[go: up one dir, main page]

JPS59186256A - Zinc negative electrode for alkali battery - Google Patents

Zinc negative electrode for alkali battery

Info

Publication number
JPS59186256A
JPS59186256A JP6242883A JP6242883A JPS59186256A JP S59186256 A JPS59186256 A JP S59186256A JP 6242883 A JP6242883 A JP 6242883A JP 6242883 A JP6242883 A JP 6242883A JP S59186256 A JPS59186256 A JP S59186256A
Authority
JP
Japan
Prior art keywords
electrolyte
negative electrode
indium
powder
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6242883A
Other languages
Japanese (ja)
Inventor
Tsukasa Ohira
大平 司
Akira Miura
三浦 晃
Kanji Takada
寛治 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6242883A priority Critical patent/JPS59186256A/en
Publication of JPS59186256A publication Critical patent/JPS59186256A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture
    • H01M4/12Processes of manufacture of consumable metal or alloy electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To largely reduce the amalgamation rate of the zinc powder thereby to attain cost reduction and provide a battery substantially free from environmental nuisance, by using the mixture of amalgamated zinc powder, electrolyte soluble indium compound powder and powder of a water soluble high molecular compound serving as a gelling agent in which an alkali electrolyte is injected. CONSTITUTION:The gel negative electrode 5 is provided by injecting an alkali electrolyte in the mixture of amalgamated zinc powder, an indium compound such as indium oxide and indium hydroxide soluble in the electrolyte, and a water soluble high molecular compound serving as a gelling agent. And, for example, a water solution of 10mol/l of KOH free from ZnO is used as the electrolyte. The positive electrode 2, the negative electrode 5, the separator 3, and the electrolyte carrier for negative electrode 4 are impregnated with the electrolyte and no free electrolyte is allowed to be present. Since the indium hydroxide mixed in the negative electrode 5 is soluble in the alkali electrolyte, the indium ions are adsorbed to the surfaces of the particles of the amalgamated zinc powder and elevate the hydrogen overvoltage and thereby suppress the generation of hydrogen gas by self-discharge of the zinc electrode.

Description

【発明の詳細な説明】 良に関する。[Detailed description of the invention] Regarding good.

従来例の構成とその問題点 一般にアルカリ電池用亜鉛負極は、亜鉛のアルカリ電解
液による腐食溶解が激しく、それに伴う水素ガス発生か
ら自己放電が大きくなる。これを防ぐ対策として、水素
過電圧を高く維持させることが必要であり、これまでは
、水銀による氷化や、電解液KZn○を飽和近く溶解さ
せるなどの方法が採られている。この氷化率は、一般的
には10%近傍が多く使用されている。そのためにコス
ト高となり、−1だ安全性の面からも好ましくない。特
に放電済みの電池を廃棄した場合、亜鉛中の水銀によっ
て環境を汚染し、公害問題を引き起こす危険性がある。
Conventional Structures and Problems Generally, zinc negative electrodes for alkaline batteries are subject to severe corrosion and dissolution by the alkaline electrolyte of zinc, resulting in increased self-discharge due to hydrogen gas generation. As a measure to prevent this, it is necessary to maintain a high hydrogen overvoltage, and methods such as freezing with mercury or dissolving the electrolytic solution KZn○ near saturation have been adopted so far. This freezing rate is generally around 10%. Therefore, the cost is high, and -1 is not preferable from the viewpoint of safety. In particular, when discharged batteries are disposed of, there is a risk that the mercury in zinc will contaminate the environment and cause pollution problems.

電解液中への飽和に近いZnOの添加友 は、亜鉛負極の放電応を阻害するものであわ、電ハ 解液の粘度が高くなり、電気伝導度が低下するだめ、特
に急放電特性が悪くなる。
Addition of nearly saturated ZnO to the electrolytic solution inhibits the discharge response of the zinc negative electrode, increases the viscosity of the electrolytic solution, lowers the electrical conductivity, and causes particularly poor rapid discharge characteristics. Become.

発明の目的 本発明は、このような水銀による公害の危険性を低減し
、なやかつ従来の氷化亜鉛極を用いた電発明の構成 本発明は、氷化亜鉛粉末と、酸化インジウム、水酸化イ
ンジウムなどの電解液可溶性インジウム化合物と、水溶
性高分子のゲル化剤の混合物にアルカリ電解液を注入し
て、ゲル負極としたものである。
OBJECTS OF THE INVENTION The present invention reduces the risk of pollution caused by mercury, and provides an electrical structure using flexible and conventional frozen zinc electrodes. An alkaline electrolyte is injected into a mixture of an electrolyte-soluble indium compound such as indium oxide and a water-soluble polymer gelling agent to form a gel negative electrode.

実施例の説明 以下、本発明をその実施例によシ説明する。Description of examples Hereinafter, the present invention will be explained with reference to examples thereof.

図面は実施例のボタン形酸化銀電池を示す。1はニッケ
ルメッキした鉄製容器、2は酸化銀とリン状黒鉛と二酸
化マンガンとを重量比で90 =5:5の割合で混合し
た合剤を加圧成形した正極で容器1に密接されている。
The drawing shows a button-shaped silver oxide battery according to an example. 1 is a nickel-plated iron container, 2 is a positive electrode made of a pressure-molded mixture of silver oxide, phosphorous graphite, and manganese dioxide in a weight ratio of 90 = 5:5, which is closely attached to container 1. .

3はセパレータテ、ポリエチレンフィルムにメタクリル
酸をグラフト重合させたものとセロハン半透膜をラミネ
ート処理した二層からなる。4は負極側の含液材でナイ
ロン不織布からなる。5は水化率2%の亜鉛粉末と、氷
化亜鉛粉に対し1重量係の水酸化インジウムと、3重量
係の架橋型のポリアクリル酸ナトリウム粉末との混合物
に、後述の電解液を注入したゲル負極である。6は負極
端子を兼ねる封目板、7はナイロン製のガスケット、8
は正極集電リングである。
Separator 3 consists of two layers: a polyethylene film graft-polymerized with methacrylic acid and a cellophane semipermeable membrane laminated together. 4 is a liquid-containing material on the negative electrode side, which is made of nylon nonwoven fabric. 5 is a mixture of zinc powder with a hydration rate of 2%, indium hydroxide in a ratio of 1 weight to frozen zinc powder, and crosslinked sodium polyacrylate powder in a ratio of 3 weight to frozen zinc powder, injecting the electrolytic solution described below. This is a gel negative electrode. 6 is a sealing plate that also serves as a negative electrode terminal, 7 is a nylon gasket, 8
is the positive current collecting ring.

電解液にはZnOを含まない10モル/gのKOH水溶
液を用い、正極、負極、セパレータ及び負極含液材に吸
収含浸させ遊離の液がないようにしである。
A 10 mol/g KOH aqueous solution containing no ZnO was used as the electrolytic solution, and was absorbed and impregnated into the positive electrode, negative electrode, separator, and negative electrode liquid-containing material so that no free liquid remained.

この電池のサイズはJIS呼称5R44で容量は1so
mAhである。
The size of this battery is JIS designation 5R44 and the capacity is 1so.
It is mAh.

上記電池をAとする。これと比較のために、負極に水酸
化インジウムを添加せず、氷化率10チの亜鉛粉末を使
用し、電解液にZn○を飽和近く溶解したものを適用し
た構成の電池をBとする。
The above battery is referred to as A. For comparison, a battery with a configuration in which indium hydroxide is not added to the negative electrode, zinc powder with a freezing rate of 10 cm is used, and an electrolyte in which Zn○ is dissolved near saturation is applied is designated as B. .

さらに水酸化インジウムを添加せずに水化率2%の亜鉛
粉末を用い、電解液はZnOを含まない10モル/l 
KOH水溶液を使用した電池をCとする。
Furthermore, zinc powder with a hydration rate of 2% was used without adding indium hydroxide, and the electrolyte was 10 mol/l without ZnO.
C is a battery using a KOH aqueous solution.

これらの電池缶50個を60℃で40日間保存で6oΩ
で放電したときの電池電圧が1.o■に低下するまでの
放電時間との比較を次表に示す。
6oΩ when 50 of these battery cans are stored at 60℃ for 40 days.
The battery voltage when discharged is 1. A comparison with the discharge time until the discharge time decreased to o■ is shown in the following table.

この表の結果から各々の負極構成条件の差が明確に現わ
れている。つまシ、従来の水化率10%で電解液にZn
Oを飽和した電池Bは、耐漏液性は優れているが、急放
電特性は悪い。これは電解液中のZxO量に影響される
だめである。一般に亜鉛極の放電反応は、式 %式% からも明らかなように、OH−の供給と反応生成物のZ
 n (OH) 4−の逸散が支配的である。このよう
な理由から電池Bの場合、電解液中にZnOが飽和近く
添加させることにより電解液の粘度が高くなり、電気伝
導度が低下するため急放電が阻害される。
The results in this table clearly show the differences in the negative electrode configuration conditions. Tamashi, Zn in electrolyte with conventional hydration rate of 10%
Battery B, which is saturated with O, has excellent leakage resistance but poor rapid discharge characteristics. This is because it is affected by the amount of ZxO in the electrolyte. In general, the discharge reaction of a zinc electrode involves the supply of OH- and the reaction product Z, as is clear from the formula %.
n (OH) 4− dissipation is dominant. For these reasons, in the case of battery B, adding ZnO to near saturation in the electrolytic solution increases the viscosity of the electrolytic solution, lowering the electrical conductivity and inhibiting rapid discharge.

電池Cは耐漏液性が著しく悪い。これは2%の水化率で
は亜鉛粒子の表面にとどまる水銀量が少なく、水素過電
圧を十分安定した状態で高く維持することができないた
めである。すなわち、亜鉛粒子表面にあった水銀が、保
存中に亜鉛の結晶粒界に拡散移動し、表面の水銀濃度が
低下して水素過電圧が下がり、水素ガス発生が起きて漏
液につながったものである。電池Cの急放電特性は電池
Bより良好であるが、試作直後から電池内部で微量のガ
スが発生して電解液のバランスや、亜鉛粒子間相互の接
触状態が悪くなるため、放電時間がジウムがアルカリ電
解液に可溶性であるため、インジウムイオンが汞化亜鉛
粉末の粒子表面に吸着して水素過電圧を高める作用をし
、亜鉛極の自己放電による水素ガス発生を抑制する。
Battery C has extremely poor leakage resistance. This is because at a hydration rate of 2%, the amount of mercury remaining on the surface of the zinc particles is small, making it impossible to maintain a sufficiently high hydrogen overvoltage in a stable state. In other words, the mercury on the surface of the zinc particles diffused to the grain boundaries of the zinc during storage, reducing the mercury concentration on the surface and lowering the hydrogen overvoltage, generating hydrogen gas and causing leakage. be. Although the rapid discharge characteristics of Battery C are better than Battery B, a small amount of gas is generated inside the battery immediately after prototype production, which deteriorates the balance of the electrolyte and the contact between zinc particles, so the discharge time is longer than that of Battery B. is soluble in an alkaline electrolyte, indium ions are adsorbed on the particle surface of the zinc hydride powder and act to increase the hydrogen overvoltage, suppressing hydrogen gas generation due to self-discharge of the zinc electrode.

しかし、無汞化亜鉛粉末に水酸化インジウムや酸化イン
ジウムを添加した場合は、インジウムイオンの無氷化亜
鉛粒子表面への吸着による水素過電圧の引き上げがある
が、これだけでは水素ガス発生を完全に抑えきれない問
題がある。
However, when indium hydroxide or indium oxide is added to ice-free zinc powder, the hydrogen overvoltage increases due to adsorption of indium ions to the surface of the ice-free zinc particles, but this alone cannot completely suppress hydrogen gas generation. There is a problem that cannot be solved.

亜鉛粒子表面の水銀は2%程度は必要で、これとインジ
ウムイオンの吸着との相乗効果によって保存時の安定性
を高めるものである。
About 2% mercury is required on the surface of the zinc particles, and the synergistic effect between this and the adsorption of indium ions improves the stability during storage.

一方、この電池Aの急放電特性が電池Cより優れている
のは、電解液中での亜鉛負極の安定性が影響しているた
めである。
On the other hand, the rapid discharge characteristics of Battery A are superior to Battery C because of the stability of the zinc negative electrode in the electrolyte.

なお、負極の氷化率が2%未満では亜鉛粒子表面の水銀
濃度が不均一になシやすく、また2%以上の水化率では
保存中の水素ガス抑制効果が変らない傾向がおる。従っ
て水化率は2%で十分と言える。
It should be noted that if the icing rate of the negative electrode is less than 2%, the mercury concentration on the surface of the zinc particles tends to become uneven, and if the hydration rate is 2% or more, the effect of suppressing hydrogen gas during storage tends not to change. Therefore, it can be said that a hydration rate of 2% is sufficient.

一方、ゲル化剤の架橋分岐型ポリアクリル酸ナトリウム
は、耐アルカリ性や、水化亜鉛粉末との混合性や電解液
の吸収速度及び長期に保存した場合の亜鉛粒子を均一に
分散保持する特性が優れている。
On the other hand, the cross-linked branched sodium polyacrylate used as a gelling agent has excellent alkali resistance, miscibility with zinc hydrate powder, absorption rate of electrolyte, and ability to maintain uniform dispersion of zinc particles when stored for a long period of time. Are better.

直鎖型のポリアクリル酸ナトリウムは、この亜鉛粒子の
均一分散保持性能が小さくなるため、保存後に活物質亜
鉛が凝集して反応表面積を減少させる欠点がある。さら
に、電解液を注入しゲル化したゲル状態で曳糸性が強く
取扱いにくくなるためこの現象の少ない架橋分岐型が好
ましい。他に天然系の高分子糊料も各種あるが、いずれ
も耐アルカリ性が乏しく保存中に粘度が低下する欠点が
ある。その結果、亜鉛粒子の均一分散保持が著しく低下
する問題が生じるため天然系の使用は好ましくない。
Linear sodium polyacrylate has a disadvantage that the ability to maintain uniform dispersion of the zinc particles is low, and the active material zinc aggregates after storage, reducing the reaction surface area. Furthermore, since the gel state obtained by injecting an electrolytic solution and forming a gel has strong stringiness and becomes difficult to handle, a cross-linked and branched type is preferable because this phenomenon is less likely to occur. There are various other natural polymer pastes, but they all have the disadvantage of poor alkali resistance and a decrease in viscosity during storage. As a result, the use of natural systems is not preferable because a problem arises in which the retention of uniform dispersion of zinc particles is significantly reduced.

可溶性インジウム化合物としては、水酸化インジウム(
I n (OH,) s)の他酸化インジ゛ウム(工n
203)粉末を用いることができ、これらは水化亜鉛粉
末及びゲル化剤粉末との混合性が良い。
As a soluble indium compound, indium hydroxide (
I n (OH,) s) and indium oxide (OH,) s)
203) Powders can be used and these have good miscibility with zinc hydrate powder and gelling agent powder.

実施例ではボタン形酸化銀電池を例にあげたが、他のア
ルカリ電解液を用いる所詣アルカリー次電池用ゲル亜鉛
極として適用できる。
In the examples, a button-type silver oxide battery was used as an example, but the present invention can also be applied as a gel zinc electrode for a secondary alkaline battery using other alkaline electrolytes.

発明の効果 以上のように、本発明によれば、亜鉛粉末の水化率を大
巾に低減でき、コストダウンと1.低公害化を図ること
ができる。
Effects of the Invention As described above, according to the present invention, the hydration rate of zinc powder can be significantly reduced, resulting in cost reduction and 1. It is possible to reduce pollution.

【図面の簡単な説明】[Brief explanation of the drawing]

図は実施例のボタン形酸化銀電池の縦断面図である。 2・・・・・正極、3・・・・・セパレータ、4・・・
・・・含液材、5・・・・・・負極。
The figure is a longitudinal cross-sectional view of a button-shaped silver oxide battery according to an example. 2...Positive electrode, 3...Separator, 4...
...Liquid-containing material, 5...Negative electrode.

Claims (1)

【特許請求の範囲】[Claims] 氷化亜鉛粉末と電解液に可溶性のインジウム化合物粉末
と水溶性高分子のゲル化剤粉末の混合物にアルカリ電解
液を注液したアルカリ電池用亜鉛負極。
A zinc negative electrode for alkaline batteries made by injecting alkaline electrolyte into a mixture of frozen zinc powder, electrolyte-soluble indium compound powder, and water-soluble polymer gelling agent powder.
JP6242883A 1983-04-08 1983-04-08 Zinc negative electrode for alkali battery Pending JPS59186256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6242883A JPS59186256A (en) 1983-04-08 1983-04-08 Zinc negative electrode for alkali battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6242883A JPS59186256A (en) 1983-04-08 1983-04-08 Zinc negative electrode for alkali battery

Publications (1)

Publication Number Publication Date
JPS59186256A true JPS59186256A (en) 1984-10-23

Family

ID=13199880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6242883A Pending JPS59186256A (en) 1983-04-08 1983-04-08 Zinc negative electrode for alkali battery

Country Status (1)

Country Link
JP (1) JPS59186256A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03280356A (en) * 1990-03-28 1991-12-11 Toshiba Battery Co Ltd Manufacture of gel state negative electrode for alkaline dry cell
EP0518659A2 (en) * 1991-06-11 1992-12-16 Fuji Electrochemical Co.Ltd. Alkaline battery
US6162484A (en) * 1990-07-23 2000-12-19 T. W. Burleson & Son Method for the production of a reduced calorie honey composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03280356A (en) * 1990-03-28 1991-12-11 Toshiba Battery Co Ltd Manufacture of gel state negative electrode for alkaline dry cell
US6162484A (en) * 1990-07-23 2000-12-19 T. W. Burleson & Son Method for the production of a reduced calorie honey composition
EP0518659A2 (en) * 1991-06-11 1992-12-16 Fuji Electrochemical Co.Ltd. Alkaline battery
EP0700104A1 (en) * 1991-06-11 1996-03-06 Fuji Electrochemical Co., Ltd Alkaline battery

Similar Documents

Publication Publication Date Title
US5626988A (en) Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture
JP3097347B2 (en) Nickel-metal hydride battery
US5587254A (en) Alkaline battery having a gelled negative electrode
US20060124894A1 (en) Method of manufacturing anode compositions for use in rechargeable electrochemical cells
US3880672A (en) Battery barrier and battery
KR100281729B1 (en) Nickel positive electrode and alkaline storage battery using the same
JP3042043B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
WO1997017737A1 (en) Rechargeable alkaline cells containing zinc anodes without added mercury
JPH04137368A (en) Nickel-hydrogen storage battery and its manufacture
CN104054196A (en) Positive electrode for alkaline storage battery and alkaline storage battery using same
US3433679A (en) Primary alkaline cell
JP3215447B2 (en) Zinc alkaline battery
JP2004534357A5 (en)
JPS59186256A (en) Zinc negative electrode for alkali battery
JP7611850B2 (en) Positive electrode for alkaline battery, alkaline battery and method for producing same
JP2019153402A (en) Alkali secondary battery
JPS58206048A (en) Alkaline battery
JPH0371738B2 (en)
JPH0737609A (en) Alkaline storage battery
JPS57170459A (en) Button type alkaline battery
JPS59186255A (en) Alkali primary battery
US3533843A (en) Zinc electrode and method of forming
JPH07335227A (en) Alkaline battery
JPS6158165A (en) Gelled negative electrode of nommercury sealed alkaline battery
JPH08279355A (en) Button type alkaline battery