[go: up one dir, main page]

JPS59177934A - Pattern formation of semiconductor device - Google Patents

Pattern formation of semiconductor device

Info

Publication number
JPS59177934A
JPS59177934A JP5151583A JP5151583A JPS59177934A JP S59177934 A JPS59177934 A JP S59177934A JP 5151583 A JP5151583 A JP 5151583A JP 5151583 A JP5151583 A JP 5151583A JP S59177934 A JPS59177934 A JP S59177934A
Authority
JP
Japan
Prior art keywords
deposited layer
layer
deposited
pattern
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5151583A
Other languages
Japanese (ja)
Inventor
Hiroshi Tetsuda
鉄田 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP5151583A priority Critical patent/JPS59177934A/en
Publication of JPS59177934A publication Critical patent/JPS59177934A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3086Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3081Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their composition, e.g. multilayer masks, materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Weting (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To perform pattern formation in order to deposited layers of the plural number without using a resist by a method wherein radiation ray is projected selectively to a second deposited layer formed on a first deposited layer to form a pattern utilizing the difference of etching speeds, and etching of the first deposited layer is performed using the patterned layer thereof as a mask. CONSTITUTION:A first deposited layer 5 of wiring metal layer to be formed with a pattern is formed on a substrate 4. Then a silicon layer is formed as a second deposited layer 6 thereon. Scanning is performed with radiation rays 7 of a laser beam or an electron beam, etc. in accordance with the prescribed wiring pattern to the second deposited layer 6 thereof to irradiate selectively the deposited layer 6. Largeness of the silicon grains of the part 8 received irradiation of radiation is increased as compared with the part 9 not received irradiation to change crystallizability, and the etching speed becomes extremely slow. As the result of the etching process, the second deposited layer part 9 not received irradiation is removed completely, and the first deposited layer 5 of metal layer existing thereunder is etched using the second deposited layer part 8 as a mask to form accurately a metal wiring pattern 10.

Description

【発明の詳細な説明】 (技術分野) 本発明はレノストに用いない半導体装置の・ぐターン形
成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for forming a pattern in a semiconductor device that is not used for renost.

(従来技術) 一般に半導体装置の製造に当た9、いわゆるマスキング
技術が用いられている。このマスキング技術にはレノス
トを用い、このレジストにパターンを形成しこのパター
ン成形されたレジス)kマスクとして用いて下側に存在
する層例えば半導体層、絶縁層又は金属層に対しエツチ
ング、ドーピングその他生導体装置の製造に必要な処理
を所要に応じて行っている。
(Prior Art) In general, a so-called masking technique is used in manufacturing semiconductor devices9. This masking technique uses a renost, which forms a pattern on the resist, and uses the patterned resist as a mask to perform etching, doping, or other processes on the underlying layer, such as a semiconductor layer, an insulating layer, or a metal layer. Processes necessary for manufacturing conductor devices are performed as required.

第1図A −Dは従来の半導体装置の・ぐターン形成方
法の典型例を示す工程図で、特に半導体又は絶縁膜上に
形成した配線金属の・やターン形成(以下単にパターニ
ングと称する)の工程例を示す。
FIGS. 1A to 1D are process diagrams showing a typical example of a conventional pattern forming method for a semiconductor device, and in particular, the process of forming a pattern (hereinafter simply referred to as patterning) of a wiring metal formed on a semiconductor or insulating film. An example of the process is shown.

この従来のパターニング方法によれば、先ず第1図Aに
示す如く、基層1すなわち半導体層又は絶縁層上に堆積
層2すなわち配線金属層を設ける。
According to this conventional patterning method, first, as shown in FIG. 1A, a deposited layer 2, that is, a wiring metal layer, is provided on a base layer 1, that is, a semiconductor layer or an insulating layer.

この配線金属層2を・やターニングする場合、第2図B
に示す如くこの金属層2上にレジスト3を塗布する。其
の後このレジスト3に対しガラスマスクを通して放射例
えば紫外線を照射することによりこのレジスト3を選択
的に重合させる。其の後第1図Cに示す如く、このレジ
スト3を現像することによりこのレジストのパターン成
形を行う。
When this wiring metal layer 2 is slightly turned, as shown in FIG.
A resist 3 is applied on this metal layer 2 as shown in FIG. The resist 3 is then selectively polymerized by irradiating the resist 3 with radiation, for example ultraviolet light, through a glass mask. Thereafter, as shown in FIG. 1C, this resist 3 is developed to form a pattern.

次いf第1図りに示す如く、このパターン成形すれたレ
ジスト3をマスクとして下側の堆積層である金属層2を
エツチングして配線パターンの成形を行うものである。
Next, as shown in Figure f1, the patterned resist 3 is used as a mask to etch the underlying deposited metal layer 2 to form a wiring pattern.

この従来のパターニング方法は堆積層にレジストを塗布
し、このレノストヲマスクとして堆積層をエツチングし
て・ぞターン成形する方法であるから、この堆積層とレ
ジストとの密着性に起因してサイドエツチングが生ずる
。このサイドエツチングは、其の後に半導体層に例えば
ソース及びドレイン領域を形成する際に、実効デート長
にバラツキを生ずる原因となる。
In this conventional patterning method, a resist is applied to the deposited layer, and the deposited layer is etched using the resist as a mask to form the pattern, so side etching occurs due to the adhesion between the deposited layer and the resist. . This side etching causes variations in the effective date length when, for example, source and drain regions are subsequently formed in the semiconductor layer.

さらに、紫外線を用いてレジスタのパターニングを行う
工程で光の回折、多重反射効果等によりガラスマスクパ
ターンとの寸法変換差が生じ、精密なパターニングが行
えないという欠点がある。
Furthermore, in the process of patterning a resistor using ultraviolet rays, a difference in dimension conversion from the glass mask pattern occurs due to light diffraction, multiple reflection effects, etc., making it impossible to perform precise patterning.

さらに、レジストを使用する方法はレジストが有機物で
あることから、其の後の工程に進む前にこれを十分に洗
浄する必要があり、その分の処理工程が余分に必要とな
る欠点がある。
Furthermore, since the resist is an organic substance, the method using a resist requires sufficient cleaning before proceeding to the subsequent steps, which has the drawback of requiring an extra processing step.

(発明の目的) 本発明の目的は上述した従来の・やターニング方法の欠
点を除去するため、レジストヲ用いずに基層上に形成し
た複数の堆積層に対し順次にエツチングを行ってパター
ン成形を行う半導体装置のパターン形成方法を提供する
ことにある。
(Object of the Invention) The object of the present invention is to form a pattern by sequentially etching a plurality of deposited layers formed on a base layer without using a resist, in order to eliminate the drawbacks of the conventional turning method described above. An object of the present invention is to provide a pattern forming method for a semiconductor device.

(発明の構成) この目的の達成を図るため本発明の半導体装置のパター
ン形成方法によれば、半導体層又は絶縁層のよう々基層
」二に・ぐターン成形されるべき、例えば半導体薄膜、
絶縁膜又は金属薄膜のような、第一堆積層全形成し、こ
の第一堆積層上に、例えば多結晶又は非晶質の半導体薄
膜或いは金属薄膜のような、第二堆積層を形成し、この
第二堆積層に対し、例えばレーザ光又は電子線のような
放射を選択的に照射し、この放射の照射を受けた第二堆
積層部分と照射を受けなかった第二堆積層部分とのエツ
チング速度の相違を利用してこの第二堆積層全エツチン
グしてノeターン成形し、このパターン成形された第二
堆積層をマスクとじて前述の第一堆積層のエツチングを
行って・ぐターン成形することを特徴とする。
(Structure of the Invention) In order to achieve this object, according to the method for patterning a semiconductor device of the present invention, a base layer such as a semiconductor layer or an insulating layer, for example, a semiconductor thin film to be formed in two turns,
forming a first deposited layer, such as an insulating film or a metal thin film, and forming a second deposited layer, such as a polycrystalline or amorphous semiconductor thin film or a metal thin film, on the first deposited layer; The second deposited layer is selectively irradiated with radiation such as a laser beam or an electron beam, and the second deposited layer portion that has been irradiated with this radiation and the second deposited layer portion that has not been irradiated are separated. Utilizing the difference in etching speed, the entire second deposited layer is etched to form a no-e turn, and the first deposited layer described above is etched using the patterned second deposited layer as a mask. Characterized by molding.

(実施例) 以下図面につき本発明の実施例を詳述する。(Example) Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図A−Eは本発明のパターン形成方法の実施例を説
明するための工程図である。
FIGS. 2A to 2E are process diagrams for explaining an embodiment of the pattern forming method of the present invention.

この第2図を用いて半導体層又は絶縁層等の基層上に配
線金属のパターニングを行う方法を説明する。先ず第2
図Aに示す様に半導体層又は絶縁層の基層4上にパター
ン成形されるべき配線金属層である第一堆積層5を形成
する。次にこの第一堆積層5上に第2図Bに示す様に多
結晶又は非晶質のシリコン層を第二堆積層6としてCV
D又は蒸着により形成する。続いて第2図Cに示す様に
、この第二堆積層6に対し所定の配線パターンに従って
レーザ光又は電子線等の放射7で走査を行って堆積層6
を選択的に照射する。その結果、この第二堆積層6であ
るシリコン層の放射の照射を受けた部分8のシリコンの
粒子の大きさが照射を受(5) けなかった部分9に比べ増大して結晶性に変化をもたら
し、これがため前者のシリコン層部分8は後者のシリコ
ン層部分9に比べてエツチング速度が極めて遅くなる。
A method for patterning wiring metal on a base layer such as a semiconductor layer or an insulating layer will be explained using FIG. First, the second
As shown in FIG. A, a first deposited layer 5, which is a wiring metal layer to be patterned, is formed on a base layer 4 of a semiconductor layer or an insulating layer. Next, as shown in FIG. 2B, a polycrystalline or amorphous silicon layer is formed on the first deposited layer 5 as a second deposited layer 6 by CVD.
D or by vapor deposition. Subsequently, as shown in FIG. 2C, this second deposited layer 6 is scanned with radiation 7 such as a laser beam or an electron beam according to a predetermined wiring pattern to remove the deposited layer 6.
selectively irradiate. As a result, the size of the silicon particles in the portion 8 of the second deposited layer 6 that is irradiated with radiation increases compared to the portion 9 that is not irradiated (5) and changes to crystallinity. Therefore, the etching rate of the former silicon layer portion 8 is much lower than that of the latter silicon layer portion 9.

次に第2図りに示すように、放射照射後の第二堆積層6
に対しウェット又はドライエツチング法を施し、その際
上述したエツチング速度の差を利用してエツチング処理
を行う。その結果、照射を受けなかった第二堆積層部分
9は完全に除去され、他方照射を受けた第二堆積層部分
8はその厚さの一部分にわたシエッチングされるのみで
残る。このようにパターン成形された第二堆積層部分8
をマスクとして用いてその下側に存在する金属層である
第一堆積層5のエツチングを行って第一堆積層の・やタ
ーンすなわち金属配線パターン10f精確に形成する。
Next, as shown in the second diagram, the second deposited layer 6 after irradiation
A wet or dry etching method is applied to the film, and the etching process is performed using the above-mentioned difference in etching speed. As a result, the non-irradiated second deposited layer portion 9 is completely removed, while the irradiated second deposited layer portion 8 remains only etched over a portion of its thickness. The second deposited layer portion 8 patterned in this way
Using this as a mask, the first deposited layer 5, which is the metal layer existing below, is etched to accurately form a slight turn of the first deposited layer, that is, a metal wiring pattern 10f.

その状態を第2図りに示す。The state is shown in the second diagram.

上述した本発明の方法によれば、多結晶又は非晶質シリ
コン層である第二堆積層に照射密度約0.5〜10J/
Crn2程度のレーザ光で照射を行うと、堆積直後の粒
子の大きさは数十X〜数百Xであっ(6) たものがI/−ザ光の照射後には数μm〜数十数十μm
槽大する。その結果、次のエツチング工程に際し、例え
ばCF4+50%02のドライエツチングを行うと、照
射を受けたシリコン層部分のエツチング速度は照射を受
けがかったシリコン層部分のエツチング速度の10分の
1から100分の工程度にまで減少する。従ってこの第
二堆積層である多結晶又は非晶質のシリコン層の厚さを
、其の後のエツチングの際に減少する分を考慮に入れて
、予め正確に設定しておけば、・ぐターニングを正確に
制御することが出来る。放射としてレーザ光の代わりに
電子線を使用する場合にはl/−ザ光と同程度の工坏ル
ギーの電子線を用いれば、上述したと同等の結果を得る
ことが出来る。
According to the method of the present invention described above, the second deposited layer, which is a polycrystalline or amorphous silicon layer, is irradiated with an irradiation density of about 0.5 to 10 J/
When irradiated with a laser beam of about Crn2, the size of the particles immediately after deposition was several tens of times to several hundred times (6), but after irradiation with I/- laser light, the size of the particles was several tens of times to several tens of tens of times. μm
Enlarge the tank. As a result, in the next etching process, for example, when dry etching with CF4+50%02 is performed, the etching speed of the irradiated silicon layer portion is 1/10 to 100 minutes of the etching speed of the silicon layer portion that was previously irradiated. The process level is reduced to . Therefore, if the thickness of the polycrystalline or amorphous silicon layer, which is the second deposited layer, is set accurately in advance, taking into account the reduction during subsequent etching,... Turning can be controlled accurately. When an electron beam is used instead of a laser beam as the radiation, the same result as described above can be obtained by using an electron beam with the same energy as the l/-ther beam.

上述した実施例においては、配線金属の・ぐターニング
を多結晶又は非晶質のシリコン層(シリコン薄膜ともい
う)全マスクとして用いて行う方法につき説明したが、
本発明はこれに限定されるものでは々く、・やターン成
形されるべき第一堆積層を半導体薄膜、絶縁膜等の半導
体装置でバターニングする必要のある全ての薄膜とし得
る。又、マスクと[〜て供する第二堆積層を上述したシ
リコン層以外の多結晶又は非晶質の半導体層或いは金属
薄膜とし得る。この場合、第一堆積層と第二堆積層とは
異なった種類の層(薄膜)を用い、第一堆積層のエツチ
ングの際には第二堆積層がエツチングされないか或いは
エツチングされる場合にはエツチング速度が遅い組合わ
せとするのが良い。
In the above-mentioned embodiment, a method was described in which turning of wiring metal is performed using a polycrystalline or amorphous silicon layer (also referred to as a silicon thin film) as an entire mask.
The present invention is not limited to this, and the first deposited layer to be turn-formed can be any thin film that needs to be patterned in a semiconductor device, such as a semiconductor thin film or an insulating film. Further, the second deposited layer serving as the mask may be a polycrystalline or amorphous semiconductor layer or a metal thin film other than the above-mentioned silicon layer. In this case, different types of layers (thin films) are used for the first deposited layer and the second deposited layer, and when the first deposited layer is etched, the second deposited layer is not etched, or if it is etched, the second deposited layer is etched. It is better to use a combination with a slow etching speed.

(発明の効果) 上述したように、本発明においてはいわゆるレジストヲ
用いる代わりに、・ぐターニングしようとする半導体薄
膜、絶縁膜又は金属薄膜の第一堆積層上に多結晶又は非
晶質の半導体層又は金属薄膜を第二堆積層としてCVD
又は蒸着により形成し、この第二堆積層を選択的にレー
ザ光又は電子線等の放射で照射を行って・やターニング
し、その後にパターン形成された第二堆積層をマスクと
してその下側の第一堆積層の・母ターニングを行うので
あるから、第−堆積層例えば配線金属薄膜と第二堆積層
例えばシリコン層との密着性が極めて良好となシ、これ
がため配線金属薄膜のエツチングに際しサイドエツチン
グを実質的に排除し得、よってマスクとの寸法変換差が
予想可能となり正確かつ精密にパターン形成を行い得る
という利点がある。
(Effects of the Invention) As described above, in the present invention, instead of using a so-called resist, a polycrystalline or amorphous semiconductor layer is placed on the first deposited layer of the semiconductor thin film, insulating film, or metal thin film to be turned. or CVD using a metal thin film as a second deposited layer.
Alternatively, the second deposited layer may be formed by vapor deposition, selectively irradiated with radiation such as a laser beam or an electron beam, and then slightly turned, and then the patterned second deposited layer may be used as a mask to form a layer underneath the second deposited layer. Since the primary turning of the first deposited layer is performed, the adhesion between the first deposited layer, such as a wiring metal thin film, and the second deposited layer, such as a silicon layer, is extremely good. There is an advantage that etching can be substantially eliminated, and therefore the dimensional conversion difference with the mask can be predicted, allowing accurate and precise pattern formation.

又、レジス[−使用しないため、従来必要とされた洗浄
工程が不必要となるため工程が簡略となり、従ってその
分だけ製造コストが低減するという利点がある。
In addition, since a resist is not used, the cleaning process that was conventionally required is not required, which simplifies the process and reduces the manufacturing cost accordingly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体装置のパターン形成方法特に配線
金属のパターン形成方法を説明するための工程図、第2
図は本発明の半導体装置のパターン形成方法の一実施例
を説明するための工程図である。 4・・・基層(又は半導体層又は絶縁層)、5・・・第
一堆積層(又は半導体薄膜、絶縁膜又は金属薄膜)、6
・・・第二堆積層(又は多結晶又は非晶質の半導体層、
又は金属薄膜)、7・・・放射(又はレーザ光又は電子
線)、8・・・放射の照射を受けた第二堆積層部分、9
・・・放射の照射を受けなかった第二堆積層(9) 部分、lO・・金属配線・ぐターン(又は第一堆積層の
パターン)。 特許出願人 沖電気工業株式会社 (10) 第1図 第2図 昭和  年  月  日 特許庁長官 殿 1、事件の表示 昭和58年  特 許 願第051515号2、発明の
名称 半導体装置のパターン形成方法 3 補正をする者 事件との関係      特 許 出 願 人住 所(
〒105)  東京都港区虎ノ門1丁目7番12号名称
(029)   3申@気工業I本式会ネ土代表者  
      取締役社長橋本南海男4、代理人 住 所(〒105)  東京都港区虎ノ門1丁目7番1
2号6、補正の内容 別紙のとおり 6、補正の内容 (1)明細書第5面第20行目と第6頁第20行目に「
粒子」とあるのを「粒径」と補正する。 (2)同書第6頁第16行目に「第2図りに示す。」と
あるのを「第2図Eに示す。」と補正する。 (3)同書第7頁第3行目にrCF4+50係02」と
あるのをrcF4+5%02」と補正する。 (2)
FIG. 1 is a process diagram for explaining a conventional semiconductor device pattern forming method, particularly a wiring metal pattern forming method;
The figure is a process diagram for explaining one embodiment of the method for forming a pattern of a semiconductor device according to the present invention. 4... Base layer (or semiconductor layer or insulating layer), 5... First deposited layer (or semiconductor thin film, insulating film, or metal thin film), 6
... second deposited layer (or polycrystalline or amorphous semiconductor layer,
or metal thin film), 7... Radiation (or laser light or electron beam), 8... Second deposited layer portion irradiated with radiation, 9
. . . The second deposited layer (9) portion that was not irradiated with radiation, lO . . . Metal wiring pattern (or pattern of the first deposited layer). Patent Applicant Oki Electric Industry Co., Ltd. (10) Figure 1 Figure 2 Showa Year Month Date Commissioner of the Japan Patent Office 1. Indication of the case 1988 Patent Application No. 051515 2. Name of the invention Method for forming patterns of semiconductor devices 3 Relationship with the case of the person making the amendment Patent application Person's address (
Address: 105) 1-7-12 Toranomon, Minato-ku, Tokyo Name (029) 3 Shin@Ki Kogyo I Main Shikikai Neto Representative
Director and President Nankai Hashimoto 4, Agent address (105) 1-7-1 Toranomon, Minato-ku, Tokyo
No. 2 No. 6, Contents of the amendment As attached, 6, Contents of the amendment (1) Line 20 of page 5 of the specification and line 20 of page 6: “
Correct the phrase ``particles'' to ``particle size.'' (2) In the 16th line of page 6 of the same book, the phrase "shown in the second drawing" is corrected to "shown in the second drawing E." (3) In the third line of page 7 of the same book, the text "rCF4+50 section 02" is corrected to "rcF4+5%02". (2)

Claims (1)

【特許請求の範囲】[Claims] 基層表面上に・ぐターン成形されるべき第一堆積層を形
成し、該第−堆積層上に第二堆積層を形成し、該第二堆
積層に対し放射を選択的に照射し、該放射の照射を受け
た第二堆積層部分と照射を受けなかった第二堆積層部分
とのエツチング速度の相違を利用して前記第二堆積層を
エツチングして・にターン成形し、該パターン成形され
た第二堆積層をマスクとして前記第一堆積層をエツチン
グして・ぐターン成形することを特徴とする半導体装置
の・ぐターン形成方法。
forming a first deposited layer to be patterned on the surface of the base layer, forming a second deposited layer on the first deposited layer, selectively irradiating the second deposited layer with radiation; The second deposited layer is etched by taking advantage of the difference in etching speed between the second deposited layer portion that has been irradiated with radiation and the second deposited layer portion that has not been irradiated to form a pattern. A method for forming a pattern in a semiconductor device, comprising etching the first deposited layer using the etched second deposited layer as a mask to form the pattern.
JP5151583A 1983-03-29 1983-03-29 Pattern formation of semiconductor device Pending JPS59177934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5151583A JPS59177934A (en) 1983-03-29 1983-03-29 Pattern formation of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5151583A JPS59177934A (en) 1983-03-29 1983-03-29 Pattern formation of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59177934A true JPS59177934A (en) 1984-10-08

Family

ID=12889139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5151583A Pending JPS59177934A (en) 1983-03-29 1983-03-29 Pattern formation of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59177934A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321144A2 (en) * 1987-12-14 1989-06-21 AT&T Corp. Patterning method in the manufacture of miniaturized devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321144A2 (en) * 1987-12-14 1989-06-21 AT&T Corp. Patterning method in the manufacture of miniaturized devices

Similar Documents

Publication Publication Date Title
JP3057879B2 (en) Method for manufacturing semiconductor device
US5196376A (en) Laser lithography for integrated circuit and integrated circuit interconnect manufacture
US4315984A (en) Method of producing a semiconductor device
JP3161040B2 (en) Method for manufacturing semiconductor device
JPS6355208B2 (en)
KR950015647A (en) Manufacturing Method of Semiconductor Device
JPS59177934A (en) Pattern formation of semiconductor device
US5543255A (en) Half-tone type phase shift mask and method for fabrication thereof
EP0178654A2 (en) Method of manufacturing a semiconductor device comprising a method of patterning an organic material
JPS6148771B2 (en)
JPS59177930A (en) Pattern formation of semiconductor device
US5736276A (en) Method for fabricating phase inverted mask
JPS59132124A (en) Manufacture of semiconductor device
KR100299515B1 (en) Method of manufacturing semiconductor device
JP3034071B2 (en) Method for manufacturing semiconductor device
JPH0312452B2 (en)
JPH0469410B2 (en)
JPS59155930A (en) Forming method of minute pattern
KR950004974B1 (en) Fine pattern formation method
JPS5984427A (en) Patterning method
JPH07235544A (en) Formation of wiring pattern of semiconductor device
JPH05304167A (en) Forming method of resist pattern
JPS59194439A (en) Method for forming pattern of semiconductor device
JPS6189671A (en) Manufacturing method of thin film transistor
JPH0715871B2 (en) Resist pattern formation method