[go: up one dir, main page]

JPS59187211A - Photoelectric distance measuring device - Google Patents

Photoelectric distance measuring device

Info

Publication number
JPS59187211A
JPS59187211A JP6084583A JP6084583A JPS59187211A JP S59187211 A JPS59187211 A JP S59187211A JP 6084583 A JP6084583 A JP 6084583A JP 6084583 A JP6084583 A JP 6084583A JP S59187211 A JPS59187211 A JP S59187211A
Authority
JP
Japan
Prior art keywords
photoelectric
light
lens
photoelectric conversion
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6084583A
Other languages
Japanese (ja)
Inventor
Shuhei Tanaka
修平 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Denki Electric Inc
Original Assignee
Hitachi Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Denshi KK filed Critical Hitachi Denshi KK
Priority to JP6084583A priority Critical patent/JPS59187211A/en
Publication of JPS59187211A publication Critical patent/JPS59187211A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Optical Distance (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To obtain a photoelectric distance measuring device, whose handling is very easy and accuracy is high, by providing a circuit, which individually takes out the outputs of photoelectric conversions from photoelectric converter elements, and further providing a light source for lighting. CONSTITUTION:A diode array 3 for receiving light comprising a plurality of photoelectric conversion elements is arranged along an optical axis 2 on the side of image formation with respect to a lens 1. The array 3 is constituted of the group of minute light receiving diodes. The light receiving surfaces of the diodes are aligned in a straight-line state along the optical axis on the image forming side. A pair of a light source P for lighting and a mirror 10 is arranged. In this way, the focal point of the lens 1 is controlled based on the output of the photoelectric conversion of the light receiving diodes 31-3n. Then, the automatic focal point adjustment, which is sufficiently accurate in actual use, can be performed. Since the very compact linear optical converter can be incorporated into an optical system, the device can be made compact, and the handling can be extremely simplified.

Description

【発明の詳細な説明】 (技術分野) 本発明は、各種カメラ等に好適な光電式測距装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a photoelectric distance measuring device suitable for various cameras and the like.

(従来技術とその問題点) 従来、基準点から対象物までの距離測定は近距離の場合
巻尺等が用いられ2遠距離の場合には光学的な三角測量
により行なわれており、近来は。
(Prior art and its problems) Conventionally, the distance from a reference point to an object has been measured using a tape measure for short distances, and by optical triangulation for long distances.

対象物へ超音波を投射のうえその反射波を補促し。Projects ultrasonic waves to the target object and uses the reflected waves to supplement the target.

超音波の発信から受信までの所要時間により距離を求め
る手法およびレーザ光等による光の反射を用いて同様に
距離を求める手法が用いられている。
A method of determining the distance based on the time required from transmission to reception of ultrasonic waves and a method of similarly determining the distance using reflection of light such as a laser beam are used.

しかし、これらは、装置が一般に大形化すると共に測距
操作に手間を要する等の欠点を有し、光学カメラ、テレ
ビジョンカメラ等へ刊加のうえ。
However, these devices have drawbacks such as the devices are generally large in size and the distance measurement operation requires time and effort.

簡単に対象物までの距離を求めるには、いずれも不適当
なものであった。
All of these methods were inappropriate for simply determining the distance to an object.

(目 的) 本発明は従来のか\る欠点を根本的に解消すると共に、
前述の要求を完全に充足する目的を有し。
(Purpose) The present invention fundamentally eliminates the drawbacks of the conventional technology, and
with the purpose of fully satisfying the aforementioned requirements.

レンズと複数の光電変換素子とを組み合せると共に、各
光電変換素子の光電変換出力を各個に取り出す回路を設
けることにより、さらに照射用光源を備えたことを特徴
とし、小形、高精度かつ取扱いの極めて簡単な光電式測
距装置を提供するものである。
By combining a lens and a plurality of photoelectric conversion elements, and by providing a circuit that extracts the photoelectric conversion output of each photoelectric conversion element individually, it is also equipped with a light source for irradiation, making it compact, highly accurate, and easy to handle. This provides an extremely simple photoelectric distance measuring device.

(実施例) 第1図は光学系の構成図であり、レンズエの結像側光軸
2に沿って、複数の光電変換素子としての受光ダイオー
ドアレイ3が配設されており、受光ダイオードアレイ3
は微小な受光ダイオード群により構成され、かつ、これ
らの受光面が結像側光軸2に沿って直線状に配列されて
いるため、結像Fl + F2の位置に応じて、光電変
換出力の生ずる受光ダイオードが異なるものとなってい
る。更に照明用光源Pが鏡10と対に配置宴れている。
(Example) FIG. 1 is a configuration diagram of an optical system, in which a plurality of light receiving diode arrays 3 as photoelectric conversion elements are arranged along the optical axis 2 on the imaging side of the lens element.
is composed of a group of minute light-receiving diodes, and since these light-receiving surfaces are arranged linearly along the imaging side optical axis 2, the photoelectric conversion output changes depending on the position of the imaging side Fl + F2. The resulting light-receiving diodes are different. Further, a light source P for illumination is arranged in a pair with a mirror 10.

この光源は2と等価な光軸2′上に配置されている。This light source is placed on the optical axis 2' equivalent to 2.

なお、4は遮光マスクであり、特に設けずともよいが、
これによって光軸2近傍の光線が受光ダイオードアレイ
3の表面へ平行に入射し、光電変換出力の信号対雑音比
を劣化させるのを阻止することができる。
Note that 4 is a light-shielding mask, which does not need to be provided, but
This can prevent light rays near the optical axis 2 from entering parallel to the surface of the light receiving diode array 3 and deteriorating the signal-to-noise ratio of the photoelectric conversion output.

したがって、レンズ1から対象物Ttで距離をa、レン
ズ1と結像Fとの距離をす、レンズ]の焦点距離を1と
すれば、一般的な凸レンズの公式により次式の関係が成
立する。
Therefore, if the distance from the lens 1 to the object Tt is a, the distance between the lens 1 and the image forming F is 1, and the focal length of the lens is 1, then the following relationship holds true using the general convex lens formula. .

すなわち、(1)式のbが求まれば、aの値も求まり、
これによってレンズ1を基準点としてス・1象物Tまで
の距離測定が行なわれる。
That is, if b in equation (1) is found, the value of a is also found,
As a result, the distance to the object T is measured using the lens 1 as a reference point.

なお、当方式ではレンズ1の焦点距離fの位置にほぼ配
置された照明用光源Pから発せられた光はレンズ1を通
った後はぼに平行光線−となり被写体Tに照射される。
In this method, the light emitted from the illumination light source P located approximately at the focal length f of the lens 1 becomes a substantially parallel light beam after passing through the lens 1 and is irradiated onto the subject T.

第1図のとおり(1)式の関係に基づいて結像FI+F
2の位置が変化し、対象物TIまでの距離がalであれ
ば、その反射光が結像F1となって、レンズ1と結像F
1との距離かす、となるのに対し、えI象物T2までの
距離かalであれば、その反射光が結像F2となり、レ
ンズ1と結像F2との距離がb2となるため。
As shown in Figure 1, based on the relationship of equation (1), the imaging FI+F
2 changes, and if the distance to the object TI is al, the reflected light becomes the image F1, and the lens 1 and the image F
1, whereas if the distance to the object T2 is al, the reflected light becomes the image F2, and the distance between the lens 1 and the image F2 becomes b2.

受光ダイオードアレイ3の各受光ダイオードから。From each light receiving diode of the light receiving diode array 3.

各個に光電変換出力を取り出すことにより、結像Fl 
+ F2の位置が検出され、これによって距離al+a
2  が求められる。
By extracting the photoelectric conversion output for each individual, the image forming Fl
+ The position of F2 is detected, which makes the distance al+a
2 is required.

第2図は受光ダイオードアレイ3と、これから各個に光
電変換出力を取り出すための回路とを。
Figure 2 shows a photodiode array 3 and a circuit for extracting photoelectric conversion output from each individual diode array.

一体の集積回路とした場合の平面図であり、スイッチン
グ素子部5およびシフトレジスタ6が受光ダイオードア
レイ3と共に、同一基板」二へ形成され、−次元光電変
換器7を構成している。
2 is a plan view of an integrated circuit in which a switching element section 5 and a shift register 6 are formed together with a light receiving diode array 3 on the same substrate, forming a -dimensional photoelectric converter 7. FIG.

第3図は、第2図に示す一次元ソC電変換器の等価回路
であり、クロックパルス8によってシフトレジスタ6の
出力がIIIQ次かつ反復してシフトシ。
FIG. 3 is an equivalent circuit of the one-dimensional C/C converter shown in FIG. 2, in which the output of the shift register 6 is repeatedly shifted to the IIIQ order by the clock pulse 8.

この出力0(より、スイッチング素子部5を構成するF
ET (IW効果トランジスタ)等のスイッチ51〜5
.1がllli次にオンとなるため、受光ダイオードア
レイ3の受光ダイオード31〜3nが順次に出力9へ接
続され、受光ダイオード31〜3nの九′屯変換出力が
各個にかつ順次に取り出される。
This output 0 (from this, F
Switches 51 to 5 such as ET (IW effect transistor)
.. 1 is turned on next, the light receiving diodes 31 to 3n of the light receiving diode array 3 are sequentially connected to the output 9, and the 9' conversion outputs of the light receiving diodes 31 to 3n are individually and sequentially taken out.

なお、−次元y6電変換器70寸法L1を4闘、L2を
27nmとしたとき、受光ダイオード31〜3nの配列
ピッチハ15μm稈度にできるため、各種カメラの焦点
位置調整精度か約60μmであるのに対し十分な精度の
距離測定が行なわれる。
Furthermore, when the dimension L1 of the -dimensional y6 electrical converter 70 is 4mm and L2 is 27nm, the arrangement pitch of the light receiving diodes 31 to 3n can be set to 15μm, so the focal position adjustment accuracy of various cameras is about 60μm. Distance measurement is performed with sufficient accuracy.

したがって、別途の図示しない制御回路および駆動機]
j′ηにより、受光ダイオード31〜3nの光電変換出
力に基づくレンズ1の焦点制御を行なえば。
Therefore, a separate control circuit and drive device (not shown)]
By j'η, the focus of the lens 1 is controlled based on the photoelectric conversion outputs of the light receiving diodes 31 to 3n.

実用上十分な精度の自動焦点調整が実現すると共に、極
めて小形な一次元九′跳変換器を光学系へ組み込むのみ
でよいため、各種カメニアへの実装上甚だ好適となる。
In addition to realizing automatic focus adjustment with sufficient precision for practical use, it is only necessary to incorporate an extremely small one-dimensional nine' jump converter into the optical system, making it extremely suitable for implementation in various cameras.

このほか、受光ダイオード、31〜3nとして受光トラ
ンジスタ等、任意の光電変換素子を用いてよく。
In addition, any photoelectric conversion element such as a light receiving diode and a light receiving transistor as 31 to 3n may be used.

ソC電変換出力を各個に取り出す周辺回路に同様の機能
を有する他の回路を用いても同様であり、九変換換素子
七周辺回′路とを分離してもよい等1種種の変形が白イ
fである。
The same effect can be achieved by using other circuits with similar functions in the peripheral circuits that take out each of the C electric conversion outputs, and there are other variations, such as separating the nine conversion elements from the seven peripheral circuits. It's white f.

(効 果) 以上の説明により明らかなとおり本発明によれば、可動
機構を要さない簡単な構成により、特に測距操作を必要
としない測距装置が実現し、各種カメラの自動焦点調節
および、各種車輌の衝突防止等に用いて多大の効果が得
られる。更に照明用光源により暗所での測距も可能であ
る。
(Effects) As is clear from the above explanation, according to the present invention, a distance measuring device that does not require any particular distance measuring operation is realized with a simple configuration that does not require a movable mechanism, and can be used for automatic focusing and adjustment of various cameras. , it can be used to prevent collisions of various vehicles, etc., and a great effect can be obtained. Furthermore, distance measurement in a dark place is also possible using the illumination light source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の実施例を示し、第1図は光学
系の構成図、第2図は集積回路化した一次元九電変換器
の平面図、第3図は第2図に示すものの等価回許ある。 1:レンズ、2:結像側光軸、3.受光ダイオードアレ
イ(複数の光電変換素子)、31〜3n 受光ダイオー
ド、4 遮光マスク、5:スイツチ列。 51〜5n:スイノチ、6:シフトレジスタ、8:クロ
ソクパルス、9・出力、〕0゛鏡、P:照射川光源。
1 to 3 show embodiments of the present invention, FIG. 1 is a configuration diagram of an optical system, FIG. 2 is a plan view of a one-dimensional nine-density converter integrated into an integrated circuit, and FIG. There is an equivalent number of times as shown in the figure. 1: Lens, 2: Imaging side optical axis, 3. Light-receiving diode array (a plurality of photoelectric conversion elements), 31 to 3n light-receiving diodes, 4 light-shielding mask, 5: switch row. 51 to 5n: switch, 6: shift register, 8: cloth pulse, 9 output, 0゛ mirror, P: irradiation light source.

Claims (1)

【特許請求の範囲】[Claims] レンズの結像側光軸に沿って配置された複数の光電変換
素子と、該各光電変換素子から各個に光電変換出力を取
り出す回路とからなることを特徴とする充電式測距装置
において、照射用光源を備えたことを特徴とする測距装
置。
A rechargeable distance measuring device comprising a plurality of photoelectric conversion elements arranged along the optical axis on the imaging side of a lens, and a circuit for extracting a photoelectric conversion output from each of the photoelectric conversion elements. A distance measuring device characterized by being equipped with a light source.
JP6084583A 1983-04-08 1983-04-08 Photoelectric distance measuring device Pending JPS59187211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6084583A JPS59187211A (en) 1983-04-08 1983-04-08 Photoelectric distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6084583A JPS59187211A (en) 1983-04-08 1983-04-08 Photoelectric distance measuring device

Publications (1)

Publication Number Publication Date
JPS59187211A true JPS59187211A (en) 1984-10-24

Family

ID=13154105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6084583A Pending JPS59187211A (en) 1983-04-08 1983-04-08 Photoelectric distance measuring device

Country Status (1)

Country Link
JP (1) JPS59187211A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237709U (en) * 1985-08-27 1987-03-06
JPS6287809A (en) * 1985-10-15 1987-04-22 Canon Inc Method for measuring multidirectional distance
JPS62197711A (en) * 1986-02-25 1987-09-01 Kougakushiya Eng Kk Optically image forming type non-contacting position measuring apparatus
US4854176A (en) * 1987-06-16 1989-08-08 Osaka Gas Co., Ltd. Fluidic flowmeter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237709U (en) * 1985-08-27 1987-03-06
JPS6287809A (en) * 1985-10-15 1987-04-22 Canon Inc Method for measuring multidirectional distance
JPS62197711A (en) * 1986-02-25 1987-09-01 Kougakushiya Eng Kk Optically image forming type non-contacting position measuring apparatus
US4854176A (en) * 1987-06-16 1989-08-08 Osaka Gas Co., Ltd. Fluidic flowmeter

Similar Documents

Publication Publication Date Title
US4317991A (en) Digital auto focus system utilizing a photodetector array
US4367027A (en) Active auto focus system improvement
US4867570A (en) Three-dimensional information processing method and apparatus for obtaining three-dimensional information of object by projecting a plurality of pattern beams onto object
JP3404607B2 (en) Confocal optics
US4534636A (en) Automatic focusing device for camera
US4571048A (en) Automatic focusing system of photographic camera
JPS62223734A (en) Range finder
JPH0380290B2 (en)
SE437579B (en) DEVICE FOR READING AN OPTICAL RECORDER WITH A RADIATOR-REFLECTING INFORMATION STRUCTURE
JPS62201301A (en) Laser interferometric length measuring machine
JP2003166856A (en) Optical encoder
US4874239A (en) Distance measuring device
JPS59187211A (en) Photoelectric distance measuring device
US4688920A (en) Focus state detecting system
JPS6120808A (en) Range measuring instrument
JPS59187212A (en) Photoelectric distance measuring device
EP0310231A2 (en) Optical measuring apparatus
US5719663A (en) Range finder apparatus
JPS58191915A (en) Optical position sensor
JPH0128407Y2 (en)
JP3348908B2 (en) Distance measuring device
JPH0317210Y2 (en)
SU1281950A1 (en) Device for determining focal plane of lens
JPS6159433A (en) Photometric device for camera
JPS59193408A (en) Distance measuring device