[go: up one dir, main page]

JPS59185311A - Light control type optical switch - Google Patents

Light control type optical switch

Info

Publication number
JPS59185311A
JPS59185311A JP5994983A JP5994983A JPS59185311A JP S59185311 A JPS59185311 A JP S59185311A JP 5994983 A JP5994983 A JP 5994983A JP 5994983 A JP5994983 A JP 5994983A JP S59185311 A JPS59185311 A JP S59185311A
Authority
JP
Japan
Prior art keywords
thin film
film
optical
substrate
optical switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5994983A
Other languages
Japanese (ja)
Inventor
Takao Kawaguchi
隆夫 川口
Hideaki Adachi
秀明 足立
Kiyotaka Wasa
清孝 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5994983A priority Critical patent/JPS59185311A/en
Publication of JPS59185311A publication Critical patent/JPS59185311A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0338Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect structurally associated with a photoconductive layer or having photo-refractive properties

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To unite light sensors into one body, to facilitate formation of optical microelements, and to enhance characteristics of lowering noises and crosstalk by forming a photovoltaic film on a sapphire substrate, and electrically combining this film with control electrodes. CONSTITUTION:The intended optical switch is provided with a sapphire (alpha- alumina) substrate 21, two light guides 32 crossing each other made of a PLZT type thin film 31 formed on the substrate 21, 2 control electrodes 13 arranged on the guides 32 so as to set the electrode gap 131 having a constant space on the line bisecting the acuter intersecting angles of the intersecting point 33 of the two guides 32, and a buffer layer 14 lower in refractive index then the thin film 31, formed between the guides 32 and the electrodes 13. The light guides 32 are provided with protruded band-shaped parts 32B made of the thin film 31 on the surface of the film 31, a photovoltaic film 34 is formed on the substrate 21, and this film 34 is electrically combined with the electrodes 13.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光制御型光スイッチに関する。特に本発明は薄
膜光導波路用の全反射型の光制御型光スイッチの構成と
その構成材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a light-controlled optical switch. In particular, the present invention relates to the structure of a total reflection type optically controlled optical switch for thin film optical waveguides and its constituent materials.

従来例の構成とその問題点 従来、光制御型光スイッチとして例えばLiNbO3単
結晶のような電気光学効果による屈折率変化を利用した
光学材料が用いられていた。この場合、例えば第1図に
示すように表面を研磨したLimb’5単結晶基板11
の表面層にTi金属全拡散させて互いに交差する光導波
路12を形成するとともに、制御電極13を石英ガラス
からなるバッファ層14を介して光導波路の交差Wj1
6上に設け、さらに光起電力膜16を設け、この膜16
と電極13を電気的に接続した制御電極空隙131に電
界全印3、・− 加し、電極空隙131下の光導波路の屈折率を低下させ
低屈折率層を形成し、光導波路12中を伝搬する光を低
屈折率層との界面で全反射させ光スィッチにしようとす
るものであった。すなわち、たとえばβ1から12に進
む光を電圧の印加により11から15に変更させるもの
である。
Conventional Structure and Problems Conventionally, an optical material that utilizes a change in refractive index due to an electro-optic effect, such as LiNbO3 single crystal, has been used as a light-controlled optical switch. In this case, for example, as shown in FIG. 1, a Limb'5 single crystal substrate 11 with a polished surface
Ti metal is completely diffused in the surface layer to form optical waveguides 12 that cross each other, and the control electrode 13 is connected to the optical waveguides crossing Wj1 via a buffer layer 14 made of quartz glass.
6, and a photovoltaic film 16 is further provided, and this film 16
A full electric field 3, . The idea was to completely reflect the propagating light at the interface with the low refractive index layer to create an optical switch. That is, for example, the light traveling from β1 to β12 is changed from 11 to 15 by applying a voltage.

しかしながら、LiNbO3単結晶の電気光学効果によ
る屈折率の変化量Δnは、I KV/mmの電界でたか
だか10−4程度であり、例えば制御電極13のギャッ
プ(空隙131)の幅4μmの全反射型光スイッチの場
合、スイッチング動作させるためには60vB上もの電
圧が必要となり、低電圧駆動が困難であった。さらに、
この第1図の構造では、T1拡散に1000°C以上の
熱処理が必要であり、微小光学素子例えば微小レンズ、
プリズムなどの形成が困難であるとともに大面積の光起
電力膜16が必要となった。また、この種の基板では、
半導体素子例えばSlからなる微小光学素子のモノ1ノ
シツクな集積化が困難であり、高密度の光デバイス例え
ば光、IC用の光スィッチとじては実用性に欠くという
欠点があった。
However, the amount of change Δn in the refractive index due to the electro-optic effect of LiNbO3 single crystal is at most about 10-4 in an electric field of I KV/mm. In the case of an optical switch, a voltage of 60 vB or higher is required for switching operation, making it difficult to drive at a low voltage. moreover,
In the structure shown in FIG. 1, heat treatment of 1000°C or more is required for T1 diffusion, and micro optical elements such as micro lenses,
It is difficult to form prisms and the like, and a large-area photovoltaic film 16 is required. Also, with this type of board,
It is difficult to monolithically integrate microscopic optical elements made of semiconductor elements, such as Sl, and there is a drawback that they are impractical for high-density optical devices, such as optical switches for optical devices and ICs.

以」−の欠点を克服するだめに本発明者らは、電気光学
効果の大きいPLZT系ン専膜からなる光制御型光スイ
ッチを提案したOfなわち、第2図に示すように例えば
サファイヤ(α−アルミナ)基板21」−を1呆護被膜
22で覆い、この床護被膜22に互いに交差する溝23
を設は且つこの溝23にPLZTセラミクスを埋設する
ことによりRS (raised 5trip)型光導
波路24を形成し、さらに光導波路24」二に石英ガラ
スからなるバッファ層14を介して制御電極13を設け
、さらに光起電力膜26を形成した構造である。
In order to overcome the above drawbacks, the present inventors proposed a light-controlled optical switch made of a PLZT-based film with a large electro-optic effect. The α-alumina) substrate 21'' is covered with a protective coating 22, and grooves 23 intersecting with each other are formed in this protective coating 22.
A RS (raised 5 trip) type optical waveguide 24 is formed by embedding PLZT ceramics in this groove 23, and a control electrode 13 is further provided on the optical waveguide 24 via a buffer layer 14 made of quartz glass. , a structure in which a photovoltaic film 26 is further formed.

この第2図の構成においては、PLZT系薄膜からなる
光導波路24の電気光学効果は大きいので、光スィッチ
の低電圧駆動化が実現さn、同時に熱処理を要しないた
め形成が容易であり微小光学素子の同一基板上での一体
化が実現された。又、半導体素子との集積化もサファイ
ヤ基板の使用により形成が容易となった。さらに、比較
的小さな光起電力膜26を同一基板上に設けることがで
き、67:−、、、 膜26と電極13との電気的接続も容易で信頼性の高い
光スィッチを提供することができる。
In the configuration shown in FIG. 2, the electro-optic effect of the optical waveguide 24 made of a PLZT thin film is large, so the optical switch can be driven at a low voltage. Integration of elements on the same substrate was realized. Furthermore, integration with semiconductor elements has become easier due to the use of a sapphire substrate. Furthermore, the relatively small photovoltaic film 26 can be provided on the same substrate, and the electrical connection between the film 26 and the electrode 13 is easy, providing a highly reliable optical switch. can.

上記第2図の構成のPLZT糸薄膜光薄膜光制御型光ス
イッチ常の光の0N−OFFの使用には電界無印加時の
2本の出力光導波W!12 aの出力光強度比すなわち
分岐比が10dB程度で、又電界印加時と無印加時の同
一導波路の出力光強度比すなわち消光比が10dB程度
であるため使用しうる0しかし、1odB程度の分岐比
および消光比では信号伝送、特にアナログ伝送の場合漏
話特性がかならずしも良好ではない。また、この構造の
光導波路はマルチモード導波路であり、且つ高次モード
への変換が生じやす(S/N比が劣化し、伝送距離を長
くとれないという欠点があった。この点を改良するため
にシングルモード化すると上記構造では光伝搬損失が増
加し実現することができなかった。
The PLZT thin film optical thin film optically controlled optical switch having the configuration shown in Fig. 2 above can be used for normal light ON-OFF operation using two output optical waveguides W! when no electric field is applied. The output light intensity ratio of 12a, that is, the branching ratio, is about 10 dB, and the output light intensity ratio, that is, the extinction ratio of the same waveguide when an electric field is applied and when no electric field is applied, is about 10 dB. In terms of branching ratio and extinction ratio, crosstalk characteristics are not always good in signal transmission, especially in analog transmission. In addition, the optical waveguide with this structure is a multimode waveguide, and conversion to higher-order modes is likely to occur (the S/N ratio deteriorates and the transmission distance cannot be extended, which is a drawback.This point has been improved. In order to achieve this, if a single mode was used, the optical propagation loss would increase with the above structure, and this could not be achieved.

発明の目的 本発明の目的は、薄膜光導波路からなる光制御型光スイ
ッチの構造と構成材料を提供するもので6、−ζ・ ある。特に本発明の目的はPLZT系薄膜からなる光制
御型光スイッチの構造と構成材料を提供するものである
。すなわち本発明は、PLZT系薄膜光薄膜光制御型光
スイッチ路構造に改良を加え、消光比ならびに分岐比を
改善したものである。
OBJECTS OF THE INVENTION An object of the present invention is to provide the structure and constituent materials of an optically controlled optical switch comprising a thin film optical waveguide. In particular, an object of the present invention is to provide the structure and constituent materials of a light-controlled optical switch made of a PLZT-based thin film. That is, the present invention improves the PLZT thin film optically controlled optical switch path structure and improves the extinction ratio and branching ratio.

発明の構成 本発明は、サファイヤ(α−アルミナ)基板上にPLZ
T系薄膜からなる少くとも2本の互いに交差する光導波
路全形成し、上記交差路上に一定間隔の電極空隙を設け
、この電極空隙全上記光導波路の鋭角なる交差角の2等
分線上に位置させるように制御電極を光導波路の交差路
上に配置し、上記光導波路と制御電極との間にPLZT
系薄膜より小さい屈折率を有するバッファ層を設け、上
記光導波路を、上記PLZT系薄膜表面に帯型の上記P
LZT糸薄膜よりなる凸部(リッジ部)を形成して構成
し、さらに上記サファイヤ基板上に光起電力膜を設けか
つ光起電力膜と制御電極と電気的に結合させたものであ
る。
Structure of the Invention The present invention provides a method for forming PLZ on a sapphire (α-alumina) substrate.
At least two optical waveguides made of T-based thin films that intersect each other are formed, electrode gaps are provided at regular intervals on the crossing paths, and the electrode gaps are all located on the bisector of the acute intersection angle of the optical waveguides. A control electrode is placed on the intersection of the optical waveguides so that the control electrode is
A buffer layer having a refractive index smaller than that of the PLZT-based thin film is provided, and the optical waveguide is formed on the surface of the PLZT-based thin film in a band-shaped manner.
It is constructed by forming a convex part (ridge part) made of a thin film of LZT thread, and further, a photovoltaic film is provided on the sapphire substrate, and the photovoltaic film is electrically coupled to a control electrode.

実施例の説明 77.−1・ 第3図は本発明にかかる光スィッチの要部平面構造およ
び上記光スィッチを構成する光導波路の要部断面構造で
ある。同図において、サファイヤ(α−アルミナ)基板
21上にPLZT系薄膜31からなる少なくとも2本の
交差する光導波路32全形成し、この光導波路の交差路
33上に設けられた一定間隔の電極空隙131を有し、
電極空隙131が上記光導波路32の鋭角なる交差角の
2等分線上に位置し、かつ光導波路32の交差路33上
に上記空隙131を形成するように制御電極13を配置
し、光導波路32と制御電極13との間にPLZT系薄
膜31より小さい屈折率を有するバッファ層14を設け
、さらに、上記光導波路32を、PLZT系薄膜31の
一部32Aとこの321表面に形成した帯型のPLZT
系薄膜よりなるリッジ部32Bにて構成し、サファイヤ
基板21上に光起電力膜34を設けかつ電気的に起電力
膜34と制御電極13とを電気的に結合させて構成した
ものである。
Description of Examples 77. -1. FIG. 3 shows a planar structure of a main part of an optical switch according to the present invention and a sectional structure of a main part of an optical waveguide constituting the optical switch. In the figure, at least two intersecting optical waveguides 32 made of a PLZT thin film 31 are completely formed on a sapphire (α-alumina) substrate 21, and electrode gaps are provided at regular intervals on the intersecting paths 33 of the optical waveguides. has 131,
The control electrode 13 is arranged so that the electrode gap 131 is located on the bisector of the acute intersection angle of the optical waveguide 32 and forms the gap 131 above the intersection 33 of the optical waveguide 32. A buffer layer 14 having a refractive index smaller than that of the PLZT thin film 31 is provided between the PLZT thin film 31 and the control electrode 13, and the optical waveguide 32 is formed on a part 32A of the PLZT thin film 31 and on the surface of this 321. PLZT
The photovoltaic film 34 is provided on the sapphire substrate 21, and the electromotive film 34 and the control electrode 13 are electrically coupled to each other.

本発明者らは上記第3図の構造において、従来の光スィ
ッチにおける拡散型導波路と異なり、PLZT系薄膜で
IJ ソジ部32Bを有する光導波路32でもモード変
換が少なく、又光伝搬損失も問題とならないことを見い
出し、これらの発見に基づいて本発明にかかる光スイツ
チ全実現した。
The present inventors discovered that in the structure shown in FIG. 3, unlike the diffusion type waveguide in a conventional optical switch, the optical waveguide 32 made of a PLZT thin film and having the IJ solid portion 32B also has little mode conversion and optical propagation loss. We have found that there is no problem, and based on these findings, we have completely realized the optical switch according to the present invention.

すなわち、第1図に示したように従来の光スィッチにお
けるダレイトインテックス構造のTi −拡散型LiN
bO3光導波路と異なり、通常光導波路として用いられ
る膜厚061〜2μmのPLZT系薄膜31で、光導波
路32の幅3〜30μm、リッジ部32B と周辺部と
の膜厚差すなわちステップ高がll 、ジ部のPLZT
系薄膜全薄膜全体の猶以下の構造でマルチモード光導波
II!8ヲ形成しても、モード変換は問題なく、光伝搬
損失も20dB/CTL以下(波長1.06μmレーザ
光)で素子として実用しうろことを本発明者らは見い出
し、これらの発見に基づいて本発明にかかる光スィッチ
を実現した。そしてこのスイッチの分岐比特性は交差角
2°以上で14dB以上得られることを確認した。
That is, as shown in FIG.
Unlike the bO3 optical waveguide, the optical waveguide 32 is made of a PLZT thin film 31 with a thickness of 061 to 2 μm, which is normally used as an optical waveguide, and the width of the optical waveguide 32 is 3 to 30 μm, and the difference in film thickness between the ridge portion 32B and the peripheral portion, that is, the step height is 11. Jibu's PLZT
Multi-mode optical waveguide II with the structure of the entire thin film system! The present inventors have found that even if 8 is formed, there is no problem in mode conversion, and the optical propagation loss is less than 20 dB/CTL (laser light wavelength of 1.06 μm), making it suitable for practical use as a device.Based on these findings, An optical switch according to the present invention has been realized. It was confirmed that the branching ratio characteristic of this switch is 14 dB or more at a crossing angle of 2 degrees or more.

この場合、光導波路32の幅3μm未満では光像9ベ−
へ゛ 搬損失が20dB/cInを越え、又30μmを越える
と素子寸法が大きくなり実用的ではない。また、ステッ
プ高かりッジ部32Bt有する部分の膜厚の1/1以上
になると高次モード変換が多くなり本発明の特長が現れ
にくくなった。さらに、上記構造の光導波路32により
、T1−拡散型LiNbO5光導波路に見られた光導波
路の広がりがなく、又ステップ高も500nml、J下
でよいため、平面構成が容易であり微小なマイクロレン
ズの組み込みのできることも確認した。
In this case, if the width of the optical waveguide 32 is less than 3 μm, the optical image 9 base
If the propagation loss exceeds 20 dB/cIn or exceeds 30 μm, the element size becomes large and is not practical. Further, when the film thickness is 1/1 or more of the portion having the step height portion 32Bt, higher order mode conversion increases and the features of the present invention become difficult to manifest. Furthermore, the optical waveguide 32 with the above structure eliminates the expansion of the optical waveguide seen in the T1-diffuse type LiNbO5 optical waveguide, and the step height can be as low as 500 nm, J or less, making it easy to form a planar configuration and making it possible to use a minute microlens. We also confirmed what can be done with the built-in.

捷だ、本発明者らは制御電極13の構成全詳細に調べた
結果、最適の寸法の有することを見い出込みにより空隙
下の低屈折率層を光波が通過し、10μm以上にすると
電界が光分に空隙に印加されないので駆動電圧が高くな
った。又、空隙131の長さは光導波路32の交差部全
体にわたって形10、−二・ 成すると最良の消光比が得られたが、少なくとも交差部
の長さの%以上あれば交差角2°で14dB以上得られ
実用上有用であることを確認した。
As a result of investigating the structure of the control electrode 13 in detail, the inventors of the present invention found that it has the optimum dimensions.The light wave passes through the low refractive index layer under the gap due to the indentation, and when the diameter is 10 μm or more, the electric field is reduced. Since no light is applied to the air gap, the driving voltage becomes higher. In addition, the best extinction ratio was obtained when the length of the air gap 131 was in the shape of 10, -2 over the entire intersection of the optical waveguides 32, but if it was at least % of the length of the intersection, the intersection angle was 2°. It was confirmed that 14 dB or more was obtained and that it is practically useful.

さらに、本発明者らは光起電力膜34をサファイヤ基板
21」二に直接形成し、制御電極13と電気的に結合す
るか、あるいは光起電力膜34をサファイヤ基板31上
に接着層を介して一体化し制御電極13と電気的に結合
たとえばA[ワイヤのボンティングにより結合しても静
電および誘導電気雑音が殆ど印加しないこと全確認した
。又、光起電力膜34は制御電極13に雑音が印加され
ず取扱いが容易なためサファイヤ基板21と一体化して
おればよく、第3図の配置に制限されるものでない。こ
の構成で光起電力膜34に光音照射しスイッチング動作
させると雑音レベルが低く且つ漏話特性の優れた出力光
の得られることを確認した。
Further, the present inventors have either formed the photovoltaic film 34 directly on the sapphire substrate 21'' and electrically coupled it to the control electrode 13, or formed the photovoltaic film 34 on the sapphire substrate 31 via an adhesive layer. It has been confirmed that almost no electrostatic or induced electrical noise is applied even when the electrodes are integrated and electrically connected to the control electrode 13, for example, by bonding A [wire]. Further, since the photovoltaic film 34 does not apply noise to the control electrode 13 and is easy to handle, it is sufficient if it is integrated with the sapphire substrate 21, and the arrangement is not limited to that shown in FIG. It has been confirmed that with this configuration, when the photovoltaic film 34 is irradiated with light sound and subjected to a switching operation, output light with a low noise level and excellent crosstalk characteristics can be obtained.

本発明者らは、この種の構成において構成材料をさらに
詳細に調べた結果、イオン衝撃蒸着法たとえばマグネト
ロンスパッタ法を用いてPLZT糸薄膜31を形成する
と、電気光学効果の太きい11べ一7一 組成領域の存在することを発見し、この発見に基づきさ
らに有効な光スィッチが得られることを見い出した。す
なわち、本発明者らはスパッタ用ターゲット組成におい
てpbおよびTiのモル比率Pb/Tiが、0.65 
(Pb7/’Ti (0,90の範囲においてLiNb
O3単結晶と同等もしくはそれ以上の電気光学効果を有
すること見出した。さらにpb/Tiモル比率が0.7
 (Pb/Ti (0,8であれば、Limb’s単結
晶に比べ2倍以上の電気光学効果の有することも見出し
たOPb/Ti<0.66あるいはPb /Ti ) 
0.9 o tr)場合LiNbO3単結晶以下であり
本発明の目的にとって望ましくない。なお、従来セラミ
クス材料においては、この0.66〈Pb / Ti 
(0,90範囲の組成領域では電気光学効果は期待され
てなく、測定データもなかった。本発明者らは、この組
成範囲を含む領域で薄膜化を試み、第4図に示すように
セラミクス材料で予想されなかった大きな電気光学効果
を用いて光スイツチ全構成し、駆動電圧の低い光スィッ
チを形成できることを確認した。
As a result of further detailed investigation of the constituent materials in this type of configuration, the present inventors found that when the PLZT yarn thin film 31 is formed using an ion bombardment deposition method, for example, a magnetron sputtering method, the electro-optical effect is large. We have discovered that a single compositional region exists, and based on this discovery we have found that a more effective optical switch can be obtained. That is, the present inventors determined that the molar ratio Pb/Ti of pb and Ti in the sputtering target composition was 0.65.
(Pb7/'Ti (LiNb in the range of 0,90
It was found that it has an electro-optical effect equivalent to or better than that of an O3 single crystal. Furthermore, the pb/Ti molar ratio is 0.7
(OPb/Ti < 0.66 or Pb/Ti which we found to have more than twice the electro-optic effect compared to Limb's single crystal when Pb/Ti (0.8))
0.9 o tr) is less than a LiNbO3 single crystal and is not desirable for the purpose of the present invention. In addition, in conventional ceramic materials, this 0.66〈Pb/Ti
(In the composition range of 0.90, no electro-optic effect was expected, and there was no measurement data.) The present inventors attempted to thin the film in the region including this composition range, and as shown in Fig. It was confirmed that the entire optical switch could be constructed using a large electro-optic effect that was not expected in the material, and that an optical switch with low driving voltage could be formed.

第4図において、Pb/Tiの比率ケ変えたときの電気
光学効果の実測値を示す。同図において、曲線41はP
LZT系薄膜の2Kv7’mmの電界印加時の電気光学
効果のPb/Tiモル比率依存性を示す。この曲線41
との比較のため曲線42にLiNb05単結晶の特性を
示した。同図より、Pb/T1 モル比率が、0.65
 (Pb /Ti (0,90の範囲ではLiNbOx
よりも大きい電気光学効果が得られ、上記組成において
本発明にかかる光スィッチを構成すると、光起電力膜3
4に光を照射し所定の電圧を発生させた場合制御電極1
3の空隙131の間隔4μmで20Vでマルチモード光
が完全にスイッチング動作した。
FIG. 4 shows the measured values of the electro-optic effect when the Pb/Ti ratio is changed. In the figure, the curve 41 is P
The dependence of the electro-optical effect on the Pb/Ti molar ratio when an electric field of 2Kv7'mm is applied to an LZT-based thin film is shown. This curve 41
For comparison, curve 42 shows the characteristics of LiNb05 single crystal. From the same figure, the Pb/T1 molar ratio is 0.65
(Pb/Ti (LiNbOx in the range of 0,90
When the optical switch according to the present invention is constructed with the above composition, a larger electro-optic effect can be obtained, and the photovoltaic film 3
When the control electrode 1 is irradiated with light and a predetermined voltage is generated, the control electrode 1
The multimode light was completely switched at 20 V with the gap 131 of No. 3 being 4 μm.

第6図において上記第3図の構成の光スィッチの印加電
圧を変化させたときの出力光強度の実測値を示した0従
来、PLZT薄膜はLiNbO3結晶(ε≧1oO)よ
り誘電率が犬きく、たとえば2B10/1ooの組成の
PLZT薄膜の誘電率はおよそ200Qあり、通常バッ
ファ層として低誘電率の材料を用いるため電界が光導波
路に印加131:、’ されないと考えられていた。しかし、第6図に示すよう
に、20Vでスイッチング動作しており、同一制御電極
空隙間隔のT1拡散LiNb03光導波路光スイツチの
動作電圧60〜60Vの′V2以下の動作電圧であり、
実用上有効であることを確認した。
Figure 6 shows the actual measured values of the output light intensity when the applied voltage of the optical switch having the configuration shown in Figure 3 is varied. Conventionally, PLZT thin films have a dielectric constant that is much higher than that of LiNbO3 crystals (ε≧1oO). For example, the dielectric constant of a PLZT thin film with a composition of 2B10/1oo is approximately 200Q, and it was thought that an electric field would not be applied to the optical waveguide because a low dielectric constant material is normally used as the buffer layer. However, as shown in FIG. 6, the switching operation is performed at 20 V, and the operating voltage is lower than the operating voltage of 60 to 60 V of the T1 diffused LiNb03 optical waveguide optical switch with the same control electrode gap spacing.
It was confirmed that it is practically effective.

さらに本発明者らはPtZT系薄膜310111面が基
板表面に平行であれば光スィッチとして有効であること
を見い出した。すなわち、上記PLZT系薄膜31は制
御電極13の主平面内における方位に関係なく大きな電
気光学効果を有していることを発見した。このため、光
導波路32の主平面内での形成方位が任意であり、Li
N’bO3単結晶基板に比べ非常に形成が容易であると
いう利点がある。
Furthermore, the present inventors have discovered that the PtZT thin film 310111 plane is effective as an optical switch if it is parallel to the substrate surface. That is, it has been discovered that the PLZT thin film 31 has a large electro-optic effect regardless of the orientation within the main plane of the control electrode 13. Therefore, the optical waveguide 32 can be formed in any direction within the main plane, and Li
It has the advantage of being much easier to form than an N'bO3 single crystal substrate.

さらに本発明者らはバッファ層14として、酸化メンタ
ル、酸化チタン、酸化ジルコニウム、酸化亜鉛などの酸
化物あるいは硫化ヒ素、硫化亜鉛などの硫化物が有効で
あることを見い出した。これらの材料はPLZT系薄膜
31との接着性75(良く、又光伝搬損失も増加させる
ことなく形成でき14゜ ることを確認した。特に酸化タンタルはPLZT系薄膜
31上でも結晶核が出来にくい非晶質膜で光伝搬特性に
優れ、且つ可視光から赤外まで透明であり、又屈折率は
2.1で比較的大きく誘電率も2o程度なので誘電率の
大きいPLZT系薄膜に電界を印加する場合有効である
こと全確認した。
Furthermore, the present inventors have found that oxides such as mental oxide, titanium oxide, zirconium oxide, and zinc oxide, or sulfides such as arsenic sulfide and zinc sulfide are effective as the buffer layer 14. It was confirmed that these materials have good adhesion to the PLZT thin film 31 of 75 degrees (14 degrees) and can be formed without increasing light propagation loss.Tantalum oxide in particular is difficult to form crystal nuclei even on the PLZT thin film 31. It is an amorphous film with excellent light propagation characteristics and is transparent from visible light to infrared light.It also has a relatively large refractive index of 2.1 and a dielectric constant of about 2o, so an electric field is applied to a PLZT thin film with a high dielectric constant. All confirmed to be valid.

具体例1 基板21として表面研磨さ扛たサファイヤ(α−アルミ
ナ)0面基板(0001)i用い、上記サファイヤ0面
基板21上に高周波マグネトロンスパッタにより厚さ0
.4μmのPLZT系薄膜31を蒸着した。この場合タ
ーゲットの組成は、PLZT(2810/100 )、
スパッタターゲット径φ100mm 、基板温度680
℃、スパッタ電力2o○Wであった。蒸着されたPLZ
T系薄膜の構造は(111)面の単結晶であり、屈折率
は2.6 (Ha −N6レーザ゛0.6328μm)
であった。
Specific Example 1 A surface-polished sapphire (α-alumina) 0-sided substrate (0001) i was used as the substrate 21, and the sapphire 0-sided substrate 21 was coated with a thickness of 0 by high-frequency magnetron sputtering.
.. A 4 μm thick PLZT thin film 31 was deposited. In this case, the composition of the target is PLZT (2810/100),
Sputter target diameter φ100mm, substrate temperature 680mm
℃, and the sputtering power was 2o○W. Deposited PLZ
The structure of the T-based thin film is a single crystal with (111) plane, and the refractive index is 2.6 (Ha-N6 laser 0.6328 μm)
Met.

次に、このPLZT系層膜31の表面を例えば光導波路
幅20μm、交差角2°となるように、フォトレジスト
(例えばAZ1450B)でマス167、  ・ キングして、PLZT系薄膜31をイオンビームエツチ
ング法により例えば66 nmたけエツチングを施した
。このように加工するとりツジ部32Bを有する導波路
32が形成され、光はIJ ツジ部32Bfz有する導
波路32に閉じ込められ伝搬することが可能となる。次
に、PLZT系薄膜31上に、Ta205膜をマグネト
ロンスノぐツタ法によりバッファ層14として蒸着した
0蒸着されたTa 205  膜は非結晶であり、屈折
率は2.1 (He −極13と電気的に結合し、光ス
ィッチを構成した0上記の構成において、例えばHe−
Neレーザ光を光起電力膜34に照射し、出力電圧20
VIJ、上で、スイッチング動作することを確認した。
Next, the surface of this PLZT-based layer film 31 is masked with photoresist (e.g., AZ1450B) 167 so that the optical waveguide width is 20 μm and the intersection angle is 2°, and the PLZT-based thin film 31 is subjected to ion beam etching. For example, etching was performed to a depth of 66 nm using a method. By processing in this way, a waveguide 32 having a threaded portion 32B is formed, and light can be confined and propagated in the waveguide 32 having an IJ threaded portion 32Bfz. Next, a Ta205 film was deposited as a buffer layer 14 on the PLZT thin film 31 by the magnetron snog method.The deposited Ta205 film was amorphous and had a refractive index of 2.1 (He In the above configuration, for example, He-
The photovoltaic film 34 is irradiated with Ne laser light, and the output voltage is 20
It was confirmed that the switching operation was performed on the VIJ.

又、上記光スィッチを金属容器内に設置し、光ファイバ
を通して光起電力膜に光を照射しても同様にスイッチン
グ動作し、分岐比、消光比の改善により従来のLiNb
O3光導波路光スィッチにない耐雑音性および漏話特性
の憂れたことを確認した。
In addition, even if the above optical switch is installed in a metal container and light is irradiated onto the photovoltaic film through an optical fiber, the switching operation will be the same, and by improving the branching ratio and extinction ratio, it will be able to perform the same switching operation.
It was confirmed that the O3 optical waveguide optical switch had poor noise resistance and crosstalk characteristics.

発明の効果 以上のように本発明にかかる光制御型光スイッチにおい
ては、従来のT1拡散光導波路光スィッチにおいて形成
のできなかった光検出素子全一体化でき、微小光学素子
も容易に形成できる。更にマルチモードであるにもかか
わらず、低雑音であり漏話特性も優れており、その工業
的価値は犬なるものである。
Effects of the Invention As described above, in the optically controlled optical switch according to the present invention, the photodetecting elements, which could not be formed in the conventional T1 diffused optical waveguide optical switch, can be completely integrated, and micro optical elements can also be easily formed. Furthermore, although it is a multi-mode device, it has low noise and excellent crosstalk characteristics, and its industrial value is outstanding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光制御型光スイッチの構造を示す斜視図
、第2図は本発明者らの提案にかかる元系薄膜の2 K
V / mmの電圧印加時における複屈折率変化を示す
図、第6図は本発明の一実施例にかかる光制御型光スイ
ッチのスイッチング特性を示す図である。 175 ご・ 13・・・・・・制御電極、14・・・・・・バッファ
層、21・・・・・・サファイヤ基板、31・・・・・
・PLZT系薄膜、32・・・・・・光導波路、32B
・・・・・・リッジ部(凸部)、第1図    15 第2図   14  ′25 第3図 第4図 pb71−、    (ル 比 卑 第5図 6万U貫rL(v〕
Fig. 1 is a perspective view showing the structure of a conventional optically controlled optical switch, and Fig. 2 is a perspective view showing the structure of a conventional optically controlled optical switch.
FIG. 6 is a diagram showing the change in birefringence when a voltage of V/mm is applied, and FIG. 6 is a diagram showing the switching characteristics of the optically controlled optical switch according to an embodiment of the present invention. 175 13... Control electrode, 14... Buffer layer, 21... Sapphire substrate, 31...
・PLZT thin film, 32... Optical waveguide, 32B
・・・・・・Ridge part (convex part), Fig. 1 15 Fig. 2 14 '25 Fig. 3 Fig. 4 pb71-,

Claims (1)

【特許請求の範囲】 (1)サファイヤ(α−アルミナ)基板と上記サファイ
ヤ基板上に設けられたPLZT系薄膜からなる少なくと
も2本の互いに交差する光導波路と、上記交差路」二に
設けられた一定間隔の電極空隙と、上記電極空隙が上記
導波路の鋭角なる交差角の2等分線上に位置するように
上記光導波路の交差路上に配置された制御電極と、上記
光導波路と制御電極との間に設けた上記PLZT系薄膜
より小さい屈折率を有するバッファ層とを備え、上記光
導波路を、上記PLZT系薄膜記制御電極とを電気的に
結合させたことを特徴とする光制御型光スイッチ0 (2)PLZT系薄膜において、pbとTiのモル27
51、 比率Pb/Tiが、 0.65 くPb/Ti≦0.90 の範囲にあることを特徴とする特許請求の範囲第1項記
載の光制御型光スイッチ。
[Scope of Claims] (1) at least two mutually intersecting optical waveguides made of a sapphire (α-alumina) substrate and a PLZT thin film provided on the sapphire substrate; electrode gaps at regular intervals; a control electrode disposed on the intersection of the optical waveguide such that the electrode gap is located on a bisector of an acute intersection angle of the waveguide; and the optical waveguide and the control electrode. a buffer layer having a refractive index smaller than that of the PLZT thin film provided between the two, and the optical waveguide is electrically coupled to the control electrode of the PLZT thin film. Switch 0 (2) In the PLZT thin film, the moles of pb and Ti are 27
51. The optically controlled optical switch according to claim 1, wherein the ratio Pb/Ti is in the range of 0.65 Pb/Ti≦0.90.
JP5994983A 1983-04-07 1983-04-07 Light control type optical switch Pending JPS59185311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5994983A JPS59185311A (en) 1983-04-07 1983-04-07 Light control type optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5994983A JPS59185311A (en) 1983-04-07 1983-04-07 Light control type optical switch

Publications (1)

Publication Number Publication Date
JPS59185311A true JPS59185311A (en) 1984-10-20

Family

ID=13127898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5994983A Pending JPS59185311A (en) 1983-04-07 1983-04-07 Light control type optical switch

Country Status (1)

Country Link
JP (1) JPS59185311A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63229426A (en) * 1987-03-18 1988-09-26 Fujitsu Ltd Optical wiring method between semiconductor devices and semiconductor elements
JPH02190818A (en) * 1989-01-20 1990-07-26 Mitsubishi Mining & Cement Co Ltd Optical controller
JPH0588122A (en) * 1991-03-01 1993-04-09 Internatl Business Mach Corp <Ibm> Photoelectron switch
US6810176B2 (en) 2000-08-07 2004-10-26 Rosemount Inc. Integrated transparent substrate and diffractive optical element
US6987901B2 (en) 2002-03-01 2006-01-17 Rosemount, Inc. Optical switch with 3D waveguides
US7003187B2 (en) 2000-08-07 2006-02-21 Rosemount Inc. Optical switch with moveable holographic optical element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57173820A (en) * 1981-04-20 1982-10-26 Matsushita Electric Ind Co Ltd Optical switch

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57173820A (en) * 1981-04-20 1982-10-26 Matsushita Electric Ind Co Ltd Optical switch

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63229426A (en) * 1987-03-18 1988-09-26 Fujitsu Ltd Optical wiring method between semiconductor devices and semiconductor elements
JPH02190818A (en) * 1989-01-20 1990-07-26 Mitsubishi Mining & Cement Co Ltd Optical controller
JPH0588122A (en) * 1991-03-01 1993-04-09 Internatl Business Mach Corp <Ibm> Photoelectron switch
US6810176B2 (en) 2000-08-07 2004-10-26 Rosemount Inc. Integrated transparent substrate and diffractive optical element
US7003187B2 (en) 2000-08-07 2006-02-21 Rosemount Inc. Optical switch with moveable holographic optical element
US6987901B2 (en) 2002-03-01 2006-01-17 Rosemount, Inc. Optical switch with 3D waveguides

Similar Documents

Publication Publication Date Title
US5418883A (en) Optical waveguide device and manufacturing method of the same
US4092060A (en) Thin film optical switching device
JPH11194223A (en) Optical waveguide device and method of manufacturing the same
US5815610A (en) Optical modulation system
JP2007264488A (en) Optical waveguide device
JP2007133135A (en) Optical waveguide device
US4198115A (en) Fabry-Perot resonator using a birefringent crystal
WO1984003155A1 (en) Optical switch
JP2674535B2 (en) Light control device
WO2007058366A1 (en) Optical waveguide device
JPS59185311A (en) Light control type optical switch
US5007694A (en) Light wavelength converter
JPS5987436A (en) Optical valve
EP0576685B1 (en) Waveguide type light directional coupler
WO2005060522A2 (en) Low-loss compact reflective turns in optical waveguides
JPH0447805B2 (en)
JPH045174B2 (en)
US6411420B1 (en) Electro-optical element, and method of driving and method of manufacturing the same
JPS59147322A (en) Optical modulating element
JPS61231522A (en) Optical control type optical switch device
JP2613942B2 (en) Waveguide type optical device
JPH0228852B2 (en)
JPS6024515A (en) Light controlling element
JPH0815656A (en) Optical waveguide type optical modulator
JPS5944607B2 (en) thin film optical switch array