電解槽の陰陽両極の間に実質的に水平番こ張
設した。
As an example cation exchange membrane, “Nafion 901 (Du Po
(manufactured by nt)" with a length of 1. , g m x width 70C) nO
:) A horizontal bar was installed between the positive and negative poles of a horizontal electrolytic cell.

陽極としてはチタン製エキスパンデッドメタルシートの
表面にRu02、TiO2をコーティングしたものを用
い、極間距離は2 mmとした。陽極室は淡塩水を一部
循環し、抜き出し淡塩水濃度を3.5Nとし、陰極室は
苛性濃度が32%になるように陰極液を長さ方向に循環
し、85°Cで電解した。実験例1〜3の電流密度、陰
極液流量及び初期線速度の関係は下記の通りである。
As the anode, a titanium expanded metal sheet whose surface was coated with Ru02 and TiO2 was used, and the distance between the electrodes was 2 mm. Part of the fresh salt water was circulated in the anode chamber, and the fresh salt water was drawn out to a concentration of 3.5 N. In the cathode chamber, the catholyte was circulated in the longitudinal direction so that the caustic concentration was 32%, and electrolysis was carried out at 85°C. The relationships among the current density, catholyte flow rate, and initial linear velocity in Experimental Examples 1 to 3 are as follows.

実験例1   10    0.5〜7  10〜14
0実験例2  40   0゜9〜9  18〜180
実験例8   70    1.6〜9,8  32〜
194この場合のガス分率と陰極液比抵抗との関係を第
2□□□に実線で示した。陰極液比抵抗はガス分率0.
6以下で低下し、0.4以下でほぼ平衡となっているこ
とが明らかである。
Experimental example 1 10 0.5-7 10-14
0 Experimental Example 2 40 0°9~9 18~180
Experimental example 8 70 1.6~9,8 32~
194 The relationship between the gas fraction and the catholyte specific resistance in this case is shown by a solid line in the second □□□. The specific resistance of the catholyte is 0.
It is clear that the value decreases when the value is 6 or less, and it is almost balanced when it is 0.4 or less.

実施例 長さ10m×幅10Ql+の水平型電解槽を用い、極間
距離を4酎とし、下記の如く流量を変化させた他は、実
験例1〜3と同様に英験を笑施した。
EXAMPLE Experiments were carried out in the same manner as in Experimental Examples 1 to 3, except that a horizontal electrolytic cell with a length of 10 m and a width of 10 Ql+ was used, the distance between the electrodes was set to 4, and the flow rate was varied as described below.

実験例4   、 10   0.3〜5.5  21
〜380芙験例5   80   0.4〜5.Q  
 28〜350笑験例6   50   0.7〜8,
8  49〜580このときの陰極液の電圧降下とガス
分率との関係を第3図に示した。陰極g!電圧降下はガ
ス分率0.6以下で低下し、0.4以下でほぼ平衡番こ
達していることがわかる。
Experimental example 4, 10 0.3-5.5 21
~380 Experimental Example 5 80 0.4~5. Q
28-350 Experimental Example 6 50 0.7-8,
8 49-580 The relationship between the voltage drop of the catholyte and the gas fraction at this time is shown in FIG. Cathode g! It can be seen that the voltage drop decreases when the gas fraction is 0.6 or less, and almost reaches equilibrium when the gas fraction is 0.4 or less.

実施例 長さ11m×幅1.8mの水平型電解槽の陰陽両電極間
番こ前記「ナフィオン901」を実質的に水平に張設し
た。陽極は実験例1で使用したものを用い、極間距離は
3 mmとし之。電流密度は8 o A/dydとし、
陽極室及び陰極室の液循環、濃度はいずれも実験例1の
場合と同条件とし、幅方向に陰極液を循環させた。循環
流量を15〜310 nf/Hr、初期線速度18〜2
50an/1eecと変化させ几時のガス分率と電解電
圧との関係を第4□□□に示した。第4図からガス分率
0.6以下で電解電圧は低下し、更に0.4以下でほぼ
平衡に達することが認められる。更に、電流密度30 
A/dnf、循環流量70 ni/Hrで5力月間長期
運転を笑施し几。この時のガス分率は0.32であった
。電圧は3.12 Vで電流効率は96%であった。運
転中の膜の振動も殆ど見られず、運転停止後電解槽を解
体して膜を観察したが、膜の破損は認められなかった。
EXAMPLE The above-mentioned "Nafion 901" was stretched between the negative and positive electrodes of a horizontal electrolytic cell measuring 11 m long x 1.8 m wide in a substantially horizontal manner. The anode used in Experimental Example 1 was used, and the distance between the electrodes was 3 mm. The current density is 8 o A/dyd,
The liquid circulation and concentration in the anode and cathode chambers were both under the same conditions as in Experimental Example 1, and the catholyte was circulated in the width direction. Circulation flow rate: 15-310 nf/Hr, initial linear velocity: 18-2
The relationship between the gas fraction and the electrolysis voltage when the temperature was changed to 50 an/1eec is shown in the fourth □□□. From FIG. 4, it is recognized that the electrolytic voltage decreases when the gas fraction is 0.6 or less, and almost reaches equilibrium when the gas fraction is 0.4 or less. Furthermore, the current density is 30
Long-term operation was performed for 5 months at A/dnf and circulation flow rate of 70 ni/Hr. The gas fraction at this time was 0.32. The voltage was 3.12 V and the current efficiency was 96%. Almost no vibration of the membrane was observed during operation, and after the operation was stopped, the electrolytic cell was disassembled and the membrane was observed, but no damage to the membrane was observed.

実施例 極間距離を4 mmとし、電流密度を10 Ladn7
′とした他は実験例1と同様の操作を繰り返した。
Example The distance between electrodes was 4 mm, and the current density was 10 Ladn7.
The same operation as in Experimental Example 1 was repeated except that .

このときのガス分率と陰極液比抵抗との関係を第2図に
破線で示した。第2図より明らかな通り、ガス分率が0
.6以下でも陰極液の初期線速度が8Cr/VSeC未
満の場合は、陰極液比抵抗が増加した。
The relationship between the gas fraction and the specific resistance of the catholyte at this time is shown by a broken line in FIG. As is clear from Figure 2, the gas fraction is 0.
.. Even when the initial linear velocity of the catholyte was less than 8Cr/VSeC, the specific resistance of the catholyte increased.

以下、実施例、比較例を挙げて本発明を説明する。The present invention will be described below with reference to Examples and Comparative Examples.

実施例1 陽イオン交換膜として「ナフィオン901(J)u P
ont社製〕」を長さ11.1mX幅1.8mの水平型
電解槽の陰陽両極の間番こ実質的に水平に張設した。陽
極としてはチタン製エキスパフ7’ツドメタルシートの
表面にRuO2、TiO2ヲコーティングしたものを用
い、陰極としては鉄製の板の表面にNi溶則した陰極を
用いた。
Example 1 “Nafion 901(J)uP” as a cation exchange membrane
Ont Co., Ltd.] was stretched substantially horizontally between the negative and positive electrodes of a horizontal electrolytic cell with a length of 11.1 m and a width of 1.8 m. The anode used was a titanium expandable 7' metal sheet coated with RuO2 and TiO2, and the cathode was an iron plate coated with Ni.

上記陰極は長手方向に並行に深さ8mm、幅8馴の溝を
16mmピッチで有しており、凸部は陽イオン交換膜と
約1πmの距離を保ち対峙する様に構成した。陰極液は
長手方向ζこ循環した。
The cathode had grooves with a depth of 8 mm and a width of 8 mm at a pitch of 16 mm in parallel with the longitudinal direction, and the convex portion was configured to face the cation exchange membrane while maintaining a distance of about 1 πm. The catholyte was circulated in the longitudinal direction.

陽極室はNaCl濃度3.5N、陰極室ハNaOH濃度
が32%、温度は85±2°Cにコントロールした。
The NaCl concentration in the anode chamber was 3.5N, the NaOH concentration in the cathode chamber was 32%, and the temperature was controlled at 85±2°C.

陽極の振動は、陽極給電棒に取りイ1けたダイヤルゲー
ジで測定した。即ち、第5図に示した々目ぐ、一定の高
さを持つバーと陽極給電棒上端部との距離をゲージで測
定し、その揺れから陽極の振動の様子を観察した。
The vibration of the anode was measured with a dial gauge attached to the anode power supply rod. That is, the distance between the bar having a constant height and the upper end of the anode power supply rod as shown in FIG. 5 was measured with a gauge, and the vibration of the anode was observed from the vibration.

電流密度20 A/(1mで循環液量を20 y)I/
Hr(初期線速度6 Q Cm/BeC) f)hら5
0 yノf/Hr ’(150m/sec )まで変化
させた。陽極の振動は全く観察されなかった。この時の
出口のガス分率は0.53〜0.30であった。
Current density 20 A/(circulating fluid volume 20 y at 1 m) I/
Hr (Initial linear velocity 6 Q Cm/BeC) f) h et al. 5
The speed was changed to 0 y no f/Hr' (150 m/sec). No anode vibration was observed. The gas fraction at the outlet at this time was 0.53 to 0.30.

また、上記循環液量の範囲で1ケ月間の連続運転を実施
したが、何の異常もなく運転を続けることかできた。
Continuous operation was carried out for one month within the above range of circulating fluid amount, but the operation could be continued without any abnormality.

比較例1 実磯例1と同様の電解条件とし、電流密度3゜A/d、
m−c循環液量2o、3o、5 onf/Hr トf化
させた。
Comparative Example 1 Same electrolytic conditions as Iso Example 1, current density 3°A/d,
The m-c circulating fluid amount was increased to 2o, 3o, 5 onf/Hr.

30.50 yyi’/Hrでは陽極の振動は認められ
な刀)つたが、2 Onf/Hrでは陰極室出口部の陽
極が振動しているのが観察された。この時の出口のガス
分率は0.62であった。
At 30.50 yyi'/Hr, no vibration of the anode was observed, but at 2 Onf/Hr, the anode at the exit of the cathode chamber was observed to vibrate. The gas fraction at the outlet at this time was 0.62.

尚、1ケ月の連続運転の後電解槽を解体して膜の点検を
したところ、陰極室出口付近に小さなピンホールの発生
が認められた。
When the electrolytic cell was disassembled after one month of continuous operation and the membrane was inspected, small pinholes were found near the exit of the cathode chamber.

比較例2 実施例1と同様の電解条件とし、電流密度40A/dn
?で循環’e fA 20 yyi’/Hr T t 
解ヲ行fx ッfc。
Comparative Example 2 Same electrolytic conditions as Example 1, current density 40A/dn
? Circulate 'e fA 20 yyi'/Hr T t
Solution fx fc.

陰極室入口から9mの位置から出口に向けて、陽極の振
動が観察さi−t、 fco陰極室畠口番こ近づく程激
しい振動が見られた。陰極室入口から9m離れた位置の
ガス分率はo、64、陰極室出口のガス分率は0.69
であった。
Vibration of the anode was observed from a position 9 m from the cathode chamber entrance toward the exit.The closer the cathode chamber was to Hatakeguchi, the more intense the vibrations were. The gas fraction at a position 9 m away from the cathode chamber entrance is o, 64, and the gas fraction at the cathode chamber outlet is 0.69.
Met.

連続運転20日目で塩素ガス中の水素濃度が07%に上
昇したので運転を停止し膜を点検したところ、陰極液入
口9mの位@から陰極液出口に刀)けピンホールの発生
が見られ、特に陰極液出口では1.5 cmはどのクラ
ックが発生していた。
On the 20th day of continuous operation, the hydrogen concentration in the chlorine gas rose to 0.7%, so when we stopped the operation and inspected the membrane, we found pinholes from 9 m from the catholyte inlet to the catholyte outlet. In particular, a crack of 1.5 cm had occurred at the catholyte outlet.

実施例2 比較例2において、循環液量を20 yy?/Hrから
83 ypi’、/H工°に増加させた。陽極の振動は
全く認められなくなった。この時の出口のガス分率は0
.57であった。
Example 2 In Comparative Example 2, the amount of circulating fluid was set to 20 yy? /Hr to 83 ypi', /H°. No vibration of the anode was observed at all. At this time, the gas fraction at the outlet is 0
.. It was 57.

比較例3 陰極を平板とし、極間距離を4 mmとした以外は実施
例1と同様の条件とした。
Comparative Example 3 The same conditions as in Example 1 were used except that the cathode was a flat plate and the distance between the electrodes was 4 mm.

電流密度40 A/dn?−??循環液量2077r’
/Hr (初期線速度78 cyn/SeC)で電解を
行なったところ、陰極液入口から9.5mの位置から出
口にかけて、陽極の振動が観察された。この地点のガス
分率は0.65であった。
Current density 40 A/dn? −? ? Circulating fluid volume 2077r'
When electrolysis was carried out at /Hr (initial linear velocity 78 cyn/SeC), vibration of the anode was observed from a position 9.5 m from the catholyte inlet to the outlet. The gas fraction at this point was 0.65.

実施例3 比較例3において、循環液量を2 ’Onf/Hrから
85m/Hrに増加させ電解を行なった。陽極の振動は
認められなぐなつ足。このときの出口のガス分率は0.
56であった。
Example 3 In Comparative Example 3, electrolysis was performed by increasing the amount of circulating fluid from 2' Onf/Hr to 85 m/Hr. No vibration of the anode was observed. At this time, the gas fraction at the outlet is 0.
It was 56.

【図面の簡単な説明】[Brief explanation of drawings]

第10は陰極液の初期線速度と電解電圧との関係を示す
グラフ、第2図はガス分率と陰極液比抵抗との関係を示
すグラフ、第3(2)はガス分率と陰極液の電圧降下と
の関係を示すグラフ、第4図はガス分率と電解電圧との
関係を示すグラフである。第5図は電解槽にダイヤルゲ
ージを取り付け、陽極の振動を測定する概要図である。 l・・・陽極室       2・・・陰極室3・・・
陽イオン交換膜   4・・・陽極5・・・陰極   
    6・・・陰極液入ロア・・・陰極液出口   
  8・・・ゲージ取り付は棒9・・・ダイヤルゲージ
  10・・・陽極給電棒第1図 一一@細頽しグ夏 ?jSZ図 力゛ス令率 G/(GやL) 力゛スゲr碕ヨ G/(G、L)
Figure 10 is a graph showing the relationship between the initial linear velocity of the catholyte and the electrolytic voltage, Figure 2 is a graph showing the relationship between the gas fraction and the specific resistance of the catholyte, and Figure 3 (2) is a graph showing the relationship between the gas fraction and the catholyte. FIG. 4 is a graph showing the relationship between gas fraction and electrolysis voltage. FIG. 5 is a schematic diagram of attaching a dial gauge to the electrolytic cell and measuring the vibration of the anode. l...Anode chamber 2...Cathode chamber 3...
Cation exchange membrane 4... Anode 5... Cathode
6...Cathode liquid inlet lower...Cathode liquid outlet
8...Gauge installation is rod 9...Dial gauge 10...Anode power supply rod Figure 1 11 @ Fine drawing summer? SZ power ratio G/(G or L) power ratio G/(G, L)

Claims (1)

【特許請求の範囲】 1、 笑質的lこ水平に張設された陽イオン交換膜の上
部に陽極室を、下部fこ陰極室をそれぞれ備え、該陰極
室の陰極板がガス・液非透過注である水平型電解槽を用
い、前記陰極室へ供給される陰極液の該陰極室内での初
期線速度が8CwVSeC以上で且つ陰極液排出口付近
でのガス分率が0.6以下で電解を行なうことを特徴と
する電解方法。 2、 電流密度が10〜70 A/d772′の範囲で
ある特許請求の範囲第1項記載の電解方法。
[Claims] 1. An anode chamber is provided in the upper part of a cation exchange membrane stretched horizontally, and a cathode chamber is provided in the lower part of the cation exchange membrane, and the cathode plate of the cathode chamber is connected to gas or liquid. Using a horizontal electrolytic cell that is a permeation type electrolytic cell, the initial linear velocity of the catholyte supplied to the catholyte chamber is 8 CwVSeC or more, and the gas fraction near the catholyte outlet is 0.6 or less. An electrolysis method characterized by performing electrolysis. 2. The electrolysis method according to claim 1, wherein the current density is in the range of 10 to 70 A/d772'.
JP58066198A 1982-12-06 1983-04-13 Electrolyzing method Pending JPS59190377A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP58066198A JPS59190377A (en) 1983-04-13 1983-04-13 Electrolyzing method
EP83112168A EP0110425A3 (en) 1982-12-06 1983-12-03 An electrolytic process of an aqueous alkali metal halide solution and electrolytic cell used therefor
KR1019830005742A KR840007607A (en) 1982-12-06 1983-12-05 Alkali Halide Compound Electrolysis and Electrolyzer
BR8306681A BR8306681A (en) 1982-12-06 1983-12-05 IMPROVEMENT IN AN ELECTROLYTIC PROCESS OF A WATER SOLUTION OF ALKALINE METAL HALOGENIDE AND ELECTROLYTIC CELL USED FOR THE SAME
ES527793A ES527793A0 (en) 1982-12-06 1983-12-05 IMPROVEMENTS INTRODUCED IN AN ELECTROLYSIS PROCEDURE OF AN AQUEOUS SOLUTION OF AN ALKALINE METAL HALOGENIDE
IN1496/CAL/83A IN162062B (en) 1982-12-06 1983-12-06
US06/558,661 US4586994A (en) 1982-12-06 1983-12-06 Electrolytic process of an aqueous alkali metal halide solution and electrolytic cell used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58066198A JPS59190377A (en) 1983-04-13 1983-04-13 Electrolyzing method

Publications (1)

Publication Number Publication Date
JPS59190377A true JPS59190377A (en) 1984-10-29

Family

ID=13308906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58066198A Pending JPS59190377A (en) 1982-12-06 1983-04-13 Electrolyzing method

Country Status (1)

Country Link
JP (1) JPS59190377A (en)

Similar Documents

Publication Publication Date Title
US5082543A (en) Filter press electrolysis cell
EP0121608A2 (en) A vertical type electrolytic cell and electrolytic process using the same
JPH0561356B2 (en)
US4144146A (en) Continuous manufacture of sodium dithionite solutions by cathodic reduction
KR20010086305A (en) Synthesis of tetramethylammonium hydroxide
US5112464A (en) Apparatus to control reverse current flow in membrane electrolytic cells
CA1123376A (en) Electrolysis bath assembly
US4568433A (en) Electrolytic process of an aqueous alkali metal halide solution
US5593553A (en) Electrolytic cell and electrode therefor
JPS59190377A (en) Electrolyzing method
US4556470A (en) Electrolytic cell with membrane and solid, horizontal cathode plate
JP3110555B2 (en) Ion exchange membrane electrolyzer
RU2126461C1 (en) Method of chlorine-caustic electrolysis and diaphragm cell
JPH1171693A (en) Gas liquid separation in ion-exchange membrane electrolytic cell
US4586994A (en) Electrolytic process of an aqueous alkali metal halide solution and electrolytic cell used therefor
JPS6046191B2 (en) vertical electrolyzer
JPS6147230B2 (en)
JPH0217013Y2 (en)
JPH0216389B2 (en)
JPH059770A (en) Electrolysis of alkali chloride
JPS59197582A (en) Electrolytic cell and method therefor
Paidar et al. 13 Membrane electrolysis
JPS6239093Y2 (en)
JPS6239089Y2 (en)
JPS59104486A (en) Electrolysis of aqueous alkali metal halide solution