JPS59184899A - Method of treating and volume-decreasing decomposition solution of sulfur-containing radioactive organic waste - Google Patents
Method of treating and volume-decreasing decomposition solution of sulfur-containing radioactive organic wasteInfo
- Publication number
- JPS59184899A JPS59184899A JP5970483A JP5970483A JPS59184899A JP S59184899 A JPS59184899 A JP S59184899A JP 5970483 A JP5970483 A JP 5970483A JP 5970483 A JP5970483 A JP 5970483A JP S59184899 A JPS59184899 A JP S59184899A
- Authority
- JP
- Japan
- Prior art keywords
- sulfur
- decomposition
- radioactive
- liquid
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 106
- 230000002285 radioactive effect Effects 0.000 title claims description 78
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 title claims description 76
- 229910052717 sulfur Inorganic materials 0.000 title claims description 76
- 239000011593 sulfur Substances 0.000 title claims description 76
- 238000000354 decomposition reaction Methods 0.000 title claims description 63
- 239000010815 organic waste Substances 0.000 title claims description 62
- 239000007788 liquid Substances 0.000 claims description 91
- 239000000243 solution Substances 0.000 claims description 61
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 claims description 56
- 239000002699 waste material Substances 0.000 claims description 44
- 239000002184 metal Substances 0.000 claims description 41
- 229910052751 metal Inorganic materials 0.000 claims description 41
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 40
- 238000006243 chemical reaction Methods 0.000 claims description 39
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 37
- 239000007789 gas Substances 0.000 claims description 36
- 238000006864 oxidative decomposition reaction Methods 0.000 claims description 33
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 claims description 27
- 238000007711 solidification Methods 0.000 claims description 22
- 230000008023 solidification Effects 0.000 claims description 22
- 150000003839 salts Chemical class 0.000 claims description 19
- 229910000365 copper sulfate Inorganic materials 0.000 claims description 16
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 16
- 229910021645 metal ion Inorganic materials 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 239000007864 aqueous solution Substances 0.000 claims description 12
- 239000003638 chemical reducing agent Substances 0.000 claims description 12
- 229910052739 hydrogen Inorganic materials 0.000 claims description 12
- 239000001257 hydrogen Substances 0.000 claims description 12
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 claims description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 9
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 7
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 claims description 7
- 229910000360 iron(III) sulfate Inorganic materials 0.000 claims description 7
- 230000001590 oxidative effect Effects 0.000 claims description 7
- 229910002651 NO3 Inorganic materials 0.000 claims description 6
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 6
- 235000003891 ferrous sulphate Nutrition 0.000 claims description 6
- 239000011790 ferrous sulphate Substances 0.000 claims description 6
- 150000002431 hydrogen Chemical class 0.000 claims description 6
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims description 6
- 229910000359 iron(II) sulfate Inorganic materials 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 5
- 239000012266 salt solution Substances 0.000 claims description 5
- 150000002500 ions Chemical class 0.000 claims description 4
- 235000009508 confectionery Nutrition 0.000 claims 1
- 239000002440 industrial waste Substances 0.000 claims 1
- 230000005855 radiation Effects 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- 239000003456 ion exchange resin Substances 0.000 description 33
- 229920003303 ion-exchange polymer Polymers 0.000 description 33
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 27
- 239000010949 copper Substances 0.000 description 23
- 238000011282 treatment Methods 0.000 description 23
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 20
- 230000002829 reductive effect Effects 0.000 description 16
- 229910052802 copper Inorganic materials 0.000 description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 11
- 229910002092 carbon dioxide Inorganic materials 0.000 description 10
- 238000001035 drying Methods 0.000 description 10
- 239000004033 plastic Substances 0.000 description 10
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 10
- 239000001569 carbon dioxide Substances 0.000 description 9
- -1 iron ions Chemical class 0.000 description 9
- 239000003610 charcoal Substances 0.000 description 8
- 238000006386 neutralization reaction Methods 0.000 description 7
- 238000007670 refining Methods 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 239000002910 solid waste Substances 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 239000002912 waste gas Substances 0.000 description 6
- 238000002144 chemical decomposition reaction Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229920001225 polyester resin Polymers 0.000 description 5
- 239000004645 polyester resin Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 238000006477 desulfuration reaction Methods 0.000 description 4
- 230000023556 desulfurization Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 239000005416 organic matter Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000012857 radioactive material Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 125000001174 sulfone group Chemical group 0.000 description 3
- QWFMDSOYEQHWMF-UHFFFAOYSA-N 2,3-bis(ethenyl)benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC(C=C)=C1C=C QWFMDSOYEQHWMF-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 239000003729 cation exchange resin Substances 0.000 description 2
- 229940023913 cation exchange resins Drugs 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000005202 decontamination Methods 0.000 description 2
- 230000003588 decontaminative effect Effects 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229910001410 inorganic ion Inorganic materials 0.000 description 2
- 239000012263 liquid product Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 239000002901 radioactive waste Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000009991 scouring Methods 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 241001590997 Moolgarda engeli Species 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 229910052815 sulfur oxide Inorganic materials 0.000 description 1
Landscapes
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[発明の技術分野1
本発明は、原子力発電施設等の放射性物質取扱い施設で
発生する放射性含イオウ有(幾開東物を酸化分解してな
る分解液の処理方法よ3よびこの分解液を減容し固化す
るための放q・1性含イオウ右択廃棄物の減容固化方法
に関する。[Detailed Description of the Invention] [Technical Field of the Invention 1] The present invention relates to a method for treating a decomposed liquid obtained by oxidatively decomposing radioactive sulfur-containing (Ikukai Tomono) generated in facilities handling radioactive materials such as nuclear power generation facilities. 3, and a method for reducing and solidifying the volume of a sulfur-containing waste containing sulfur.
[発明の技術的背景とその問題点1
原子力発電所等の放射性物質取扱い施設においては、種
々の放射性固体廃棄物が発生するが、蜘在のところその
多くは最終処分jj法が米だtf「立せず流動的である
ため、固体廃棄物の主要な構成成分である使用済みイオ
ン交換樹脂A3」、ひノイルタースラッジなどはそのま
ま主としCタンク等に貯蔵保管され−Cd3つ、放用性
廃9!物の発生量を減らすことは貯蔵管理の上ぐ緊急か
つ重要な課題とされている。[Technical background of the invention and its problems 1 A variety of radioactive solid wastes are generated in facilities that handle radioactive materials such as nuclear power plants, but most of them are subject to final disposal methods. Because they are static and fluid, the main components of solid waste, such as used ion exchange resin A3 and Hinoirter sludge, are stored as they are in C tanks, etc. Abandoned 9! Reducing the amount of waste generated is considered to be an even more urgent and important issue than storage management.
このような固体廃棄物の中でも、例えば使用済み放射性
イオン交換樹脂のような放射性有機廃棄物は大量に発生
ずるため、これを減容化することは発生廃棄物量の減少
に大ぎく貢献する。Among such solid wastes, radioactive organic wastes such as used radioactive ion exchange resins are generated in large quantities, so reducing the volume of this waste greatly contributes to reducing the amount of wastes generated.
ところで放射性有機廃棄物は高分子化合物であり、減容
化の方法としてこれを化学構造的に分解することが可能
なため、従来から乾式焼却法、湿式焼却法、熱分解法、
化学分解法等の減容方法が検N4されている。By the way, radioactive organic waste is a high-molecular compound, and it is possible to decompose it chemically to reduce its volume.
Volume reduction methods such as chemical decomposition methods have been tested.
このうち乾式焼却法は文字通りそのまま焼却炉C゛焼却
る方法であって、多くの方式の検討開発が行なわれ−C
いる。しかしながら、放射性有機物を焼却炉においで焼
却する場合には、熱けのコン1へロールか必要なため、
乾燥等の前処理や樹脂の供給方法の工夫が必要であり、
操作や設備が複雑となる難点がある−また焼却炉自身に
は焼却灰の飛散を抑制する機能はないので、焼却炉から
の放射性焼却灰の飛散は非常に大ぎい(DF:除染係数
はほぼ1)。そして、焼却ガスとしてSOx、NOx等
の有害ガスが放射性気体として発生するので、廃ガス処
理という接処理が放射能対策も含めて必要であること、
およびこれらのカスは腐食性が強く、装置々A判の選定
が勇11シいこと等の問題がある。さらにこの方法にd
5いC(ユ、hum性放射性有機物が高温の環堤で処理
8れ把l〔めに、発生する焼却ガス中へ放射能成分か移
行づる、いわゆる核種の移行という放射能取扱いに特有
な問題がある。Among these, the dry incineration method is a method in which the incineration process is literally incinerated in an incinerator, and many methods have been studied and developed.
There is. However, when incinerating radioactive organic materials in an incinerator, it is necessary to roll them into a heating stove.
It is necessary to devise pre-treatments such as drying and the method of supplying the resin.
The problem is that the operation and equipment are complicated - Also, since the incinerator itself does not have a function to suppress the scattering of incinerated ash, the scattering of radioactive incinerated ash from the incinerator is extremely large (DF: decontamination factor is Almost 1). In addition, since harmful gases such as SOx and NOx are generated as radioactive gases as incineration gas, contact treatment called waste gas treatment is necessary, including measures against radioactivity.
Moreover, these scum are highly corrosive, and there are problems such as difficulty in selecting A-sized devices. Furthermore, this method
When radioactive organic matter is processed in a high-temperature ring embankment, radioactive components migrate into the generated incineration gas, a problem unique to the handling of radioactivity: so-called nuclide migration. There is.
また湿式焼却法は、水?8液中または硫酸銅水溶液中で
20〜100気圧、200 ” 300′cという高温
高圧下で酸素または空気を送り込むことによって放射性
有機物を燃焼させる方法CあっC1焼却の条件が厳しい
という)Ml r:Eに加え、減容率も前述の乾式焼却
法に比較しC数段劣るというテ1[点がある。Also, wet incineration method uses water? A method of burning radioactive organic materials by pumping oxygen or air under high temperature and pressure of 20 to 100 atm and 200''300'c in a liquid or an aqueous copper sulfate solution. In addition to point E, there is point 1, which is that the volume reduction rate is several steps lower than the dry incineration method described above.
さらに熱分解法は、酸素の供給を遮断して加熱分解させ
る方法であって、不(?(1性カス雰囲気下で高温で放
射性有機物を熱分解するため、乾式焼i11法に比較し
て発生する媒匹のΦが少ないという利点を有する。しか
しながら、このy]法では分解カスの燃焼工程が余計に
必要であるうえに、乾式焼却法の場合と同様に放射性核
種の移行の問題がある。Furthermore, the pyrolysis method is a method in which the supply of oxygen is cut off and the radioactive organic matter is thermally decomposed. However, this method requires an extra step of burning the decomposition residue, and, like the dry incineration method, there is the problem of radionuclide migration.
一方化学分解法は薬剤との化学反応により樹脂を酸化分
解させるもので、次のような方法が知られている。On the other hand, the chemical decomposition method oxidizes and decomposes the resin through a chemical reaction with a drug, and the following methods are known.
■ 熱濃硫酸(13o〜300’C)で放射性有機物を
炭化させた後、硝酸または過酸化水素で酸化分解する方
法。(2) A method in which radioactive organic matter is carbonized with hot concentrated sulfuric acid (13o~300'C) and then oxidized and decomposed with nitric acid or hydrogen peroxide.
■ 主として鉄イオンまたはクロム酸イオンあるいは重
クロム酸イオンの存在する溶液中で有機廃棄物を過酸化
水素水と接触させて酸化′分解する方法。■ A method of oxidizing and decomposing organic waste by contacting it with hydrogen peroxide in a solution containing mainly iron ions, chromate ions, or dichromate ions.
■ 温度200〜300 ’C1圧カ2o〜1o○気圧
にa5いて酸素を含むガスを圧入する方法。(2) A method in which gas containing oxygen is injected under pressure at a temperature of 200-300' C1 pressure, 20-1000 atmospheres.
しかしながらこれらの方法では、例えばスルフォン基を
有するカチオン交換樹脂、混合イオン交換樹脂のような
含イオウ有機廃棄物に由来する硫酸イオンの中和による
f+M M塩が二次廃棄物として発生覆゛るため、廃液
の温度が高く、また固化処理した場合の減容効果が不十
分Cあるという加点がある。However, in these methods, f+M salt is generated as secondary waste due to neutralization of sulfate ions derived from sulfur-containing organic wastes such as cation exchange resins having sulfone groups and mixed ion exchange resins. , the temperature of the waste liquid is high, and the volume reduction effect when solidified is insufficient.
[発明の目的]
本発明はかかる従来の事情に対処し−Cなされたもので
、実施が容易な緩和な条件の下で、かつ無機イオンまで
も除去して廃液の)開度を低下さぜ、かつ固化処理した
場合に高い減容率を達成する放射性含イオウ有機廃棄物
分解液の処理方法cl′3よび減容固化方法の提供する
ことを目的とする。[Object of the Invention] The present invention has been made in order to address the above-mentioned conventional circumstances, and it is possible to reduce the openness of waste liquid by removing even inorganic ions under easy-to-implement and mild conditions. It is an object of the present invention to provide a method cl'3 for treating a radioactive sulfur-containing organic waste decomposition solution and a volume reduction solidification method that achieve a high volume reduction rate when solidified.
U発明の概要コ
づなわち本発明は、放射性含イオウ有機廃棄物を酸化分
解してなる硫酸イオンを含有する分@液を、還元剤又は
水素にリイΔン化傾向の大さい金属の存在下に加熱濃縮
し、硫酸イオンを酸化分解により二酸化イオウとして除
去づることを特徴とする放射性含イオウ有機廃棄物の分
解液の処理方法および放射性含イオウ右機廃棄物を酸化
分解してなる硫酸イオンを含有する分解液を、還元剤又
は水素よりイオン化傾向の大さい金属の存在下に加熱濃
縮し、硫酸イオンを酸化分解により二酸化イオウとして
除去した後必要に応じてpH調整し、水分を除去し、反
応残漬を固化拐と混合して固化させることを特徴とする
放射性含イオウ右機廃棄物の分解液の減容固化方法であ
る。Summary of the Invention In other words, the present invention converts a liquid containing sulfate ions obtained by oxidative decomposition of radioactive sulfur-containing organic waste into a reducing agent or hydrogen in the presence of a metal with a large tendency to convert into hydrogen. A method for treating a decomposition solution of radioactive sulfur-containing organic waste, which is characterized by heating and concentrating the liquid and removing sulfate ions as sulfur dioxide through oxidative decomposition, and a method containing sulfate ions obtained by oxidatively decomposing radioactive sulfur-containing organic waste. The decomposed solution is heated and concentrated in the presence of a reducing agent or a metal that has a greater ionization tendency than hydrogen, and after removing sulfuric acid ions as sulfur dioxide by oxidative decomposition, the pH is adjusted as necessary, water is removed, and the reaction is carried out. This is a method for volume reduction and solidification of a decomposed solution of radioactive sulfur-containing waste, which is characterized by mixing the residue with solidified waste and solidifying it.
図面は本発明を説明するための工程図である。The drawings are process diagrams for explaining the present invention.
本発明の方法においては、例えば図示J−るように、ま
ず含イオウ有機廃棄物、例えば含イオウイオン交換樹脂
1が任意の化学分解法により酸化分解されて酸化分解液
2とされる。In the method of the present invention, for example, as shown in Figure J, sulfur-containing organic waste, such as a sulfur-containing ion exchange resin 1, is first oxidized and decomposed by any chemical decomposition method to form an oxidized decomposition liquid 2.
この酸化分解は、前述した熱濃硫酸と酸化剤を用いる方
法、金属塩の存在下に過酸化水素と接触さける方法、あ
るいは温度20.0〜300°C1圧力20〜100気
圧において酸素を含むガスを圧入する方法により行なわ
れる。This oxidative decomposition can be carried out using the aforementioned method using hot concentrated sulfuric acid and an oxidizing agent, the method of contacting with hydrogen peroxide in the presence of a metal salt, or the method of using oxygen-containing gas at a temperature of 20.0 to 300°C and a pressure of 20 to 100 atm. This is done by press-fitting.
上記金属塩としては、硫酸第一鉄、硫酸第二鉄、硝酸第
一鉄、硝酸第二鉄および硫酸銅から選ばれた1種または
2種以上のものが使用される。これらの金属塩の濃度は
、反応液中金属分として500〜10000ppm存在
する程度が適している。As the metal salt, one or more selected from ferrous sulfate, ferric sulfate, ferrous nitrate, ferric nitrate, and copper sulfate are used. A suitable concentration of these metal salts is such that the metal content in the reaction solution is 500 to 10,000 ppm.
過酸化水素水の濃度は、反応系の水溶液中に112O2
換算で1〜40%程度が好適している。反応は常温でも
進行するが反応を進行させるために加温することが望ま
しい。反応温度に上、50℃以上、特に90〜100’
Cの範囲が適しCいる。The concentration of hydrogen peroxide solution is 112O2 in the aqueous solution of the reaction system.
Approximately 1 to 40% in terms of conversion is suitable. Although the reaction proceeds at room temperature, it is desirable to heat the reaction to proceed. Above the reaction temperature, 50°C or higher, especially 90-100'
A range of C is suitable.
本発明の対象となる含イオウ有機廃東物の代表例として
は、原子力発電所で放Q’J性廃液処理に一般に使用さ
れ−Cいるカチオンあるいはカナ2−ン、アニオンの混
合イオン交VA樹脂、例えばスチレンとジビニルベンゼ
ンスルホン酸を、Jl、重合ざけた、合成樹脂内部にス
ルフメン基あるい(ニアミノ基をもつ粉末状あるいは粒
状のものがある。A typical example of the sulfur-containing organic waste material that is the subject of the present invention is a mixed ion exchange VA resin containing -C cations, canals, and anions, which is generally used in the treatment of Q'J-related waste liquids at nuclear power plants. For example, styrene and divinylbenzenesulfonic acid are polymerized, and there are powdered or granular synthetic resins with sulfmene groups or (niamino groups) inside them.
上記酸化分解反応においては、イオン交換樹脂中の炭素
成分および水素成分が酸化されて主として炭酸ガスおよ
び水蒸気が発生し、酸化分解液として透明な液状生成物
が得られる。この酸化分解反応は乾式焼却法と比較して
低温ぐ1jなわれるため、発生する炭酸ガスおよび水蒸
気への放用能の移行は極めて小さく、従来の廃カス処理
技術により処理することが可能である。なおこの酸化分
解液2中には、例えばスルフA>基等を有づる含イオウ
イオン交換樹脂を酸化分解した場合に生ずる硫酸イオン
、金属塩による金属イオンおよび硫酸イオン等が含まれ
ている。In the above oxidative decomposition reaction, carbon components and hydrogen components in the ion exchange resin are oxidized to mainly generate carbon dioxide gas and water vapor, and a transparent liquid product is obtained as an oxidative decomposition liquid. Since this oxidative decomposition reaction is carried out at a lower temperature than in the dry incineration method, the transfer of release capacity to the generated carbon dioxide gas and water vapor is extremely small, and it can be treated using conventional waste waste treatment technology. . The oxidative decomposition liquid 2 contains, for example, sulfate ions generated when oxidatively decomposing a sulfur-containing ion exchange resin having sulfur A> groups, metal ions due to metal salts, sulfate ions, and the like.
この酸化分解液2は、次いで還元分解されるがこの還元
に先立って存在する金属イオンを電解精練法により除去
することが望ましい。この電解精練法にあい−Cは、例
えばPLを陽性、CuまたはFeを陰性とする電解精練
槽が用いられ、酸化分解液2中に存在する金属イオンは
次の式で示される反応により陰性上に析出する。This oxidized decomposition liquid 2 is then reductively decomposed, but it is desirable to remove existing metal ions by electrolytic scouring prior to this reduction. In this electrolytic refining method, for example, an electrolytic refining tank in which PL is positive and Cu or Fe is negative is used, and the metal ions present in the oxidized decomposition liquid 2 are made negative by the reaction shown by the following formula. It precipitates out.
Fe””+ 2e−’ + r−eFe3” +
3e −−−→ FeCu”+ 2e−−
+ G。Fe""+ 2e-' + r-eFe3" +
3e −−−→ FeCu”+ 2e−−
+G.
このような反応により、酸化分解液中の金属イオンはほ
ぼ100%陰電極に析出させて回収することかできる。Through such a reaction, almost 100% of the metal ions in the oxidized decomposition solution can be deposited on the negative electrode and recovered.
このようにして金属イオンを析出させた酸化分解液4は
、この後、例えば木炭、イオウのような還元剤あるいは
Cuのようなイオン化傾向が氷水より低い金属と接触さ
せながら加熱濃縮することにより硫酸根が二酸化イオウ
に)v元されて除去さ゛ れ還元分解残漬3が得られ
る。The oxidized decomposition solution 4 in which metal ions have been precipitated in this way is then heated and concentrated while being brought into contact with a reducing agent such as charcoal or sulfur, or a metal such as Cu, which has a lower ionization tendency than ice water. The roots are converted to sulfur dioxide and removed to obtain a reductive decomposition residue 3.
木炭、イ万つのような還元剤を用いた場合には、硫酸イ
オンは二酸化イオウどなっ(旧ま゛完全に、またCuの
ような1 fdliの金属を用いた場合に1.ユ理面上
その50%が分解される。When using a reducing agent such as charcoal or carbon dioxide, the sulfate ions are completely reduced to sulfur dioxide (previously, and when using a metal with 1 fdli such as Cu, 1. 50% of it is decomposed.
すなわち前者の場合には、例えば次の反応により硫酸イ
オンは二酸化イオウどなり、
2HzSO< +C−
2SO2T十C02T l−2H201’後者の場合に
は液温か130″C以1となると酸化分解液中の硫酸と
銅とが次のように反応し、二酸化イオウと等モルの硫酸
銅が生成される。That is, in the former case, the sulfuric acid ion becomes sulfur dioxide due to the following reaction, and in the latter case, when the liquid temperature becomes 130"C or higher, the sulfuric acid in the oxidized decomposition solution becomes sulfur dioxide. and copper react as follows, producing copper sulfate in equimolar amounts as sulfur dioxide.
Cu +2H2SO4’−→
CU 804 +SO2T+2H20TすなわちCuと
の反応にd3い?:’ Il、 、金属銅1原子から硫
酸銅1モルが生成され同詩に硫酸イオン1モルが二酸化
イオウとして酸化分解液hl Iら除去されることにな
る。したがって金属銅を用いた場合でも50%の硫酸イ
オンを除去することができる。Cu +2H2SO4'-→ CU 804 +SO2T+2H20T, that is, is d3 necessary for the reaction with Cu? :' Il, , 1 mole of copper sulfate is generated from 1 atom of metallic copper, and 1 mole of sulfate ion is removed from the oxidative decomposition liquid as sulfur dioxide. Therefore, even when metallic copper is used, 50% of sulfate ions can be removed.
この脱硫反応に6いて発生する二酸化イオウについでも
、前述の樹脂の酸化分解反応に伴う炭酸カスや水蒸気と
同様に放射能のガスへの移行は極めて小さく、従来の廃
ガス処理技術での処理が可能である。Regarding the sulfur dioxide generated in this desulfurization reaction, the transfer to radioactive gas is extremely small, similar to the carbon dioxide scum and water vapor that accompany the oxidative decomposition reaction of the resin mentioned above, and it cannot be treated with conventional waste gas treatment technology. It is possible.
なお、金属銅を用いた脱硫反応で残存した還元残渣液3
液は、放射性イオン交換樹脂を分解するために再使用す
ることかできるのでこの反応液を使用すれば、酸化分解
のために新たに硫酸銅を使用する必要はなく、硫酸根を
ほぼ完全に分解除去することができる。また、もし反応
液中の放射能濃度が許容量を越えるようであれば、必要
に応じて再度銅の析出を行なった後、あるいばそのまま
廃液4としC処理される。この場合、中和および乾燥処
理をした後、得られた粉末状の乾燥残漬5を、例えばポ
リエステル樹脂と混合して同化処理して固化体6とする
が、この方法によれば、発生する同化体の伝は、従来の
イオン交換樹脂をそのままセメント固化する場合の1/
’100.乾燥後プスチック固化する場合の1/20と
づることかできる。In addition, the reduced residue liquid 3 remaining from the desulfurization reaction using metallic copper
The solution can be reused to decompose the radioactive ion exchange resin, so if this reaction solution is used, there is no need to use new copper sulfate for oxidative decomposition, and the sulfate radicals can be almost completely decomposed. Can be removed. Further, if the radioactivity concentration in the reaction solution exceeds the allowable amount, copper is precipitated again if necessary, and then the solution is directly treated as waste solution 4 and treated with C. In this case, after neutralization and drying treatment, the obtained powdered dry residue 5 is mixed with, for example, a polyester resin and subjected to an assimilation treatment to form a solidified body 6. According to this method, the generated The history of assimilates is 1/1 of that of conventional ion exchange resins that are solidified into cement as they are.
'100. It can be said that it is 1/20 of the plastic solidification after drying.
[発明の実施例] 以下本発明の実施例についで説明J−る。[Embodiments of the invention] Examples of the present invention will be described below.
実施例1
コンデンサー、攪拌器を備えた4゛っ頚フラスコに乾燥
状態の粉末状混合イオン交換樹脂(商品名:パウデック
ス)とこのイオン交?’tlIJri100部あたり5
000部の水を加え−C充分に混合し、次いでI−(2
02としての温度が1部%となる吊の′A酸化水素水お
よびFe 2.(SO4)3としての濃度が0.01モ
ル/βとなる藁の(〆(酸第二以を加えて100℃に加
温し、この温度で゛1時間混合撹拌を続けた。反応の進
行につれてガスが発生し、溶液は最初淵濁色に濁っ−c
くるが最終的には澄明な液体となる。ここで発生したガ
スは、コンデンサで凝縮して凝縮液は反応器中の反応残
渣液に戻し、ガスはそのまま次のガス処理二[稈に導い
た。Example 1 A dry powdered mixed ion exchange resin (trade name: Powdex) and this ion exchanger were placed in a 4-necked flask equipped with a condenser and a stirrer. 'tlIJri5 per 100 copies
000 parts of water was added to -C and thoroughly mixed, then I-(2
2. Hydrogen oxide water and Fe at a temperature of 1 part %. The concentration of (SO4)3 was 0.01 mol/β after the straw was added with a second or higher acid, heated to 100°C, and mixed and stirred at this temperature for 1 hour. Progress of the reaction. As time passes, gas is generated, and the solution initially turns cloudy.
The liquid will eventually turn into a clear liquid. The gas generated here was condensed in a condenser, the condensed liquid was returned to the reaction residue liquid in the reactor, and the gas was directly led to the next gas treatment culm.
次に反応残渣液を陽極をPt、陰極をFeとした電解精
練槽C′電解し、゛重積に液中の「0分をはぼ100%
析出させた。次に電解残渣液に理論量の木炭粉末をいれ
て加熱濃縮した。はぼ130°Cて硫酸イオンと木炭と
の反応により液中から二酸化イオウと炭酸ガスの発生が
認められ180℃で、はぼ100%の硫酸イオンの分解
したことが認められた。この液状残留物はpH調整後従
来の廃液処3g3系τ′処理し、廃棄可能であり、また
pH調整後の液状物を中和、然発乾燥処即してポリエス
テル樹脂を用いてプラスチック固化したところ酸化分解
しただけで中和、蒸発乾燥しプラスチック固化処理した
場合と比較して約115に減容することができた。Next, the reaction residue liquid was electrolyzed in an electrolytic scouring tank C' with Pt as an anode and Fe as a cathode, and the ``0 minute'' in the liquid was electrolyzed.
It was precipitated. Next, a theoretical amount of charcoal powder was added to the electrolysis residue solution and concentrated by heating. At 130°C, it was observed that sulfur dioxide and carbon dioxide gas were generated from the liquid due to the reaction between sulfate ions and charcoal, and at 180°C, 100% of the sulfate ions were decomposed. After adjusting the pH, this liquid residue was treated with conventional waste liquid treatment 3g3 system τ' and can be disposed of.The liquid after pH adjustment was also neutralized, subjected to spontaneous drying, and solidified into plastic using polyester resin. However, just by oxidative decomposition, the volume could be reduced to about 115 ml compared to the case of neutralization, evaporation drying, and plastic solidification treatment.
実施例2
実施例1で使用した4つ類フラスコに乾燥状態の粉末状
混合イオン交換樹脂(商品名:バウデツクス)とこのイ
オン交換樹脂100部とあたり1500部の金属鋼とし
ての濃度が約6000 ppmの硫酸銅水溶液を入れ、
加熱して温度を80〜100℃とした。次いで攪拌機に
より攪拌しながら、濃度60%の過酸化水素水溶液を一
定流量で乾燥イオン交換樹脂1gあたり3011℃加え
−Cイオン交換樹脂を酸化し、ガ名状生成物と液状残留
物に分解した。上記分解液の残りを陽極を10t、陰極
をCUとした電気精練槽で電解し0(J電極にc(夕中
のCIJ分をほぼ100%析出さけた。しかる後、電解
残渣液を析出した金属鋼と接触させなから加熱濃縮した
。はぼ130℃で硫酸イオンの分解により液中から二酸
化イオウの発生か認められ、150℃で理論mの50%
の硫りサイオンの分解したことが認められた。この液状
残留物(J、l)H調整後従来の廃液処理系で処理し、
1m液可能であり、またl)H調整後の液状物と、中和
、F発乾燥処理してポリニスデル樹脂を用いてプラスデ
ック同化したところ酸化分解しただ(プC中和、蒸発乾
燥しプラスチック同化処理した場合と比較して約1□7
2に減容することができた。Example 2 A powdered mixed ion exchange resin (trade name: Baudex) in a dry state was added to the 4-type flask used in Example 1, and the concentration of 1500 parts of metal steel per 100 parts of this ion exchange resin was about 6000 ppm. Add copper sulfate aqueous solution of
It was heated to a temperature of 80-100°C. Then, while stirring with a stirrer, an aqueous hydrogen peroxide solution having a concentration of 60% was added at a constant flow rate of 3011° C. per 1 g of dry ion exchange resin to oxidize the -C ion exchange resin and decompose it into a gaseous product and a liquid residue. The remainder of the decomposition solution was electrolyzed in an electrolytic refining tank with an anode of 10 t and a cathode of CU, so that almost 100% of the CIJ content in the evening was deposited on the 0 (J electrode). After that, the electrolytic residue solution was precipitated. It was concentrated by heating without contacting with metal steel.It was observed that sulfur dioxide was generated from the liquid due to the decomposition of sulfate ions at about 130℃, and at 150℃ it was 50% of the theoretical m.
It was observed that the sulfur scion had decomposed. This liquid residue (J, l) is treated with a conventional waste liquid treatment system after H adjustment,
1m liquid is possible, and when the liquid material after H adjustment is neutralized, dried with F, and assimilated with PLUSDEC using Polynisder resin, it is oxidized and decomposed. Approximately 1□7 compared to assimilation treatment
We were able to reduce the volume to 2.
またこのrliil酸イオンを分解した稙醒銅含有残清
液を過酸化水素水溶液と併用しU Fj度同様の廃イオ
ン交換樹脂分解処理を行なったか、この場合にも金属塩
水溶液と過酸化水素水を使用した場合と同様の含イAつ
有機廃棄物分解能を有することが認められた。In addition, the waste ion exchange resin decomposition treatment similar to the U Fj degree was carried out by using the residual liquid containing copper, which has been obtained by decomposing this rliil acid ion, in combination with an aqueous hydrogen peroxide solution, or in this case also, a metal salt aqueous solution and a hydrogen peroxide solution It was confirmed that the method had the same ability to decompose organic waste as when using A-containing organic waste.
[発明の効果]
以上の説明からも明らかなように本発明の方法によれば
、従来法と比較して酸化分解反応濡痘が100〜150
′Cという扱い易い条件であるため、設備や装置材料に
対する負担が少なく、しかも高い減容性が得られる。ま
た発生ガスへの放射能の移行がほとんどないので゛、通
常の開ガス処理−C゛対処することができる。[Effects of the Invention] As is clear from the above explanation, according to the method of the present invention, the oxidative decomposition reaction varicella is reduced by 100 to 150 compared to the conventional method.
'C, which is an easy-to-handle condition, reduces the burden on equipment and equipment materials, and provides high volume reduction performance. In addition, since there is almost no transfer of radioactivity to the generated gas, it can be used as a normal open gas treatment.
また含イオウ有機廃棄物に由来する硫酸イオンが分解さ
れるので、2次廃棄物の量か極めて少4fくなる。Furthermore, since sulfate ions originating from sulfur-containing organic waste are decomposed, the amount of secondary waste is reduced to an extremely small 4f.
図面は本発明の工程を概略的に示づ一工程図で゛ある。
1・・・・・・・・・・・・廃イオン交換樹脂2・・・
・・・・・・・・・酸化分解液3・・・・・・・・・・
・・還元残漬液4・・・・・・・・・・・・廃 液
5・・・・・・・・・・・・乾燥残漬
6・・・・・・・・・・・・固化体
代理人弁理士 須 山 佐 −
手 続 補 正 書
昭和59*7r:q 4El
特許庁長官 殿
1、事件の表示 特願昭58−59704%j啄2、
発明の名称
放射性含イオウ有機廃棄物分解液の処理方法および減容
固化方法
3、補正をする者
事件との関係 ・ 特許出願人
東京都港区三田三丁目13番12号
日本原子力事業株式会社
神奈川県用崎市幸区堀用町72番地
(307)株式会社 東芝
4、代 理 人 〒 101東京都千代田
区神田多町2丁目1番地
明a書の全文
7、補正の内容
別紙訂正明細書の通り
明 細 書
1、発明の名称
放射性含イオウ有機廃棄物分解液の処理方法および減容
固化方法
2、特許請求の範囲
(1)放射性含イオウ有機廃棄物を酸化分解してなる硫
酸イオンを含有する分解液を、還元剤又は水素よりイオ
ン化傾向の大きい金属の存在下に加熱濃縮し、硫酸イオ
ンを酸化分解により二酸化イオウとし°C除去すること
を特徴とする放射性含イオウ有機廃棄物の分解液の処理
方法。
(2)分解液は、放射性含イオウ有機廃棄物を金属塩水
溶液中で過酸化水素と接触させて酸化分解してなる特許
請求の範囲第1項記載の放射併含イオウ有機廃棄物分解
液の処理方法。
(3)分解液は、放射性含イオウ右機廃棄物を含む液中
に、加熱加圧下に酸素を含むガスを圧入し、酸化して得
られる特許請求の範囲第1項記載の放射性含イオウ有機
廃棄物分解液の処理方法。
(4)分解液は、温度200〜300 ’C、圧力2O
〜100気圧において酸素を含むガスを圧入して放射性
含イオウ有機廃棄物を酸化して得られる特許請求の範囲
第3項記載の放射性含イオウ有機廃棄物分解液の処理方
法。
(5,)金属塩は、硫酸第一鉄、硫酸第二鉄、硝酸第一
鉄、硝酸第二鉄および硫酸銅から選ばれた1種または2
種以上からなる特許請求の範囲第2項記載の放射性含イ
オウ有機廃棄物分解液の処理方法。
(6)水溶液中の金属塩の濃度は、金属イオン(算で、
500〜1100001)Flである特許請求の範l第
2項記載の放射性含イオウ有機廃棄物分解液の処理方法
。
(7)水溶液中の過酸化水素の濃度は、H202換算で
1〜40%である特許請求の範囲第2項記載の放射性含
イオウ有機廃棄物分解液の処理方法。
(8)酸化分解は、80〜100℃の温度で行なわれる
特許請求の範囲第2項記載の放射性含イオウ有機廃棄物
分解液の処理方法。
(9)放射性含イオウ有機廃棄物を酸化分解してなる硫
酸イオンを含有する分解液を、還元剤又は水素よりイオ
ン化傾向の大きい金属の存在下に加熱濃縮し、硫酸イオ
ンを酸化分解または還元分解により二酸化イオウとして
除去した後必要に応じてpH調整し、水分あるいはΔら
に揮発成分を除去し、反応残渣を固化材と混合して固化
させることを特徴とする放射性含イオウ有機廃棄物の分
解液の減容固化方法。
2
(12)分解液は、放射性含イオウ有機廃棄物を金属塩
水溶液中で過酸化水素と接触さけて酸化分解した液であ
る特許請求の範囲第9項記載の放射性含イオウ有機廃棄
物分解液の減容固化方法。
(13)金属塩は、硫酸第一鉄、硫酸第二鉄、硝酸第一
鉄、硝酸第二鉄および硫酸銅から選ばれた1種または2
種以上からなる特許請求の範囲第10項記載の放射性含
イオウ有機廃棄物分解液の減容固化方法。
(14)水溶液中の金属塩の濃度は、金属イオン換算で
、500〜10000 pHIIIである特許請求の範
囲第10項記載の放射性含イオウ有機廃棄物分解液の減
容固化方法。
(15)水溶液中の過酸化水素の濃度は、H’202換
算で1〜40%である特許請求の範囲第10項記載の放
射性含イオウ有機廃棄物分解液の減容固化方法。
3、発明の詳細な説明
[発明の技術分野]
本発明は、原子力発電施設等の放射性物質取扱い施設で
発生する放射性含イオウ右機廃棄物を酸化分解してなる
分解液の処理方法およびこの分解液を減容し固化するた
めの放射性含イオウ有機廃棄物の減容固化方法に関する
。
[発明の技術的背景とその問題点]
原子力発電所等の放射性物質取扱い施設においては、種
々の放射性固体廃棄物が発生ずるが、現在のところその
多くは最終処分方法が未だ確立せず流動的であるため、
固体廃棄物の主要な構成成分である使用済みイオン交換
樹脂およびフィルタースラッジなどはそのまま主として
タンク等に貯蔵保管されており、放射性廃棄物の発生量
を減らすことは貯蔵管理の上で緊急かつ重要な課題とさ
れている。
このような固体廃棄物の中でも、例えば使用済み放射性
イオン交換樹脂のような放射性有機廃棄物は大量に発生
するため、これを減容化することは発生廃棄物量の減少
に大きく貢献する。
ところで放射性有機廃棄物は高分子化合物であリ、減容
化の方法とし゛てこれを化学構造的に分解することが可
能なため、従来から乾式焼却法、湿式焼却法、熱分解法
、化学分解法等の減容方法が検討されている。
このうち乾式焼却法は文字通りそのまま焼却炉で焼却す
る方法であって、多くの方式の横開開発が行なわれてい
る。しかしながら、放射性有機廃棄物を焼却炉において
焼却する場合には、熱量のコン1〜ロールが必要なため
、乾燥等の前処理や廃棄物の供給方法の工夫が必要であ
り、操作や設備が複雑となる難点がある。また、焼却炉
自身には焼却灰の飛散を抑制する機能はないので、焼却
炉からのIJ9.剛性焼却灰の飛散は非常に大きい(D
I−:除染係数はほぼ1)。そして、焼却ガスとしてS
OX、NOx等の有害ガスが放射性気体として発生ずる
ので、廃ガス処理という後処理が放射能対策も含めて必
要であること、およびこれらのカスは腐食性が強く、装
置材料の選定が難しいこと等の問題かある。さらにこの
方法においては、放射性有機廃棄物が高温の環境で処理
されるために、発生する焼却ガス中へ放射能成分が移行
する、いわゆる核種の移行という放射能取扱いに特有な
問題がある。
また湿式焼却法は、水溶液中または硫酸銅水溶液中で2
0〜100気圧、200〜300℃という高温高圧下で
酸素または空気を送り込むことによって放射性有機廃棄
物を燃焼させる方法であって、焼却の条件が厳しいとい
う動点に加え、減容率も前述の乾式焼却法に比較して数
段劣るという難点がある。
さらに熱分解法は、酸素の供給を遮断して加熱分解させ
る方法であって、不活性ガス雰囲気下で高温で放射性有
機廃棄物を熱分解づるlCめ、乾式焼却法に比較して発
生する9XMの量が少ないという利点を有する。しかし
なから、この方法では分解ガスの燃焼工程が余計に必要
であるうえに、乾式焼却法の場合と同様に放射性核種の
移行の問題がある。
一方化学分解法は薬剤との化学反応により樹脂を酸化分
解させるもので、次のような方法が知られている。
■ 熱濃硫酸(130〜300℃)で放射性有機物を炭
化させた後、硝酸または過酸化水素で酸化分解する方法
。
■ 主として鉄イオンまlcはクロム酸イオンあるいは
重クロム酸イオンの存在する溶液中で有機廃棄物を過酸
化水素水と接触させて酸化分解する方法。
しかしながらこれらの方法では、例えば、■の方法では
強力酸および酸化剤を高温で取扱うために装置材料の選
定が非常に厳しいという姉点かあり、■の方法ではスル
フォン基を有するカチオン交換樹脂、あるいはこれを含
む混合イオン交換樹脂のような含イオウ有機廃棄物に由
来する硫酸イオンの中和による硫酸塩が二次廃棄物とし
て発生するため、廃液の濃度が高く、また固化処理した
場合の減容効果が不汁分であるという難点がある。
[発明の目的]
本発明はかかる従来の事情に対処してなされたもので、
実施が容易な緩和な条件の下で、かつ無機イオンまでも
除去して廃液の濃度を低下させ、かつ固化処理した場合
に高い減容率を達成する放射性含イオウ有機廃棄物分解
液の処理方法および減容固化方法の提供を目的とする。
[発明の概要]
すなわち本発明は、放射性含イオウ有機廃棄物を酸化分
解してなる硫酸イオンを含有する分解液を、還元剤又は
水素よりイオン、化傾向の大きい金属の存在下に加熱濃
縮し、硫酸イオンを酸化分解により二酸化イオウとして
除去することを特徴とする放射性含イオウ有機廃棄物の
分解液の処理方法および放射性含イオウ有機廃棄物を酸
化分解してなる硫酸イオンを含有する分解液を、還元剤
又は水素よりイオン化傾向の大ぎい金属の存在下に加熱
濃縮し、硫酸イオンを酸化分解により二酸化イオウとし
て除去した後必要に応じてpH調整し、水分あるいはさ
らに揮発成分を除去し、反応残漬を固化材と混合して固
化させることを特徴とする放射性含イオウ有機廃棄物の
分解液の減容固化方法である。
図面は本発明を説明するための工程図である。
本発明の方法においては、例えば図示するように、まず
含イオウ有機廃棄物、例えば含イオウイオン交換樹脂1
が任意の化学分解法により酸化分解されて酸化分解液2
とされる。
この酸化分解は、前述した金属塩の存在下に過酸化水素
と接触させる方法、あるいは温度200〜300℃、圧
力20〜100気圧の廃棄物を含む水溶液または廃棄物
を含む硫酸銅水溶液において酸素を含むガスを圧入する
方法により行なわれる。
上記金属塩としては、硫酸第一鉄、硫酸第二鉄、硝酸第
一鉄、硝酸第二鉄および硫酸銅から選ばれた1種または
2種以上のものが使用される。これらの金属塩の濃度は
、反応液中金属分として500〜110000111p
存在する程度が適している。
過酸化水素水の濃度は、反応系の水溶液中にH2O2換
算で1〜40%程度が好適している。反応は常温でも進
行するが反応を進行させるICめに加温スることが望ま
しい。反応温度は、50℃以上、特に90〜100℃の
範囲が適している。
本発明の対象となる含イオウ有機廃棄物の代表例として
は、原子力発電所で放射性廃液処理に一般に使用されて
いるカチオンあるいはカチオン、アニオンの混合イオン
交換樹脂、例えばスチレンとジビニルベンゼンスルホン
酸を共重合さけ−た、合成樹脂内部にスルフォン基ある
いはアミノ基をもつ粉末状あるいは粒状のものがある。
上記酸化分解反応においては、イオン交換樹脂中の炭素
成分および水素成分が酸化されて主として炭酸ガスおよ
び水蒸気が発生し、酸化分解液として透明な液状生成物
が得られる。この酸化分解反応は乾式焼却法と比較して
低温で行なわれるため、発生する炭酸ガスおよび水蒸気
への放射能の移行は極めて小さく、従来の廃ガス処理技
術により処理することが可能である。なおこの酸化分解
液2中には、例えばスルフォン基等を有する含イオウイ
オン交換樹脂を酸化分解した場合に生ずる硫酸イオン、
金属塩による金属イオンおよび硫酸イオン等が含まれて
いる。
この酸化分解液2は、次いで還元分解されるが、この還
元に先立って存在する金属イオンを電解精錬法により除
去することが望ましい。この電解精錬法におい−Cは、
例えばPtを陽性、CuまたはFeを陰性とする電解精
錬槽が用いられ、酸化分解液2中に存在する金属イオン
は次の式で示される反応により陰性上に析出する。
Fe2++ 20−−一→ Fe
F e” + 3e−−−→ F e
CLI 2” + 2e −−−−> Cuこのよ
うな反応により、酸化分解液中の金属イオンはほぼ10
0%陰電極に析出させて回収づることができる。
このようにして金属イオンを析出させた酸化分解液4は
、この後、例えば木炭、イオウのような還元剤あるいは
CLIのようなイオン化傾向が水素より低い金属と接触
させながら加熱濃縮することにより硫酸根が二酸化イオ
ウに還元されて除去され還元分解残漬3が得られる。
木炭、イオウのような還元剤を用いl〔場合(こ(よ、
硫酸イオンは二酸化イオウとなってほぼ完全に、またC
uのような金属を用いた場合には理論上その50%が分
解される。
すなわち前者の場合には、例えば次の反応により硫酸イ
オンは二酸化イオウとなり、
2H2SO4+C−一→
2S○2↑+CO2↑+2H20↑
後者の場合には液温が130℃以上となると酸化分解液
中の硫酸と銅とが次のように反応し、二酸化イオウと等
モルの硫酸銅が生成される。
Cu →−21−12804−一→
Cu SO4+SO2↑+2H20↑
すなわちCUとの反応にJ5いては、金属銅1モルから
硫酸銅1モルが生成され同時にll7ii酸イオン1モ
ルが二酸化イオウとし−C酸化分解液2から除去される
ことになる。したがって金属銅を用いた場合でも50%
の硫酸イオンを除去することができる。
この脱硫反応において発生ずる二酸化イオウについても
、前述の樹脂の酸化分解反応に伴う炭酸ガスや水蒸気と
同様に放射、能のガスへの移行は極めて小さく、従来の
廃ガス処剰技術での処理が可能である。
なお、金属を用いた脱硫反応で残存した還元残漬液3液
は、放射性イオン交換樹脂を分解するために再使用する
ことができるのでこの反応液を使用すれば、酸化分解の
ために新たに金属塩を使用する必要はなく、硫酸根をほ
ぼ完全に分解除去することができる。また、もし反応液
中の放射能濃度が許容量を越えるようであれば、必要に
応じて再度金属の析出を行なった後、あるいはそのまま
廃液4とし“C処理される。この場合、中和および乾燥
処理をした後、得られた粉末状の乾燥残渣5を、例えば
ポリエステル樹脂と混合して固化処理して固化体6とす
るが、この方法によれば、発生する同化体の量は、従来
のイオン交換樹脂をそのままセメント固化する場合の1
/100.乾燥後ブスチック固化する場合の1/20と
することができる。
[発明の実施例コ
以下本発明の実施例についC説明する。
実施例1
コンデンサー、攪拌器を備えた4つ頚フラスコに乾燥状
態の粉末状混合イオン交換樹脂(商品名:パウデックス
)とこのイオン交換樹脂100部あたり5000部の水
を加えて充分に混合し、次いでH202としての濃度が
10%となる串の過酸化水素水およびFe 2 (S
O4)3としての濃度が0.01モル/βとなる量の硫
酸第二鉄を加えて100℃に加温し、この温度で1時間
混合攪拌を続けた。反応の進行につれてガスが発生し、
溶液は最初淵濁色に濁ってくるが最終的には澄明な液体
となる。ここで発生したガスは、コンデンサで凝縮して
凝縮液は反応器中の反応残渣液に戻し、ガスはそのまま
次のガス処理工程に導いた。
次に反応残渣液を陽極をPt、陰極をFeとした電解精
錬槽で電解し、電極に液中のFe分をほぼ100%析出
させた。次に電解残漬液に理論量の木炭粉末をいれて加
熱濃縮した。はぼ130℃で硫酸イオンと木炭との反応
により液中がら二酸化イオウと炭酸ガスの発生が認めら
れ180℃で、はぼ100%の硫酸イオンの分解したこ
とが認められた。この液状残留物はpH調整後従来の廃
液処理系で処理し、廃棄可能であり、またpH調整後の
液状物を中和、蒸発乾燥処理してポリエステル樹脂を用
いてプラスチック固化したところ酸化分解しただけで中
和、蒸発乾燥しプラスチック固化処理した場合と比較し
て約115に減容することかできた。
実施例2
実施例1で使用した4つ頚フラスコに乾燥状態の粉末状
混合イオン交換樹脂(商品名:パウデックス)とこのイ
オン交換樹脂100部とあたり1500部の、金属銅と
しての濃度が約60001)pmの硫酸銅水溶液を入れ
、加熱して温度を80〜100℃とした。次いで攪拌機
により攪拌しながら、濃度60%の過酸化水素水溶液を
一定流量で乾燥イオン交換樹脂1gあたり30mβ加え
てイオン交換樹脂を酸化し、ガス状生成物と液状残留物
に分解した。上記分解液の残りを陽極をPt。
陰極をCuとした電気精錬槽で電解しCu電極に液中の
Cu分をほぼ100%析出させた。しかる後、電解残渣
液を析出した金属銅と接触させながら加熱濃縮した。は
ぼ130℃で硫酸イオンの分解により液中から二酸化イ
オウの発生が認められ、150℃で理論量の50%の硫
酸イオンの分解したことが認められた。この液状残留物
はl)H調整後従来の廃液処理系で処理し、廃棄可能で
あり、またl)H調整後の液状物と、中和、蒸発乾燥処
理してポリエステル樹脂を用い−Cプラスチック固化し
たところ酸化分解しただけで中和、蒸発乾燥しプラスチ
ック同化処理した場合と比較して約1/2に減容するこ
とができた。
またこの硫酸イオンを分解した硫酸銅含有残渣液を過酸
化水素水溶液と併用してpJ度同様の廃イオン交換樹脂
分解処理を行なったが、この場合にも金属塩水溶液と過
酸化水素水を使用した場合と同様の含イオウ有機廃棄物
分解能を有することが認められた。
[発明の効果]
以上の説明からも明らかなように本発明の方法によれば
、従来法と比較して酸化分解反応温度が100〜150
℃という扱い易い条件であるため、設備や装置材料に対
する負担が少なく、しかも高い減容性が得られる。また
発生ガスへの放射能の移行がほとんどないので、通常の
廃ガス処理で対処することができる。
また含イオウ有機廃棄物に由来する硫酸イオ′ンが分解
されるので、2次廃棄物の量が極めて少なくなる。
4、図面の簡単な説明
図面は本発明の工稈を概略的に示す工程図である。
1・・・・・・・・・・・・廃イオン交換樹脂2・・・
・・・・・・・・・酸化分解液3・・・・・・・・・・
・・還元残漬液4・・・・・・・・・・・・廃 液
5・・・・・・・・・・・・乾燥残渣
6・・・・・・・・・・・・固化体The drawing is a one-step diagram schematically showing the process of the present invention. 1...Waste ion exchange resin 2...
・・・・・・・・・Oxidation decomposition liquid 3・・・・・・・・・・・・
・・Reduced residual liquid 4・・・・・・・・・・Waste liquid 5・・・・・・・・・・Dried residual liquid 6・・・・・・・・・・・・Solidification Patent Attorney Suyama Sa - Procedural Amendment Book 1970*7r:q 4El Commissioner of the Patent Office 1, Indication of Case Patent Application 1970-59704%J Taku 2,
Name of the invention Method for processing radioactive sulfur-containing organic waste decomposition liquid and method for volume reduction and solidification 3 Relationship with the case of the person making the amendment ・Patent applicant Kanagawa, Japan Atomic Energy Corporation, 13-12 Mita 3-chome, Minato-ku, Tokyo 72 Horiyo-cho, Saiwai-ku, Kenyousaki-shi (307) Toshiba Corporation 4, Representative Address: 2-1 Kanda Ta-cho, Chiyoda-ku, Tokyo 101 Full text of Memorandum A 7, contents of amendment attached to the amended statement Description 1. Title of the invention: Method for treating radioactive sulfur-containing organic waste decomposed liquid and volume reduction solidification method 2. Claims (1) Containing sulfate ions obtained by oxidative decomposition of radioactive sulfur-containing organic waste. A decomposition solution for radioactive sulfur-containing organic waste, characterized in that the decomposition solution is heated and concentrated in the presence of a reducing agent or a metal with a greater ionization tendency than hydrogen, and sulfate ions are converted into sulfur dioxide by oxidative decomposition and removed at °C. processing method. (2) The decomposition liquid is a decomposition liquid of radioactive sulfur-containing organic waste as claimed in claim 1, which is obtained by oxidatively decomposing the radioactive sulfur-containing organic waste by contacting it with hydrogen peroxide in an aqueous metal salt solution. Processing method. (3) The decomposition liquid is a radioactive sulfur-containing organic compound as claimed in claim 1, which is obtained by injecting a gas containing oxygen under heat and pressure into a liquid containing radioactive sulfur-containing waste and oxidizing it. Processing method for waste decomposition liquid. (4) The decomposition liquid has a temperature of 200 to 300'C and a pressure of 20
4. The method for treating a radioactive sulfur-containing organic waste decomposition solution as claimed in claim 3, which is obtained by oxidizing the radioactive sulfur-containing organic waste by injecting oxygen-containing gas under pressure at ~100 atmospheres. (5,) The metal salt is one or two selected from ferrous sulfate, ferric sulfate, ferrous nitrate, ferric nitrate, and copper sulfate.
A method for treating a radioactive sulfur-containing organic waste decomposition solution according to claim 2, which comprises at least one species. (6) The concentration of metal salt in an aqueous solution is the metal ion (calculated)
500-1100001) The method for treating a radioactive sulfur-containing organic waste decomposition solution according to claim 1, wherein the decomposed solution is Fl. (7) The method for treating a radioactive sulfur-containing organic waste decomposition solution according to claim 2, wherein the concentration of hydrogen peroxide in the aqueous solution is 1 to 40% in terms of H202. (8) The method for treating a radioactive sulfur-containing organic waste decomposition solution according to claim 2, wherein the oxidative decomposition is carried out at a temperature of 80 to 100°C. (9) A decomposition solution containing sulfate ions obtained by oxidative decomposition of radioactive sulfur-containing organic waste is heated and concentrated in the presence of a reducing agent or a metal that has a greater tendency to ionize than hydrogen, and the sulfate ions are oxidatively or reductively decomposed. Decomposition of radioactive sulfur-containing organic waste, which is characterized by removing sulfur dioxide as sulfur dioxide, adjusting the pH as necessary, removing volatile components such as water or Δ, and solidifying the reaction residue by mixing it with a solidifying material. Volume reduction and solidification method of liquid. 2 (12) The decomposition liquid for radioactive sulfur-containing organic waste according to claim 9, wherein the decomposition liquid is a liquid obtained by oxidizing and decomposing the radioactive sulfur-containing organic waste in an aqueous metal salt solution while avoiding contact with hydrogen peroxide. volume reduction solidification method. (13) The metal salt is one or two selected from ferrous sulfate, ferric sulfate, ferrous nitrate, ferric nitrate, and copper sulfate.
11. The method for volume reduction and solidification of a radioactive sulfur-containing organic waste decomposition solution according to claim 10, which comprises at least one species. (14) The method for volume reduction and solidification of a radioactive sulfur-containing organic waste decomposition solution according to claim 10, wherein the concentration of the metal salt in the aqueous solution is 500 to 10,000 pHIII in terms of metal ions. (15) The method for volume reduction and solidification of a radioactive sulfur-containing organic waste decomposition solution according to claim 10, wherein the concentration of hydrogen peroxide in the aqueous solution is 1 to 40% in terms of H'202. 3. Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a method for treating a decomposed liquid obtained by oxidizing and decomposing radioactive sulfur-containing waste generated in facilities handling radioactive materials such as nuclear power generation facilities, and a method for treating this decomposition solution. This invention relates to a method for volume reduction and solidification of radioactive sulfur-containing organic waste for volume reduction and solidification of liquid. [Technical background of the invention and its problems] A variety of radioactive solid wastes are generated in facilities that handle radioactive materials such as nuclear power plants, but at present, the final disposal method for most of them has not yet been established and is in a state of flux. Therefore,
Used ion exchange resins and filter sludge, which are the main components of solid waste, are mainly stored in tanks, etc., and reducing the amount of radioactive waste generated is urgent and important in storage management. This is considered an issue. Among such solid wastes, radioactive organic wastes such as used radioactive ion exchange resins are generated in large quantities, so reducing the volume of this waste greatly contributes to reducing the amount of wastes generated. By the way, radioactive organic waste is a polymeric compound, and it is possible to decompose it chemically to reduce its volume. Methods of volume reduction, such as methods, are being considered. Among these, the dry incineration method is a method in which the waste is incinerated as it is in an incinerator, and many methods are being developed laterally. However, when incinerating radioactive organic waste in an incinerator, a heat capacity controller is required, so pretreatment such as drying and waste supply methods must be devised, making operations and equipment complicated. There is a drawback. In addition, since the incinerator itself does not have a function to suppress the scattering of incinerated ash, IJ9. The scattering of rigid incineration ash is very large (D
I-: Decontamination coefficient is approximately 1). And as incineration gas, S
Harmful gases such as OX and NOx are generated as radioactive gases, so post-processing called waste gas treatment is necessary, including radioactivity countermeasures, and these residues are highly corrosive, making it difficult to select equipment materials. There are other problems. Furthermore, in this method, since the radioactive organic waste is processed in a high-temperature environment, there is a problem unique to the handling of radioactivity, that is, so-called nuclide migration, in which radioactive components migrate into the generated incineration gas. In the wet incineration method, 2
This is a method of incinerating radioactive organic waste by pumping oxygen or air under high temperature and high pressure conditions of 0 to 100 atmospheres and 200 to 300 degrees Celsius, and in addition to the severe incineration conditions, the volume reduction rate is also the same as mentioned above. The disadvantage is that it is several steps inferior to dry incineration. Furthermore, the pyrolysis method is a method of thermally decomposing radioactive organic waste by cutting off the supply of oxygen, and generates 9XM compared to the dry incineration method. It has the advantage that the amount of However, this method requires an extra step of burning the cracked gas, and, like the dry incineration method, there is the problem of radionuclide migration. On the other hand, the chemical decomposition method oxidizes and decomposes the resin through a chemical reaction with a drug, and the following methods are known. ■ A method of carbonizing radioactive organic matter with hot concentrated sulfuric acid (130-300°C) and then oxidizing and decomposing it with nitric acid or hydrogen peroxide. ■ Iron ion or lc is a method in which organic waste is oxidized and decomposed by contacting it with a hydrogen peroxide solution in a solution containing chromate ions or dichromate ions. However, in these methods, for example, the method (2) handles strong acids and oxidizing agents at high temperatures, so the selection of equipment materials is very strict. Sulfate is generated as a secondary waste due to the neutralization of sulfate ions derived from sulfur-containing organic waste such as mixed ion exchange resin, so the concentration of waste liquid is high and the volume is reduced when solidified. The problem is that the effect is not so strong. [Object of the invention] The present invention has been made in response to such conventional circumstances,
A method for treating radioactive sulfur-containing organic waste decomposition liquid, which reduces the concentration of waste liquid by removing even inorganic ions and achieves a high volume reduction rate when solidified under mild conditions that are easy to implement. and to provide a volume reduction and solidification method. [Summary of the invention] That is, the present invention heats and concentrates a decomposition solution containing sulfate ions obtained by oxidative decomposition of radioactive sulfur-containing organic waste in the presence of a reducing agent or a metal that has a greater tendency to ionize than hydrogen. , a method for treating a decomposition solution of radioactive sulfur-containing organic waste characterized by removing sulfate ions as sulfur dioxide through oxidative decomposition, and a decomposition solution containing sulfate ions obtained by oxidatively decomposing radioactive sulfur-containing organic waste. , heat and concentrate in the presence of a reducing agent or a metal with a greater ionization tendency than hydrogen, remove sulfuric acid ions as sulfur dioxide by oxidative decomposition, adjust the pH as necessary, remove moisture or further volatile components, and react. This is a method for volume reduction and solidification of decomposed liquid of radioactive sulfur-containing organic waste, which is characterized by mixing the residue with a solidifying material and solidifying it. The drawings are process diagrams for explaining the present invention. In the method of the present invention, for example, as shown in the figure, sulfur-containing organic waste, for example, sulfur-containing ion exchange resin 1
is oxidized and decomposed by any chemical decomposition method to produce oxidized decomposition liquid 2.
It is said that This oxidative decomposition can be carried out by contacting with hydrogen peroxide in the presence of the metal salts mentioned above, or by introducing oxygen in an aqueous solution containing waste or an aqueous copper sulfate solution containing waste at a temperature of 200 to 300°C and a pressure of 20 to 100 atm. This is done by injecting the gas containing the gas under pressure. As the metal salt, one or more selected from ferrous sulfate, ferric sulfate, ferrous nitrate, ferric nitrate, and copper sulfate are used. The concentration of these metal salts is 500 to 110000111 p as metal content in the reaction solution.
The extent to which it exists is appropriate. The concentration of the hydrogen peroxide solution in the aqueous solution of the reaction system is preferably about 1 to 40% in terms of H2O2. Although the reaction proceeds at room temperature, it is desirable to heat the IC to allow the reaction to proceed. The reaction temperature is preferably 50°C or higher, particularly in the range of 90 to 100°C. Typical examples of sulfur-containing organic wastes that are the subject of the present invention include cation exchange resins or mixed ion exchange resins containing cations and anions, such as styrene and divinylbenzenesulfonic acid, which are commonly used for radioactive waste liquid treatment at nuclear power plants. There are powdered or granular products that have sulfone groups or amino groups inside the synthetic resin that has not been polymerized. In the above oxidative decomposition reaction, carbon components and hydrogen components in the ion exchange resin are oxidized to mainly generate carbon dioxide gas and water vapor, and a transparent liquid product is obtained as an oxidative decomposition liquid. Since this oxidative decomposition reaction is carried out at a lower temperature than in the dry incineration method, the transfer of radioactivity to the generated carbon dioxide gas and water vapor is extremely small, and it can be treated using conventional waste gas treatment techniques. Note that this oxidative decomposition liquid 2 contains, for example, sulfate ions generated when oxidatively decomposing a sulfur-containing ion exchange resin having a sulfone group, etc.
Contains metal ions and sulfate ions due to metal salts. This oxidized decomposition liquid 2 is then reductively decomposed, but it is desirable to remove existing metal ions by electrolytic refining prior to this reduction. In this electrolytic refining method, -C is
For example, an electrolytic refining tank in which Pt is positive and Cu or Fe is negative is used, and metal ions present in the oxidized decomposition liquid 2 are precipitated on the negative surface by a reaction represented by the following formula. Fe2++ 20−−1 → Fe Fe” + 3e−−−→ Fe
CLI 2” + 2e -----> Cu Due to this reaction, the metal ions in the oxidized decomposition liquid are reduced to approximately 10
It can be deposited on a 0% negative electrode and recovered. The oxidized decomposition solution 4 in which metal ions have been precipitated in this way is then heated and concentrated while being brought into contact with a reducing agent such as charcoal or sulfur, or a metal such as CLI, which has a lower ionization tendency than hydrogen. The roots are reduced to sulfur dioxide and removed to obtain reduced decomposition residue 3. When using a reducing agent such as charcoal or sulfur,
Sulfate ions become sulfur dioxide almost completely, and C
When a metal such as u is used, theoretically 50% of it is decomposed. In other words, in the former case, sulfate ions become sulfur dioxide through the following reaction, 2H2SO4+C-1→2S○2↑+CO2↑+2H20↑ In the latter case, when the liquid temperature becomes 130°C or higher, sulfuric acid in the oxidized decomposition liquid and copper react as follows, producing copper sulfate in equimolar amounts as sulfur dioxide. Cu → -21-12804-1 → Cu SO4+SO2↑+2H20↑ In other words, in J5 reaction with CU, 1 mole of copper sulfate is produced from 1 mole of metallic copper, and at the same time, 1 mole of ll7ii acid ion is converted into sulfur dioxide and decomposed by -C oxidation. It will be removed from liquid 2. Therefore, even when using metallic copper, 50%
can remove sulfate ions. The sulfur dioxide generated in this desulfurization reaction, like the carbon dioxide gas and water vapor that accompany the oxidative decomposition reaction of the resin mentioned above, transfers to radioactive and active gases is extremely small and cannot be treated with conventional waste gas treatment technology. It is possible. Note that the three reduced residual solutions remaining from the desulfurization reaction using metals can be reused to decompose the radioactive ion exchange resin. There is no need to use salt, and the sulfate radicals can be almost completely decomposed and removed. In addition, if the radioactivity concentration in the reaction solution exceeds the allowable amount, the metal may be precipitated again if necessary, or the solution may be treated as waste solution 4 and treated with "C".In this case, neutralization and After drying, the obtained powdered dry residue 5 is mixed with, for example, a polyester resin and solidified to form a solidified body 6. According to this method, the amount of assimilated product generated is smaller than that of the conventional method. 1 when solidifying the ion exchange resin into cement as it is
/100. The amount can be reduced to 1/20 of the case where the plastic is solidified after drying. [Embodiments of the Invention] Examples of the present invention will be described below. Example 1 A dry mixed powdered ion exchange resin (trade name: Powdex) and 5000 parts of water per 100 parts of this ion exchange resin were added to a four-necked flask equipped with a condenser and a stirrer, and thoroughly mixed. Next, a skewer of hydrogen peroxide and Fe 2 (S
Ferric sulfate was added in an amount such that the concentration as O4)3 was 0.01 mol/β, the mixture was heated to 100° C., and mixing and stirring was continued at this temperature for 1 hour. As the reaction progresses, gas is generated,
The solution initially becomes cloudy, but eventually becomes a clear liquid. The gas generated here was condensed in a condenser, the condensed liquid was returned to the reaction residue liquid in the reactor, and the gas was directly led to the next gas treatment step. Next, the reaction residue solution was electrolyzed in an electrolytic refining tank with Pt as an anode and Fe as a cathode, so that almost 100% of the Fe content in the solution was deposited on the electrodes. Next, a theoretical amount of charcoal powder was added to the electrolysis residual solution and concentrated by heating. At 130°C, it was observed that sulfur dioxide and carbon dioxide gas were generated in the liquid due to the reaction between sulfate ions and charcoal, and at 180°C, 100% decomposition of the sulfate ions was observed. After adjusting the pH, this liquid residue can be treated with a conventional waste liquid treatment system and disposed of.Also, when the liquid after pH adjustment is neutralized, evaporated and dried, and solidified into plastic using polyester resin, it is oxidized and decomposed. It was possible to reduce the volume to about 115 ml compared to the case where the plastic was solidified by neutralization, evaporation drying, and plastic solidification treatment. Example 2 Into the four-necked flask used in Example 1, a powdered mixed ion exchange resin (trade name: Powdex) in a dry state and 100 parts of this ion exchange resin and 1500 parts per 100 parts of this ion exchange resin had a concentration of about 60001 as metallic copper. ) pm copper sulfate aqueous solution was added and heated to a temperature of 80 to 100°C. Then, while stirring with a stirrer, an aqueous hydrogen peroxide solution having a concentration of 60% was added at a constant flow rate of 30 mβ per gram of dry ion exchange resin to oxidize the ion exchange resin and decompose it into a gaseous product and a liquid residue. The remainder of the decomposition solution was used as a Pt anode. Electrolysis was performed in an electrorefining tank with Cu as the cathode, and almost 100% of the Cu content in the liquid was deposited on the Cu electrode. Thereafter, the electrolytic residue solution was heated and concentrated while being brought into contact with the precipitated metal copper. At about 130°C, sulfur dioxide was observed to be generated from the liquid due to the decomposition of sulfate ions, and at 150°C, it was observed that 50% of the theoretical amount of sulfate ions had been decomposed. This liquid residue can be treated with a conventional waste liquid treatment system after l) H adjustment and disposed of, and l) The liquid after H adjustment, neutralized and evaporated dry, can be used to make polyester resin - C plastic. When solidified, the volume could be reduced to about 1/2 compared to when the plastic was assimilated through neutralization, evaporation drying, and plastic assimilation just by oxidative decomposition. In addition, the copper sulfate-containing residual solution obtained by decomposing this sulfate ion was used in combination with an aqueous hydrogen peroxide solution to decompose waste ion exchange resin in the same way as at pJ, but in this case, an aqueous metal salt solution and aqueous hydrogen peroxide were also used. It was confirmed that the method had the same ability to decompose sulfur-containing organic waste. [Effect of the invention] As is clear from the above explanation, according to the method of the present invention, the oxidative decomposition reaction temperature is 100 to 150% lower than that of the conventional method.
Since the conditions are easy to handle at ℃, there is less burden on equipment and equipment materials, and high volume reduction properties can be obtained. Furthermore, since there is almost no transfer of radioactivity to the generated gas, it can be dealt with by normal waste gas treatment. Furthermore, since sulfate ions derived from sulfur-containing organic waste are decomposed, the amount of secondary waste is extremely reduced. 4. Brief description of the drawings The drawings are process diagrams schematically showing the culm of the present invention. 1...Waste ion exchange resin 2...
・・・・・・・・・Oxidation decomposition liquid 3・・・・・・・・・・・・
・・Reduced residual liquid 4・・・・・・・・・・Waste liquid 5・・・・・・・・・・Dried residue 6・・・・・・・・・・・・Solidized material
Claims (1)
酸イオンを含有する分解液を、還元剤又は水素よりイオ
ン化傾向の大きい金属の存在下に加熱濃縮し、硫酸イオ
ンを酸化分解により二酸化イオウとして除去することを
特徴とする放射性含イオウ右機廃棄物の分解液の処理方
法。 (2)分解液は、放射性含イオウ有機廃棄物を金属塩水
溶液中で過酸化水素と接触させて酸化分解し−Cなる特
許請求の範囲第1項記載の放則性含イオウ有機廃棄物分
解液の処理方法。 (3)分解液は、放射性含イオウ有(幾尻乗物を含む液
中に、加熱加圧下に酸素を含むガスを圧入し、酸化し−
C得られる特許請求の範囲第1項記載の放則性含イオウ
有機廃棄物分解液の処理方法。 (4)分解液は、温度200〜300℃、圧力2O〜1
00気圧において酸素を含むカスを圧入し゛C放躬性含
イオウ有機廃棄物を酸化して得られる特許請求の範囲第
3項記載の放射性含イΔつ有機廃棄物分解液の処理方法
。 (5)金属塩は、硫酸第一鉄、硫酸第二鉄、硝酸第一鉄
、硝酸第二鉄a5よび硫酸銅から選ばれた1種または2
種以上からなる特許請求の範囲第2項記載の放射性含イ
オウ右機廃棄物分解液の処理方法。 (6)金属塩水溶液中の全屈イオンの温度は、500〜
110000ppである特5′I韻求の範囲第2項記載
の放射併含イオウ自族廃シτ物分M液の処理方法。 (7)過酸化水素の)開度は、hl 202換算で1へ
・4、0%である特許請求の範囲第2項記載の放射併含
イオウ有機廃棄物分解液の処理方法。 (8ン酸化分解は、80〜100℃の温度で行なわれる
特許請求の範囲第2項記載の放射性含イオウ有機廃棄物
分解液の処理方法。 (9)放射性含イオウ有1m IQ Q物を醇化分解し
−Cなる硫酸イオンを含有する分解液を、還元剤又は水
素よりイオン化傾向の大きい金属の存在下に加熱濃縮し
、硫酸イオンを酸化分解により二酸化イオウとしC除去
した後必要に応じ−U pH調整し、水分を除去し、反
応残漬を固化材と混合して固化させることを特徴とする
放射性含イオウ有機廃棄物の分解液の減容固化方法。 (10)分解液は、放射性含イオウ有機廃菓物を金属塩
水溶液中で過酸化水素と接触させて酸化分解した液であ
る特許請求の範囲第1項記載の放射性含イオウ有(幾廃
棄物分解液の減容固化方法。 (11)金属塩は、硫酸第一鉄、硫酸第二鉄、硝酸第一
鉄、硝酸第二鉄および硫酸銅から選ばれた1種または2
種以上からなる特許請求の範囲第8項記載の放射併含イ
オウ有機廃棄物分解液の減容固化方法。 〈12)金属塩水溶液中の金属イオンの濃度は、500
〜110000pl)である特許請求の範囲第9項記載
の放身l併含イオウ右機廃棄物分解液の減容固化方法。 (13)過酸化水素のm度は、l−1202換算で1〜
40%である特許請求の範囲第10項記載の放射性含イ
オウ右機廃棄物分解液の減容固化方法。[Scope of Claims] (1) A decomposition solution containing sulfate ions obtained by oxidative decomposition of radioactive sulfur-containing organic waste is heated and concentrated in the presence of a reducing agent or a metal that has a higher ionization tendency than hydrogen, and sulfate ions are 1. A method for treating a decomposition solution of radioactive sulfur-containing industrial waste, the method comprising removing sulfur dioxide as sulfur dioxide through oxidative decomposition. (2) The decomposition solution is obtained by oxidatively decomposing the radioactive sulfur-containing organic waste by contacting it with hydrogen peroxide in an aqueous metal salt solution and decomposing the radioactive sulfur-containing organic waste according to claim 1. How to treat liquid. (3) The decomposition liquid is oxidized by injecting oxygen-containing gas under heat and pressure into the liquid containing radioactive sulfur-containing vehicles.
C. A method for treating a decomposed liquid of free-flowing sulfur-containing organic waste according to claim 1. (4) The decomposition liquid has a temperature of 200 to 300°C and a pressure of 20 to 1
4. A method for treating a radioactive sulfur-containing organic waste decomposition solution as claimed in claim 3, which is obtained by oxidizing radioactive sulfur-containing organic waste by injecting oxygen-containing scum under pressure of 000 atmospheres. (5) The metal salt is one or two selected from ferrous sulfate, ferric sulfate, ferrous nitrate, ferric nitrate a5, and copper sulfate.
A method for treating a radioactive sulfur-containing waste decomposition solution as claimed in claim 2, which comprises at least one radioactive sulfur-containing waste decomposition solution. (6) The temperature of the total ion in the metal salt aqueous solution is 500~
110,000 pp. The method for treating the radiation-containing sulfur autologous waste τ substance M solution as set forth in item 2 of the specification 5'I. (7) The method for treating a decomposed liquid of sulfur-containing organic waste as claimed in claim 2, wherein the degree of opening (of hydrogen peroxide) is 1.4.0% in terms of HL 202. (The method for treating a radioactive sulfur-containing organic waste decomposition solution according to claim 2, wherein the oxidative decomposition is carried out at a temperature of 80 to 100°C. (9) Liquification of radioactive sulfur-containing 1m IQ The decomposed solution containing sulfate ions is heated and concentrated in the presence of a reducing agent or a metal that has a greater ionization tendency than hydrogen, and the sulfate ions are converted into sulfur dioxide by oxidative decomposition, and after C is removed, if necessary -U A method for volume reduction and solidification of a decomposed liquid of radioactive sulfur-containing organic waste, which comprises adjusting the pH, removing water, and solidifying the reaction residue by mixing it with a solidifying material. (10) The decomposed liquid contains radioactive sulfur. A method for volume reduction and solidification of a radioactive sulfur-containing waste decomposition liquid according to claim 1, which is a liquid obtained by oxidative decomposition of sulfur organic waste confectionery by contacting it with hydrogen peroxide in an aqueous metal salt solution. 11) The metal salt is one or two selected from ferrous sulfate, ferric sulfate, ferrous nitrate, ferric nitrate, and copper sulfate.
9. A method for volume reduction and solidification of a decomposed solution of radioactive and sulfur organic waste as set forth in claim 8. <12) The concentration of metal ions in the metal salt aqueous solution is 500
110,000 pl), the volume reduction and solidification method of a decomposed solution of sulfur-containing waste as claimed in claim 9. (13) The m degree of hydrogen peroxide is 1 to 1 in terms of l-1202.
11. The method for volume reduction and solidification of radioactive sulfur-containing waste decomposition liquid according to claim 10, wherein the decomposition liquid is 40%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5970483A JPS59184899A (en) | 1983-04-05 | 1983-04-05 | Method of treating and volume-decreasing decomposition solution of sulfur-containing radioactive organic waste |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5970483A JPS59184899A (en) | 1983-04-05 | 1983-04-05 | Method of treating and volume-decreasing decomposition solution of sulfur-containing radioactive organic waste |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59184899A true JPS59184899A (en) | 1984-10-20 |
JPH0574040B2 JPH0574040B2 (en) | 1993-10-15 |
Family
ID=13120865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5970483A Granted JPS59184899A (en) | 1983-04-05 | 1983-04-05 | Method of treating and volume-decreasing decomposition solution of sulfur-containing radioactive organic waste |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59184899A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61110099A (en) * | 1984-11-02 | 1986-05-28 | 株式会社東芝 | Method of disposing radioactive organic waste |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5750700A (en) * | 1980-09-10 | 1982-03-25 | Westinghouse Electric Corp | Method of processing burnable nuclear waste without using sulfuric acid |
-
1983
- 1983-04-05 JP JP5970483A patent/JPS59184899A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5750700A (en) * | 1980-09-10 | 1982-03-25 | Westinghouse Electric Corp | Method of processing burnable nuclear waste without using sulfuric acid |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61110099A (en) * | 1984-11-02 | 1986-05-28 | 株式会社東芝 | Method of disposing radioactive organic waste |
Also Published As
Publication number | Publication date |
---|---|
JPH0574040B2 (en) | 1993-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RO114320B1 (en) | Method of removing nitrogen from nitrogen compounds in aqueous phase | |
JPH0450559B2 (en) | ||
JPH04244293A (en) | Method to contact-oxidize organic substance in waste water | |
EP0412815A2 (en) | Method and apparatus for concentrating dissolved and solid radioactive materials carried in a waste water solution | |
JPS5872099A (en) | Treatment of radioactive organic waste | |
JPH1164590A (en) | Solid waste treatment method | |
CN112655055B (en) | Method for conditioning ion exchange resins and apparatus for carrying out the method | |
JPH0466187A (en) | Treatment of waste water containing heavy metal and organic matter | |
JPS59184899A (en) | Method of treating and volume-decreasing decomposition solution of sulfur-containing radioactive organic waste | |
JPS59184898A (en) | Method of decomposing and volume-decreasing and solidifying radioactive organic waste | |
JPH0544640B2 (en) | ||
JPH0631866B2 (en) | Volume reduction solidification method of radioactive metal-containing organic waste decomposition solution | |
JPS6061697A (en) | Method of decomposig and treating radioactive liquid organic waste | |
JPS61157539A (en) | Decomposition treatment of ion exchange resin | |
JPS6218230B2 (en) | ||
JP2004529748A (en) | Electrochemical oxidation of substances | |
US5744020A (en) | Process for treatment of radioactive waste | |
JPH0564319B2 (en) | ||
JPH0379079B2 (en) | ||
JP2938869B1 (en) | Treatment of radioactive liquid waste | |
JPS6221099A (en) | Method of treating radioactive liquid waste | |
JPS5944700A (en) | Method of decomposing radioactive ion-exchange resin waste | |
JPS61157540A (en) | Decomposition treatment method for ion exchange resin | |
JP2728335B2 (en) | Decomposition method of organic matter in radioactive liquid waste | |
SK245692A3 (en) | Method of treatment of primary coolant of pressure water reactor |