JPS59183897A - Method for controlling addition ratio of high-molecular flocculant - Google Patents
Method for controlling addition ratio of high-molecular flocculantInfo
- Publication number
- JPS59183897A JPS59183897A JP58056937A JP5693783A JPS59183897A JP S59183897 A JPS59183897 A JP S59183897A JP 58056937 A JP58056937 A JP 58056937A JP 5693783 A JP5693783 A JP 5693783A JP S59183897 A JPS59183897 A JP S59183897A
- Authority
- JP
- Japan
- Prior art keywords
- flocculant
- sludge
- colloid
- molecular flocculant
- charge amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 239000010802 sludge Substances 0.000 claims abstract description 31
- 239000000084 colloidal system Substances 0.000 claims abstract description 20
- 239000007788 liquid Substances 0.000 claims abstract description 13
- 229920000642 polymer Polymers 0.000 claims description 3
- 229920000831 ionic polymer Polymers 0.000 claims 1
- 230000018044 dehydration Effects 0.000 abstract description 7
- 238000006297 dehydration reaction Methods 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 5
- 125000000129 anionic group Chemical group 0.000 abstract description 4
- 125000002091 cationic group Chemical group 0.000 abstract description 3
- 230000008569 process Effects 0.000 abstract description 3
- 239000013043 chemical agent Substances 0.000 abstract 2
- 239000000126 substance Substances 0.000 description 28
- 229920000620 organic polymer Polymers 0.000 description 14
- 239000008394 flocculating agent Substances 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 238000004448 titration Methods 0.000 description 6
- 230000009467 reduction Effects 0.000 description 4
- 239000000701 coagulant Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 241001061127 Thione Species 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 1
- 241001539176 Hime Species 0.000 description 1
- 244000089486 Phragmites australis subsp australis Species 0.000 description 1
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 229950003937 tolonium Drugs 0.000 description 1
- HNONEKILPDHFOL-UHFFFAOYSA-M tolonium chloride Chemical compound [Cl-].C1=C(C)C(N)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 HNONEKILPDHFOL-UHFFFAOYSA-M 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Landscapes
- Treatment Of Sludge (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、汚泥の脱水処理に用いる有機高分子凝集剤の
添加率制御方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the addition rate of an organic polymer flocculant used in sludge dewatering treatment.
近年、汚泥の脱水助剤として広く用いられている有機高
分子凝集剤は、無機系凝集剤と比較して添加量が少なく
脱水ケーキ量が少ない、薬品の取扱いが容易であるベル
トプレス、遠心分離機等の高性能脱水機が使用できる等
の利点を持っている。In recent years, organic polymer flocculants, which have been widely used as sludge dewatering aids, require less addition than inorganic flocculants, produce less dehydrated cake, and are easier to handle with chemicals, such as belt presses and centrifugal separation. It has the advantage of being able to use high-performance dehydrators such as a dehydrator.
しか°しながら、有機高分子凝集剤の添加率には最適範
囲が存在するために、添加率の過少の場合はもちろん、
過多の場合にも脱水状態が良好でなくなるので、常に何
らかの方法で薬品添加率を適正範囲内に保たなければな
らないというわずられしさがあった。However, since there is an optimal range for the addition rate of organic polymer flocculants, if the addition rate is too low,
If the amount is too much, the dehydration condition will not be good, so there is a problem that the chemical addition rate must always be kept within an appropriate range by some method.
そのために、従来は単位固形物あたシの添加率を一定と
する比例制御方法が用いられてきた。即ち、汚泥流量と
濃度を測定して固形物処理量を求め、あらかじめ別の手
段で求めた最適添加率から添加量を計算して薬注ポンプ
流量を制御する方法である。この方法は汚泥濃度の変動
に対しては、汚泥濃度計および流量計の信頼性が十分で
あればその後の比例制御そのものは容易であるから、薬
品添加の自動化は可能となるが、現実には濃度計の信頼
性が十分でない。さらに汚泥の質的変動があシ、最適薬
注率が変動する場合は本方法は適用できない。For this purpose, a proportional control method has conventionally been used in which the addition rate of unit solids is kept constant. That is, this is a method of measuring the sludge flow rate and concentration to determine the amount of solids treated, and calculating the addition amount from the optimum addition rate determined in advance by another means to control the chemical injection pump flow rate. With this method, if the sludge concentration meter and flow meter are sufficiently reliable, the subsequent proportional control itself is easy to deal with fluctuations in sludge concentration, so it is possible to automate chemical addition, but in reality, Densitometer reliability is not sufficient. Furthermore, this method cannot be applied if there is a change in the quality of the sludge or if the optimum chemical injection rate changes.
実際の汚泥処理では、汚泥の濃度や質の変動に遭遇する
機会が多く、薬品添加の自動化による脱水操作の最適化
制御が困難となる場合が多い。そのため、脱水状態を常
時観察しながら、添加量を手動で調節する方法をとらざ
るを得す、汚泥処理コスト全体に占める人件費の割合は
極めて太きい。In actual sludge treatment, there are many opportunities to encounter fluctuations in sludge concentration and quality, and it is often difficult to optimize control of dewatering operations by automating the addition of chemicals. Therefore, it is necessary to constantly monitor the dewatering state and manually adjust the amount added, and labor costs account for an extremely large proportion of the total sludge treatment cost.
また、実際の薬品添加率は、適正範囲内であっても、ど
ちらがといえば安全サイドである測添加率側にかたよる
ことは避けられず、薬品費の増大をきたしている。Further, even if the actual chemical addition rate is within the appropriate range, it is inevitable that the chemical addition rate will be on the safer side, resulting in an increase in chemical costs.
本発明は、かがる現状に対し、イオン性有機高分子凝集
剤を使用する場合に、汚泥の濃度や質の変動に十分対拠
できる凝集剤添加率の制御方法を提供し、薬品費の節減
を計るとともlζ、自動化による人件費の大幅低減を可
能とし、汚泥処理全体のコストを低下させんとすること
を目的とするものである。The present invention provides a method for controlling the flocculant addition rate that can sufficiently cope with fluctuations in sludge concentration and quality when using an ionic organic polymer flocculant, thereby reducing chemical costs. The objective is to reduce the cost of sludge treatment as a whole by making it possible to significantly reduce labor costs through automation.
本発明は、イオン性有機高分子凝集剤を添加混合した後
の、液のコロイド荷電量を測定し、その値を一定範囲内
とする様に凝集剤の添加率を調節することを特徴、と、
する。The present invention is characterized by measuring the amount of colloidal charge of the liquid after adding and mixing the ionic organic polymer flocculant, and adjusting the addition rate of the flocculant so that the value is within a certain range. ,
do.
本発明は、イオン性有機高分子凝集剤の添加率と液のコ
ロイド荷電量の関係を求め、それらと実際の汚泥脱水性
状との相互関係を検討し7:結果明らかとなったもので
ある。イオン性有機高分子凝集剤添加率とコロイド荷電
量の関係を定性的に示すと第1図(a) j (b)の
直線のようになる。また生成するフロックは凝集剤の添
加とともにしだいに増大するが、屈折点Aもしくはその
近傍とシわけA点よシ若干凝集剤添加率の低い地点から
急激に粗大化が進み、しばらくののち再び小さくなる。The present invention has been made clear by determining the relationship between the addition rate of an ionic organic polymer flocculant and the amount of colloidal charge of the liquid, and examining the correlation between these and the actual sludge dewatering properties. The relationship between the addition rate of the ionic organic polymer flocculant and the amount of colloid charge is shown qualitatively by the straight lines shown in FIGS. 1(a) and 1(b). In addition, the flocs that are generated gradually increase as the flocculant is added, but they rapidly become coarser at or near the inflection point A, and from points where the flocculant addition rate is slightly lower than point A, and after a while, they become smaller again. Become.
粗大化の急激に進行する地点や、減少化しはじめる地点
は汚泥の種類、凝集剤の種類、さらには両者の混合方法
、混合装置等にょシ変化するが、凝集体の粗大化する領
域は図中の斜線に示す添加率の範囲にある。The point where coarsening rapidly progresses and the point where it begins to decrease will vary depending on the type of sludge, the type of flocculant, the method of mixing the two, the mixing device, etc., but the area where the coarsening of aggregates occurs is shown in the figure. The addition rate is within the range indicated by the diagonal line.
葦た、ベルトプレス遠心分離機等、高分子凝集剤を用い
る脱水機において、脱水能力が最高となるのは凝集体の
粗大化する領域である。In dehydrators using polymer flocculants, such as reeds and belt press centrifuges, the dehydration capacity is highest in the region where the aggregates become coarser.
これらの事実から、脱水機の状態を良好に保つにはコロ
イド荷電量を所定の範囲内(図中斜線部)に凝集剤の添
加量を調整するかあるいは汚泥の流量を調整すればよい
。その際、従来用いられてきた比例注入方式に必要であ
つ1こ汚泥濃度及び流量の測定さらには最適薬品添加率
の決定作業等はすべて不要となる。From these facts, in order to keep the dehydrator in good condition, it is sufficient to adjust the amount of flocculant added or adjust the flow rate of sludge so that the amount of colloid charge falls within a predetermined range (the shaded area in the figure). In this case, all the work required for the conventional proportional injection method, such as measuring the sludge concentration and flow rate, as well as determining the optimum chemical addition rate, becomes unnecessary.
通常、脱水状態が良好となるコロイド荷電量の範囲は、
用いる凝集剤の荷電密度や用いる脱水機の型式等によシ
若干の変動があるものの、陽イオン性有機高分子凝集剤
ではO〜+0.5 meq/l、陰イオン性有機高分子
凝集剤ではO〜−0,5meq/eがよい。従って最適
薬品添加率の設定値は、それらの値の中間にあればよい
ことになるが、薬品添加率が少ない方が、即ちコロイド
荷電量の絶対値が小さい方が経斬的であるのはいうまで
もない。Normally, the range of colloid charge that provides good dehydration is:
Although there are slight variations depending on the charge density of the flocculant used and the model of the dehydrator used, it is O~+0.5 meq/l for cationic organic polymer flocculants, and 0 to +0.5 meq/l for anionic organic polymer flocculants. O~-0.5meq/e is good. Therefore, the optimal chemical addition rate should be set between these values, but it is more economical to have a smaller chemical addition rate, that is, a smaller absolute value of the colloid charge amount. Needless to say.
しかし、コロイド荷電量がOの場合は、省力化を保てる
範囲内で凝集剤添加率を低減し、薬品費を′削減するこ
とが可能であるが、脱水ケーキの処分によって脱水性や
処理量を最高の状態に保つ必要があシ、そのときの具体
的なコロイド荷電量の設定値は、汚泥濃度の変化速度、
コロイド荷電量の測定精1度、測定速度などを勘案して
きめられるが、通常は絶対値として0.01 me(1
/A’程度となる。However, when the colloid charge amount is O, it is possible to reduce the flocculant addition rate within the range that maintains labor savings and reduce chemical costs, but it is possible to reduce the dewatering performance and throughput by disposing of the dehydrated cake. It is necessary to maintain the highest condition, and the specific colloid charge setting value at that time is the rate of change of sludge concentration,
The determination is made taking into consideration the measurement accuracy of the colloid charge amount, the measurement speed, etc., but the absolute value is usually 0.01 me (1
/A' level.
コロイド荷電量の測定方法は、一般に用いられているコ
ロイド滴定法をそのまま利用できる。通常、指示薬とし
てトルイジンブルー、滴定液としてポリビニル硫酸カリ
ウム、滴定終点は比色計で検知する方法が用いられる。As a method for measuring the amount of colloid charge, a commonly used colloid titration method can be used as is. Usually, a method is used in which toluidine blue is used as an indicator, polyvinyl potassium sulfate is used as a titrant, and the titration end point is detected using a colorimeter.
市販の自動滴定装置やマイクロコンピュータ等を利用す
れば、滴定作業及びコロイド荷電量の算出、さらには薬
注ポンプの制御等を自動で行なわせることができる。By using a commercially available automatic titration device, microcomputer, etc., titration work, calculation of colloid charge amount, control of chemical injection pump, etc. can be performed automatically.
測定に用いる液は、滴定操作に不都合でなければ特に制
限はないが通常脱水分離液のような浮遊性固形物の少な
い液を用いる方が好ましい。また洗浄液を用いる脱水機
では、それが混入しない状態の分離液を採取する方が精
度が良い。さらlこ、液の採取場所は薬品添加地点に近
い方が、制御の時間おくれ等が少ないので好ましい。The liquid used for the measurement is not particularly limited as long as it is not inconvenient for the titration operation, but it is usually preferable to use a liquid containing few floating solids, such as a dehydrated separation liquid. In addition, in a dehydrator that uses a cleaning liquid, it is more accurate to collect a separated liquid that is not contaminated with cleaning liquid. It is preferable for the liquid sampling location to be closer to the chemical addition point, as this will reduce control time delays.
なお、2種類のイオン性を持つ凝集剤を順次添−加する
脱水方法の場合にも、2番目に用いる凝集剤の添加率制
御のみならず、最初に添加する凝集剤の添加率制御にも
本発明を用いることができる。In addition, even in the case of a dehydration method in which two types of ionic flocculants are sequentially added, it is necessary to control not only the addition rate of the second flocculant, but also the addition rate of the first flocculant. The present invention can be used.
以上述べたように、本発明は実際の汚泥脱水処理におい
て遭遇する汚泥の質や濃度の変動に十分対撚できるイオ
ン性有機高分子凝集剤の添加率制御方法であシ、薬品添
加の自動化により脱水工程の最適自動制御が可能となり
、薬品費の低減及び人件費の低減等の実用上要人な効果
をもfこらずものである。As described above, the present invention is a method for controlling the addition rate of an ionic organic polymer flocculant that can sufficiently cope with fluctuations in sludge quality and concentration encountered in actual sludge dewatering treatment, and by automating chemical addition. Optimum automatic control of the dehydration process becomes possible, and important practical effects such as reductions in chemical costs and labor costs are achieved without compromising on practical effects.
以下若干の実施例を述べる。Some examples will be described below.
実施例1
某下水処理場混合生汚泥を、陽イオン性有機高分子凝集
剤を用いてベルトプレス型脱水機で脱水した。本発明方
法では分離液を比色法によシ自動でコロイド滴定し、所
定のコロイド荷電量となるように薬注量を1自動制御し
た。従禾法付、15分に一同種度目視徒察しながら薬品
添加量を調整した。Example 1 Mixed raw sludge from a certain sewage treatment plant was dehydrated using a belt press type dehydrator using a cationic organic polymer flocculant. In the method of the present invention, the separated liquid was automatically subjected to colloid titration using a colorimetric method, and the amount of chemical injection was automatically controlled to obtain a predetermined amount of colloid charge. The amount of chemicals added was adjusted while visually inspecting the mixture every 15 minutes.
結果を茨1に示す。The results are shown in Ibara 1.
表 1
ここに、
汚泥濃度 1.5〜3チ
tt pH’ 6.0〜7.0I 強熱減
量 60〜75
凝集剤 エバグロースC−123(荏原イン
フィルコ社商品名)(中力チオ
ン)
なお、・、表、Lの平均薬品添加率と脱水ケーキ含水率
、処理量との関係を図示すれば第2図の通・りである。Table 1 Here, Sludge concentration 1.5-3tttt pH' 6.0-7.0I Loss on ignition 60-75 Coagulant Evagrowth C-123 (trade name of Ebara Infilco) (neutral thione) The relationship between the average chemical addition rate of L, the moisture content of the dehydrated cake, and the throughput is shown in Figure 2.
このように本発明Oこ1よれば、凝集前11の過II添
カロによる脱水ケーキ含水率の上昇や処理状態の不安定
さもなく、従来法と比べて薬品費の低減、人件費の削減
等の効果が認められる。As described above, according to the present invention, there is no increase in the moisture content of the dehydrated cake due to the addition of perII in the step 11 before aggregation, and there is no instability in the processing state, and compared to the conventional method, chemical costs are reduced, labor costs are reduced, etc. The effect of
実施例2
某浄水場汚泥を陰イオン性有機高分子凝集斉11乏用い
て遠心分離@ζこよりB兄水した。本浄水場Gま、汚泥
濃縮槽が小さいため、天候等Oこより汚泥濃Bが大幅に
変動するため、薬注f6制御カニ厄介でおり・常時凝集
剤過剰ぎみで運転してい1こ(従来法)。Example 2 Sludge from a certain water purification plant was centrifuged using anionic organic polymer flocculation method. Since the sludge thickening tank at this water treatment plant is small, the sludge concentration B fluctuates significantly due to weather, etc., making it difficult to control the chemical injection f6. ).
結果を云2に示す。The results are shown in No. 2.
表 2
ここに
汚泥濃度 4〜9%
tt pH6,5〜7.0
〃 強熱減量 65〜70%
凝集剤 エバグロースA−152(荏原インフ
イルコ社商品名)(中ア
ニオン)
なお表2の平均薬品添加率と脱水ケーキ含水率、処理量
との関係を図示すれば第3図の通シである。Table 2 Here, sludge concentration 4-9% tt pH 6.5-7.0 〃 Loss on ignition 65-70% Coagulant Evagrowth A-152 (trade name of Ebara Infilco Ltd.) (medium anion) Average chemical addition in Table 2 The relationship between the rate, the moisture content of the dehydrated cake, and the throughput is illustrated in Figure 3.
このように本発明方法によれば、薬品添加率の減少、脱
水ケーキ含水率の低下、人件費の減少等の効果が認めら
れる。As described above, according to the method of the present invention, effects such as a reduction in the chemical addition rate, a reduction in the moisture content of the dehydrated cake, and a reduction in labor costs are recognized.
実施例3
某食品工場では、複数の排水処理施設を持ち、余剰汚泥
を混合して遠心脱水機により、脱水処理していた。製造
品種の変動に伴って余剰汚泥の発生比率が変動し、有機
高分子凝集剤の最適添加率が変わる。そのため、脱水機
の運転時は汚泥濃度、流量のチェック以外に最適薬注率
のチェックも実施する必要があシ、かなりの人件費が必
要であつfこ。本発明方法を用いると、上記チェックは
すべて不要になシ、脱水工程の人工を大幅に削減するこ
とができた。その結果を表3に示す。Example 3 A certain food factory had multiple wastewater treatment facilities, and surplus sludge was mixed and dehydrated using a centrifugal dehydrator. The generation ratio of surplus sludge changes as the product type changes, and the optimal addition rate of organic polymer flocculant changes. Therefore, when operating a dehydrator, in addition to checking the sludge concentration and flow rate, it is also necessary to check the optimum chemical injection rate, which requires considerable labor costs. When the method of the present invention is used, all of the above checks are no longer necessary, and the number of manual operations in the dehydration process can be significantly reduced. The results are shown in Table 3.
表 3
ここtこ、
汚泥濃度 0.9〜1.5%
// pH6,5〜7.5
〃 強熱減量 65〜8゜
使用凝集剤 エバグロースc 123 (荏原インフ
ィルコ社商′品名)(])AM
系、中力チオン) ・Table 3 Sludge concentration 0.9-1.5% // pH 6.5-7.5 Loss on ignition 65-8° Coagulant used Evagrowth C 123 (Product name of Ebara Infilco Co., Ltd.) (]) AM type, neutral thione) ・
第1図(a) 、 (b)はイオン性有機高分子凝集剤
添加率とコロイド荷電量との関係を、第2図は、表1の
平均薬品添加率と脱水ケーキ含水率、処理量との関係を
、及び第3図は表2の平均薬品添加率と脱水ケーキ含水
率、処理量との関係を示したものである。
代理人
!埋土 塩 崎 正 広
ど12)
−’姫卸ツ
第 21
陽イオン、)す胸繊漏躬Y愛丁4リチ帽帝仰オ(悴)第
3 図Figures 1 (a) and (b) show the relationship between the ionic organic polymer flocculant addition rate and the amount of colloid charge, and Figure 2 shows the relationship between the average chemical addition rate, dehydrated cake water content, and processing amount in Table 1. Figure 3 shows the relationship between the average chemical addition rate in Table 2, the moisture content of the dehydrated cake, and the throughput. Agent! Buried soil Tadashi Shiozaki Hirodo 12)
-'Hime Wholesale Tsu No. 21 Cation, )su Chest Cable Leakage Y Ai Ding 4 Richi Hat Emperor's Aptitude (悴) Fig. 3
Claims (1)
る方法において、凝集剤添加後の液中のコロイド荷電量
を測定し、該コロイド荷電量を所定の値とするように凝
集剤添加後を制御することを特徴とする高分子凝集剤の
添加率制御方法。 2 前記凝集剤のイオン性が正である場合には、コロイ
ド荷電量が+0.01〜+0.5 meq/7 。 負である場合には、−0,01〜−0,5meq/A!
となる様に凝集剤添加率を制御することを特徴とする特
許請求の範囲第1項記載の高分子凝集剤の添加率制御方
法。[Claims] 1. In a method of dewatering sludge by adding and mixing an ionic polymer flocculant, the amount of colloid charge in the liquid after the addition of the flocculant is measured, and the amount of colloid charge is set to a predetermined value. A method for controlling the addition rate of a polymer flocculant, the method comprising controlling after the flocculant is added. 2 When the ionicity of the flocculant is positive, the amount of colloid charge is +0.01 to +0.5 meq/7. If negative, -0,01 to -0,5meq/A!
A method for controlling the addition rate of a polymer flocculant according to claim 1, characterized in that the flocculant addition rate is controlled so that the following is achieved.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58056937A JPS59183897A (en) | 1983-04-01 | 1983-04-01 | Method for controlling addition ratio of high-molecular flocculant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58056937A JPS59183897A (en) | 1983-04-01 | 1983-04-01 | Method for controlling addition ratio of high-molecular flocculant |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59183897A true JPS59183897A (en) | 1984-10-19 |
JPH0417719B2 JPH0417719B2 (en) | 1992-03-26 |
Family
ID=13041434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58056937A Granted JPS59183897A (en) | 1983-04-01 | 1983-04-01 | Method for controlling addition ratio of high-molecular flocculant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59183897A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0483600A (en) * | 1990-07-24 | 1992-03-17 | Nippon Gesuidou Jigyodan | Dehydration of sludge |
JP2019000819A (en) * | 2017-06-16 | 2019-01-10 | 東京都下水道サービス株式会社 | Electrolyte supply control device, dehydrating device, electrolyte supply method, and dehydration method |
CN111762997A (en) * | 2020-06-30 | 2020-10-13 | 绍兴市城投再生资源有限公司 | Flocculant quantity control method for waste slurry treatment |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5856939A (en) * | 1981-09-11 | 1983-04-04 | ステフアン・マンゾニ | Remote controller for car back mirror |
-
1983
- 1983-04-01 JP JP58056937A patent/JPS59183897A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5856939A (en) * | 1981-09-11 | 1983-04-04 | ステフアン・マンゾニ | Remote controller for car back mirror |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0483600A (en) * | 1990-07-24 | 1992-03-17 | Nippon Gesuidou Jigyodan | Dehydration of sludge |
JP2019000819A (en) * | 2017-06-16 | 2019-01-10 | 東京都下水道サービス株式会社 | Electrolyte supply control device, dehydrating device, electrolyte supply method, and dehydration method |
CN111762997A (en) * | 2020-06-30 | 2020-10-13 | 绍兴市城投再生资源有限公司 | Flocculant quantity control method for waste slurry treatment |
Also Published As
Publication number | Publication date |
---|---|
JPH0417719B2 (en) | 1992-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1257412A (en) | Process and apparatus for controlled addition of conditioning material to sewage sludge | |
EP0819022B1 (en) | Process and apparatus for dewatering a suspension | |
CN102531131A (en) | System and method for controlling adding amount of flocculant | |
EP0146015A2 (en) | Method of determining the dispersion grade in concentrated flowing dispersions | |
JPS59183897A (en) | Method for controlling addition ratio of high-molecular flocculant | |
JP2007275790A (en) | Sludge dewatering apparatus and sludge dewatering method | |
JPH09290273A (en) | Method and apparatus for adjusting coagulant addition amount | |
CA1284556C (en) | Process for controlling pulp bleaching systems | |
JP4785454B2 (en) | Method and apparatus for adjusting sludge solids supply in sludge dewatering machine | |
JP7335160B2 (en) | Sludge coagulation dewatering device and its control method | |
JPH0562000B2 (en) | ||
JPH1099887A (en) | Apparatus for controlling addition amount of flocculant | |
JPS6025599A (en) | Addition quantity controlling method for organic high polymeric flocculant | |
CN202576060U (en) | System for controlling dosage of flocculating agent | |
JPS59183898A (en) | Method for controlling addition ratio of high-molecular flocculant | |
WO1996011883A1 (en) | A fluid treatment system | |
JPH0334400B2 (en) | ||
JPS6023000A (en) | Process for controlling amount of organic high molecular flocculant to be added | |
SU1604749A1 (en) | Method of automatic control of process of cleaning of effluents from hexavalent chromium | |
JPH0334398B2 (en) | ||
JPS6025598A (en) | Addition quantity controlling method for organic high polymeric flocculant | |
CA1318377C (en) | Sampling processes for use in the controlled addition of conditioning material to suspensions, sludges and the like and apparatus therefor | |
SU1135784A1 (en) | Automatic control system for controlling moisture content of agglomeration batch | |
JP3057983B2 (en) | Control device for belt press dehydrator | |
JPS6022998A (en) | Process for controlling amount of organic high molecular flocculant to be added |