[go: up one dir, main page]

JPS59176530A - Room-to-room low differential pressure ventilation power-saving control equipment - Google Patents

Room-to-room low differential pressure ventilation power-saving control equipment

Info

Publication number
JPS59176530A
JPS59176530A JP5044783A JP5044783A JPS59176530A JP S59176530 A JPS59176530 A JP S59176530A JP 5044783 A JP5044783 A JP 5044783A JP 5044783 A JP5044783 A JP 5044783A JP S59176530 A JPS59176530 A JP S59176530A
Authority
JP
Japan
Prior art keywords
room
air
differential pressure
damper
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5044783A
Other languages
Japanese (ja)
Other versions
JPH0345291B2 (en
Inventor
Atsushi Takahashi
惇 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP5044783A priority Critical patent/JPS59176530A/en
Publication of JPS59176530A publication Critical patent/JPS59176530A/en
Publication of JPH0345291B2 publication Critical patent/JPH0345291B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ventilation (AREA)

Abstract

PURPOSE:To keep the airtight capacity of a hot experimetal equipment or a radioactive waste material processing equipment by a method wherein the control of the minute pressure difference between rooms and the power saving control of ventilation are performed simultaneously. CONSTITUTION:In an air supply and discharge equipment in which a single draft chamber 2 or a plurality of such chambers is or are provided in a single room 1 so that the pressure difference between the interior of the room and the outside of the room is kept constant irrespective of whether or not the room is used and at the same time, the capacity of an air exhauster 3 is controlled according to the condition of the draft chamger 2, an ON-OFF damper 5 is interposed in an exhaust duct 4 for the draft chamber 2 so that the damper 5 is opened and closed in response to signals from a sensor 6 for detecting the use condition of the chamber 2 while a pressure difference adjust damper 8 is interposed in an air supply duct 7 leading to the room 1 so that the damper 8 is opened and closed in response to signals from a pressure difference detecting sensor 9 for detecting the pressure difference between the room and the outside the room. Further, variable air quantity blowers are used as an air exhauster 3 and an air supplier 10 and the quantities of air from the air exhauster 3 and the air supplier 10 are controlled by a microcomputer 11 on the bases of the use condition of the draft chamber 2, the periodical change in the pressure loss in the air supply and discharge system and the pressure difference between the interior of the room and the outside of the room so that the equipment is kept airtight.

Description

【発明の詳細な説明】 本発明は、ホット実験施設や放射性廃棄物処理施設の如
き高い気密性能が要求される施設であってかつその室内
に実験用あるいは処理操作用のドラフトチャンバーが設
置される施設における室間微差圧制御と換気省動力制御
を同時に実施できるようにした室間微差圧換気省動力制
御設備に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is applicable to facilities that require high airtight performance, such as hot experimental facilities and radioactive waste processing facilities, and in which draft chambers for experiments or processing operations are installed. This invention relates to a power-saving control equipment for ventilation with a small differential pressure between rooms, which enables the simultaneous implementation of a small differential pressure control between rooms and a power-saving control of the ventilation in a facility.

高い気密性能が要求されるホット実験施設や放射性廃棄
物処理施設のように高い気密性能が要求される施設の空
調設備としては、清浄空気の供給、排気の浄化、並びに
各室での走風量定室圧の維持が基本的に重要となる。各
室での走風量定室圧の維持については、これが維持でき
ないと、室間の相互汚染の問題が生ずる。従来は、この
走風量定室圧の維持は、定風量弁(通称、OVAユニッ
ト)を給気側と排気側のダ、り)IC設置して行ってい
た。
Air conditioning equipment for facilities that require high airtight performance, such as hot experimental facilities and radioactive waste processing facilities, is used to supply clean air, purify exhaust air, and measure the amount of air travel in each room. Maintaining room pressure is fundamentally important. Regarding the maintenance of constant air travel volume and room pressure in each room, if this cannot be maintained, the problem of cross contamination between rooms will occur. Conventionally, this maintenance of constant air travel volume and room pressure was accomplished by installing constant air volume valves (commonly known as OVA units) on the air supply side and the exhaust side.

1〜かし、この定風量弁による場合には、ダクト系の圧
力損失経時変化によってバランスの変動を引き起こすこ
とが避けられず、また、ある室に対して除洗作業その他
の理由により給排気を停止すると、他の室に設定風量よ
り多くの風量が分配されて定態量定室圧の維持が困難に
なる。捷た、CAV弁に静圧を70++onAq以上か
けることができないようなところでの制御にはこの定風
量弁はその構造上不向きであるという基本的な問題があ
る。さらに、室内に強制排気を必要とするドラフトチャ
ンバーが設置される場合にはこのドラフトチャンバーを
使用すると室内に大きな負圧が急激に発生し、焼台もの
使用不使用の発停ごとに差圧制御が複雑化する。1次ド
ラフトチャンバーの排気側ファンについて言えば、ドラ
フトチャンバーの全台数使用時の排気能力を確保しこの
設計能力で常時稼動すれば不使用ドライチャンバーがあ
る場合に動力の無駄が生ずることになる。
1~ However, when using this constant air volume valve, it is unavoidable that the pressure loss in the duct system changes over time, causing fluctuations in the balance. If it stops, a larger amount of air than the set amount of air will be distributed to other rooms, making it difficult to maintain a constant volume and constant room pressure. There is a basic problem in that this constant air flow valve is unsuitable due to its structure for control in places where static pressure of 70++ onAq or more cannot be applied to the CAV valve. Furthermore, if a draft chamber that requires forced exhaust air is installed in the room, a large negative pressure will suddenly occur in the room if this draft chamber is used, and the differential pressure will be controlled every time the grilling table is turned on or off. becomes complicated. Regarding the exhaust side fan of the primary draft chamber, if exhaust capacity is ensured when all draft chambers are in use and the fan is operated at all times at this design capacity, power will be wasted if there is an unused dry chamber.

本発明はこのような問題の解決を目的としてなされたも
ので、ホット実験施設や放射性廃棄物処理施設の如き高
い気密性能が要求される施設であってかつその室内に実
験用あるいけ処理操作用のドラフトチャンバーが設置さ
れる施設における室間微差圧制御と換気省動力制御を同
時に実施できるようにした室間微差圧換気省動力制御設
備を提供するものである。即ち、本発明の室間微差圧換
気省動力制御設備は、図面に示したように、一つの室1
内に単数”tたけ複数のドラフトチャンバー2を設け、
このドラフトチャンバー2の使用の有無にかかわらず室
1と室外との差圧を一定に維持すると同時にドラフトチ
ャンバー2の使用状況に応じて排風機5の排風能力を制
御する給排気設備において、各ドラフトチャンバー2の
排気ダクト4にオンオフダンパ5を介装すると共にこの
オンオフダンパ5を各ドラフトチャンバー2の使用の有
無を検出するセンサー6からの信号に基づいて開閉動作
させ、他方、室1への給気ダクl−7Vrc差圧調整ダ
ンパ8を介装すると共にこの差圧調整ダンパ8を室内外
の差圧を検出する差圧検出センサー9からの信号に基づ
いて開度制御し、排風機6並びに給風機10としてそれ
ぞれ可変風量送風機を使用すると共に、この排風機5並
びに給風機10の風量の制御を、各ドラフトチャンバー
2の使用状況と給排気系の圧損経時変化並びに室内外差
圧VC基ツいて行うためのマイクロコンピュータ−11
を付設したことを特徴とする。
The present invention was made with the aim of solving such problems, and is intended for facilities that require high airtight performance, such as hot experimental facilities and radioactive waste processing facilities, and which is equipped with facilities for experiments or processing operations. The purpose of the present invention is to provide a ventilation power-saving control equipment for ventilation with a slight differential pressure between rooms, which is capable of simultaneously carrying out the control of the slight differential pressure between rooms and the power-saving control of ventilation in a facility in which a draft chamber is installed. That is, the power-saving control equipment for ventilation with slight differential pressure between rooms according to the present invention, as shown in the drawings,
A plurality of draft chambers 2 are provided in the chamber,
In the air supply/exhaust equipment that maintains the differential pressure between the chamber 1 and the outside at a constant level regardless of whether or not the draft chamber 2 is used, and at the same time controls the exhaust capacity of the exhaust fan 5 according to the usage status of the draft chamber 2, each An on-off damper 5 is interposed in the exhaust duct 4 of the draft chamber 2, and the on-off damper 5 is opened and closed based on a signal from a sensor 6 that detects whether each draft chamber 2 is used. A supply air duct l-7Vrc differential pressure adjusting damper 8 is installed, and the opening of this differential pressure adjusting damper 8 is controlled based on a signal from a differential pressure detection sensor 9 that detects the differential pressure between indoors and outdoors. In addition, a variable air volume blower is used as each of the air blowers 10, and the air volume of the exhaust fan 5 and the air blower 10 is controlled based on the usage status of each draft chamber 2, the pressure loss over time of the air supply and exhaust system, and the indoor-outdoor differential pressure VC base. Microcomputer for practical use-11
It is characterized by the addition of.

第1図は、ドラフトチャンバー2が複数台設置された室
1の他に、1a、1b、 1cなどの他用途の室が並設
され、これらの全室に給風機1oから給気が分配され、
全室からの排気も集合して排風機ろから一括排気される
ようにした例を示しており、他の室1a〜1Cけ定風量
弁13ニよって定風量定圧力が維持されるようになって
いる。本発明設備において、室1飴は差圧調整ダンパ8
を介して給気が導入され、室1内の排気はドラフトチャ
ンバー2が使用中であればそのドラフトチャンバーを経
て、捷たドラフトチャンバー2の全部が不使用中であれ
ば予備の排気ダクZaを経てフィルターユニット14に
導かれたあと排風機5によ 5一 つて系外に排出される。差圧調整ダンパ8は室1の内外
の差圧例えば室内と廊下との差圧を検出する差圧検出セ
ンサー9からの信号に基づいて開度制御される。後述す
るがこの差圧調整ダンパ8が全開状態になった場合には
その全開信号をマイクロコンピュータ11VC入力する
In Fig. 1, in addition to a room 1 in which multiple draft chambers 2 are installed, rooms 1a, 1b, and 1c for other purposes are arranged side by side, and supply air is distributed to all of these rooms from a blower 1o. ,
This shows an example in which the exhaust air from all rooms is collected and exhausted from the exhaust fan filter, and a constant air volume and constant pressure is maintained by the constant air volume valves 132 for other rooms 1a to 1C. ing. In the equipment of the present invention, the chamber 1 is equipped with the differential pressure adjustment damper 8.
If the draft chamber 2 is in use, the supply air is introduced through the draft chamber 2, and if all of the draft chambers 2 are not in use, the exhaust air inside the chamber 1 is passed through the spare exhaust duct Za. After being guided to the filter unit 14, the air is discharged out of the system by the exhaust fan 5. The opening degree of the differential pressure adjustment damper 8 is controlled based on a signal from a differential pressure detection sensor 9 that detects the differential pressure between the inside and outside of the room 1, for example, the differential pressure between the room and the hallway. As will be described later, when the differential pressure adjusting damper 8 is fully open, the fully open signal is input to the microcomputer 11VC.

各ドラフトチャンバー2は放射性物質のごとき汚染を回
避しなければならない物質の処理や実験を行えるに充分
な内部空間を持ち、その使用のさいには開閉扉16を開
き、使用が終わったら開閉扉16ヲ閉じる動作を手動で
行うようになっている。この開閉扉16の各々の開閉動
作に追従してまたは別途設けられたオンオフスイッチに
遅動作して作動するセンサー6が取付けられ、このセン
サー6が各ドラフトチャンバー2の使用不使用の状態を
検出する。その検出信号はリレー盤17ニ送られ、各ド
ラ7トチヤンバーの排気ダクト4に介装されたオンオフ
ダンパ5を緩慢に開閉動作させる。このオンオフダンパ
5は開閉時間全20秒〜20分まで調節可能な交流モー
タ駆動のダンパ 6− であり、その開閉によって生じる室圧変動を抑制するた
めに、その開閉動作はなるべく緩慢に行なわせる。
Each fume hood 2 has a sufficient internal space for processing and experimenting with materials such as radioactive materials that must be avoided from contamination. You can now close it manually. A sensor 6 is attached that operates in accordance with each opening/closing operation of the opening/closing door 16 or in a delayed manner on a separately provided on/off switch, and this sensor 6 detects whether each draft chamber 2 is in use or not in use. . The detection signal is sent to the relay board 17, which slowly opens and closes the on-off damper 5 interposed in the exhaust duct 4 of each drum chamber. This on-off damper 5 is an AC motor-driven damper 6- whose opening/closing time can be adjusted from 20 seconds to 20 minutes, and its opening/closing operation is made to be performed as slowly as possible in order to suppress fluctuations in the room pressure caused by its opening/closing.

他方、排風機5および絵風機10はその送風量を無段階
式に変えられる可変風量送風機、より具体的には、各送
風機のモータの回転数を制御信号によって変化させる送
風機あるいは翼ピツチ角を制御信号によって変化させる
送風機などを使用する。図の場合は電源周波数を変化さ
せるインバーターユニット18を付設することによって
送風機モータの回転数を制御信号によって変化させる例
を示している。各送風機のインバータユニット18への
制御信号は後述の制御シーケンスに基づきマイクロコン
ピュータ11から出力される。マイクロコンピュータ1
1への入力はリレー盤17からのドラフトチャンバーの
使用状況信号、差圧調整ダンパ8の全開信号、排気メイ
ンダクトに取付けられた風速検出器20からのダクト系
の圧損経時変化を計測する信号などからなっている。
On the other hand, the blower 5 and the blower 10 are variable air volume blowers that can change the air flow in a stepless manner, more specifically, they are blowers that change the rotational speed of the motor of each blower by control signals, or that control the pitch angle of the blades. Use a blower that changes depending on the signal. The figure shows an example in which the rotational speed of the blower motor is changed by a control signal by adding an inverter unit 18 that changes the power supply frequency. A control signal to the inverter unit 18 of each blower is output from the microcomputer 11 based on a control sequence described later. Microcomputer 1
Inputs to 1 include a usage status signal of the draft chamber from the relay board 17, a fully open signal of the differential pressure adjustment damper 8, a signal for measuring pressure loss over time in the duct system from the wind speed detector 20 attached to the main exhaust duct, etc. It consists of

以下に本発明の制御システムのシーケンス内容並びに演
算内容の具体例を説明する。
Specific examples of sequence contents and calculation contents of the control system of the present invention will be explained below.

「本発明の制御システムのシーケンス内容」(11室1
内のドラフトチャンバーの使用状態を代表する特性を監
視する。使用状態を代表する特性は、ドラフトチャンバ
ーの開閉扉の開閉センサー6(具体的にはリミットスイ
ッチまたは近接マグネットスイッチ)で検出する。
“Sequence contents of the control system of the present invention” (Room 11 1
monitor characteristics representative of the usage status of the fume hood. Characteristics representative of the usage state are detected by an opening/closing sensor 6 (specifically, a limit switch or a proximity magnet switch) of the opening/closing door of the draft chamber.

(2)センサー6からの情報はリレー盤17で受けてマ
イクロコンピュータ11への入力信号とする。
(2) Information from the sensor 6 is received by the relay board 17 and used as an input signal to the microcomputer 11.

この入力信号は無電圧接点とする。リレー盤17で受け
た入力信号は対応するオンオフダンパ5をモータドライ
ブでなるべく緩慢に作動させる。
This input signal is a voltage-free contact. The input signal received by the relay board 17 causes the corresponding on-off damper 5 to operate as slowly as possible by a motor drive.

(3)室1と廊下との設定差圧は室1への給排気ダクト
の静圧バランスで実施する。この時の給気量・排気量は
同一風量となる。この微差圧制御は給気系の差圧調節ダ
ンパ8の開度調節で実施する。
(3) The differential pressure setting between room 1 and the hallway is determined by the static pressure balance of the air supply and exhaust ducts to room 1. At this time, the air supply amount and exhaust amount are the same. This slight differential pressure control is performed by adjusting the opening degree of the differential pressure regulating damper 8 in the air supply system.

この開度調整時においてダンパ8が全開になる場合には
ダンパ8に設置された全開リミットスイッチの信’tマ
00コンピュータ11の入力信号とする。
When the damper 8 is fully opened during this opening adjustment, the signal from the full open limit switch installed on the damper 8 is input to the computer 11.

(4)  ダクト系(とりわけフィルタ)の圧損経時変
化による風量低下を測定するため 排気系の集合部また
はフィルタユニット14の風下側の風速検出器または風
量検出器2oを設置し、そのアナログ信号をマイクロコ
ンピュータ11の入力信号とする。この風速または風量
検出器2oの信号は0〜5v(DC)または4〜20 
mA(DC)信号トシテ入力され、マイクロコンピュー
タの演算により、サンプリング時間中ニ10回のサンプ
リングをして最小値・最大値を除外した後、8個のサン
プリング値で平均風量を見い出する。
(4) To measure the decrease in air volume due to pressure loss in the duct system (particularly the filter), install a wind speed detector or air volume detector 2o on the downwind side of the collecting part of the exhaust system or the filter unit 14, and collect the analog signal from the micro This is an input signal to the computer 11. The signal of this wind speed or air volume detector 2o is 0~5v (DC) or 4~20v
A mA (DC) signal is inputted, and the microcomputer performs arithmetic operations to perform sampling 2 times during the sampling period, exclude the minimum and maximum values, and then find the average air volume using the 8 sampling values.

(5)室1の給排気風量はドラフトチャ/バーの使用状
態によって変化するが、最低風量(例えば、1150 
C!MH) i維持するために、ドラフトチャンバーの
排気口数+1の排気口を設置してドラフトチャンバーが
全閉時にも室内空気を吸引できるようにする。
(5) The air supply/exhaust volume of room 1 changes depending on the use condition of the draft chamber/bar, but the minimum air volume (for example, 1150
C! MH) In order to maintain i, the number of exhaust ports in the draft chamber + 1 is installed so that indoor air can be sucked in even when the draft chamber is fully closed.

「本発明の制御システムの演算内容」(この演算ヲマイ
クロコンピュータで行う場合のフローを第2〜11図に
示した) (1)予め室1のドラフトチャンバー1台当りの給 9
 − 排気風量に使用状態を掛けてシステムの所要給排気量を
演算する。但し、室1以外の所要給気量、所要排気量を
固定分として確保する。
"Computation contents of the control system of the present invention" (The flow when this computation is performed by a microcomputer is shown in Figs. 2 to 11)
− Calculate the required supply and exhaust volume of the system by multiplying the exhaust air volume by the operating conditions. However, the required air supply amount and required exhaust amount for rooms other than room 1 are secured as fixed amounts.

所要給気量 QB;  他室の給気風量 qエ ;  ドラフトチャンバー1台当りの給気風量a
1;  使用状態を示すパラメータ 使用中;1 不使用中;O Qc +  補正風量 この場合、給気側に設置した差圧調節弁8の全開リミッ
トスイッチがオンの時は、補正風量Qcを所要給気風量
に加算する。全開リミットスイッチがOFFの時はQc
−〇とする。補正風量を加算した場合は給気風量が絵風
機10の設計風量を越えないことをその都度チェックし
、越えている場合は設計風量とする。
Required supply air volume QB; Supply air volume in other rooms qe; Supply air volume per draft chamber a
1; Parameter indicating usage status; 1 Not in use; O Qc + corrected air volume In this case, when the full open limit switch of the differential pressure control valve 8 installed on the air supply side is on, the corrected air volume Qc is set to the required supply. Add to air volume. When the fully open limit switch is OFF, Qc
−〇. When the corrected air volume is added, it is checked each time that the supplied air volume does not exceed the design air volume of the fan 10, and if it does, it is set as the design air volume.

〜10− 所要排気風量 R=RB十Σqt Xaま ただし、R8;他室の排気風量 (2)  ドラフトチャンバーの使用状態を代表するセ
ンサー6が開信号を出して、さらにモータドライブの緩
慢な開閉を行なうオンオフダンパ5の全開リミットスイ
ッチも開である時は、オンオフダンパは全開であるが、
全開リミットスイッチが閉であればオンオフダンパは閉
の途中にある。同様に、ドラフトチャンバーの使用状態
を代表する6が閉信号を出してさらfモータドライブの
緩慢な開閉を行なうオンオフダンパ5の全閉リミットス
イッチも閉であれば、オンオフダンパは全閉であるが、
全閉リミヅトスイッチが開であればオンオフダンパは開
の途中にある。緩慢な開閉を行なうオンオフダンパの全
開から全閉捷での時間を10等分して、各等分における
風量を予めマイクロコンピュータに記憶させであるので
、開の途中、閉の途中にあるドラフトチャンバー1台当
りの給気風量・排気風量は次式で演算できる。
~10- Required exhaust air volume R = RB 10Σqt When the full-open limit switch of the on-off damper 5 is also open, the on-off damper is fully open, but
If the fully open limit switch is closed, the on-off damper is in the middle of closing. Similarly, if 6, which represents the use state of the draft chamber, issues a close signal and the fully closed limit switch of the on-off damper 5, which slowly opens and closes the f motor drive, is also closed, the on-off damper is fully closed. ,
If the fully closed limit switch is open, the on-off damper is in the middle of opening. The time from full open to fully closed for the on-off damper, which opens and closes slowly, is divided into 10 equal parts, and the air volume for each equal part is stored in advance in the microcomputer, so that the draft chamber that is in the middle of opening and closing can be stored in the microcomputer in advance. The supply air volume and exhaust air volume per unit can be calculated using the following formula.

Ql、 = qt X Er(N) ただし、Ef(N)は10等分した時のN番目の全開時
の風量に対する風量比を示す。
Ql, = qt x Er(N) However, Ef(N) indicates the air volume ratio to the air volume at the Nth fully open state when divided into 10 equal parts.

(3)給気系のダクト、空調機、その他の圧損合剖回転
数を所要給気風量で演算する。
(3) Calculate the rotational speed of the air supply system ducts, air conditioners, and other pressure losses based on the required air supply air volume.

給気系統圧損 △PQo−△PQ1+△PQ2+△PF、 ・(全開時
)△PQ−△PQ1+△PQ2(QlQo)2+△PF
 (ctAo)−=(動作時) たたし、△PQ1は給風機10からCAVユニット16
を含む室1.1a、1b、1cVC至る捷でのダクトの
圧損の固定分 △PQ2はフィルタユニット△PF1と△PQ1を除い
た給風機10からCAVユニット16を含む室1.1a
、1b、IC2VC至るまでのダクトの圧損5F1は給
気側につけられたフィルタユニットの圧損 給気風量に対する給風機10の回転数を演算する給風機
の回転数(フィートフオワ〜ト制御)NQ = KQN
QoX (△PQ//△pQ、)2.4〜20 mA信
号出力ここで、NQoは給風機10の電動モータの設計
回転数をKQけ給気風量係数を示す。
Air supply system pressure loss △PQo - △PQ1 + △PQ2 + △PF, ・(When fully open) △PQ - △PQ1 + △PQ2 (QlQo) 2 + △PF
(ctAo) - = (during operation), △PQ1 is from the air blower 10 to the CAV unit 16
The fixed part of the pressure loss ΔPQ2 in the duct at the junction leading to the chambers 1.1a, 1b, and 1cVC is the room 1.1a containing the CAV unit 16 from the blower 10 excluding the filter units ΔPF1 and ΔPQ1.
, 1b, the pressure loss of the duct up to IC2VC 5F1 is the pressure loss of the filter unit attached to the air supply side Calculate the rotation speed of the air blower 10 with respect to the air supply air flow Number of rotations of the air blower (foot speed control) NQ = KQN
QoX (△PQ//△pQ,) 2.4 to 20 mA signal output Here, NQo indicates the design rotation speed of the electric motor of the air blower 10 multiplied by KQ and the supply air volume coefficient.

(4)排気系のダクト、フィルタユニット、その他の圧
損合計と回転数を所要排気風量で演算する。
(4) Calculate the total pressure loss and rotation speed of the exhaust system duct, filter unit, and other parts using the required exhaust air volume.

ただし、 排気系統圧損 △PRo−△PR1+△PR;十△PF2・・・(全開
時)△PR:△PR3十△PR2(R/Ro)2+へp
、 (R/Ro)・・・(動作時) ここで、Ro” Q6.  R= Qとする。
However, exhaust system pressure loss △PRo-△PR1+△PR; 10△PF2... (when fully open) △PR: △PR3 10△PR2 (R/Ro) to 2+p
, (R/Ro)... (during operation) Here, Ro'' Q6. Let R=Q.

ただし、△PBoは、室1a、1b、1c、室1とフィ
ルタユニット14を含む排風機5までの圧損で、△PR
1は室1a、1b、1cと室1から排風機3までのダク
ト系の圧損固定弁、 △PR2はフィルターユニット△PF2と△PR1e 
除< 排風機5から室1a、  1b、1cと室1まで
のダクト圧損、 △PF2は排気側に設置されたフィルタユニットの圧損
、 排気風量R=lC対する排風機6の回転数を演算−15
= する。
However, △PBo is the pressure drop between chambers 1a, 1b, 1c, chamber 1 and the exhaust fan 5 including the filter unit 14, and △PR
1 is the pressure drop fixed valve for chambers 1a, 1b, 1c and the duct system from chamber 1 to exhaust fan 3, △PR2 is the filter unit △PF2 and △PR1e
Excluding the pressure loss in the duct from the exhaust fan 5 to rooms 1a, 1b, 1c and room 1, △PF2 is the pressure loss of the filter unit installed on the exhaust side, Calculate the rotation speed of the exhaust fan 6 for the exhaust air volume R = lC - 15
= Do.

排風機の回転数(フィードフォワード制御)NR−KR
NRoX (△PR/△pRo)L 4〜20mA信号
出力ここでN は排風機6の電動モータの設計回転数O KRは排気風量係数を示す。
Exhaust fan rotation speed (feedforward control) NR-KR
NRoX (ΔPR/ΔpRo)L 4 to 20 mA signal output where N is the design rotational speed OK of the electric motor of the exhaust fan 6, and KR indicates the exhaust air volume coefficient.

(5)立ち上がりのフィードフォワード制御に対して、
風速検出器20で測定された排気風量Rmが所要の排気
風量Rと一致するか全党て排風機6の回転数をフィード
バック制御する。
(5) For feedforward control of rise,
All parties feedback control the rotation speed of the exhaust fan 6 to see if the exhaust air volume Rm measured by the wind speed detector 20 matches the required exhaust air volume R.

(所要の排気風量)−(測定排気風量)±(偏差)その
さい、所要風量の廻りにLl、L2の不感帯を設定する
。そして、偏差eを演算する。
(Required exhaust air volume) - (Measured exhaust air volume) ± (deviation) At that time, dead zones Ll and L2 are set around the required air volume. Then, the deviation e is calculated.

L、<e<Iv (所要の排気風量)〜(測定の排気風量)とみなし、フ
ィードバック制御をやめて、次の回転数を維持する。
It is assumed that L, <e<Iv (required exhaust air volume) to (measured exhaust air volume), and feedback control is stopped to maintain the following rotation speed.

NR= KRNRoX (△PR/△PR8)2e<L
lの時 NR−KR十に114Ro(e/Ro)十に2×kN賀
。(e、/R,)= 14− L2(eの時 NR’=NR−に+NR,(e/”o)+に2X−1’
NRo(ei/”o)−1 (6)偏差値が所定の不感帯に入るまで、コントロール
タイム毎に修正を加える。これによって、フィルターの
目詰りによる風量低下を抑えることができる。
NR= KRNRoX (△PR/△PR8)2e<L
When l, NR-KR is 114Ro (e/Ro) and 2×kN. (e, /R,) = 14- L2 (When e, NR' = NR- +NR, (e/"o) + 2X-1'
NRo(ei/"o)-1 (6) Corrections are made at each control time until the deviation value falls within a predetermined dead zone. This makes it possible to suppress a decrease in air volume due to filter clogging.

(7)上記(5)の操作を終了した後、ドラフトチャン
バーの使用状態を監視して、変更があれば、Q−QB 
+j qI X &、 +Q。
(7) After completing the operation in (5) above, monitor the usage status of the draft chamber and if there is any change, Q-QB
+j qI X &, +Q.

R=e 、RB+ΣQ、+、Xa1 を演算することによって、風量を制御し、(2)の操作
へ戻る。
By calculating R=e, RB+ΣQ,+, Xa1, the air volume is controlled, and the process returns to step (2).

以上の如くして本発明の室間微差圧換気省動力制御設備
を稼動すると、使用状況が変化する強制排気のドラフト
チャンバーが存在する室であって且つ高い気密性能の維
持が要求される室を一定の設定差圧に維持することがで
き、室間の相互汚染を防止できると共に、フィルターが
存在するダクト系の経時的圧損変化による風量低下を防
止しながら同時に排風機の動力を必要最小限の消費にと
どめることができる。また、除洗のためなどにより、給
気を停止する場合にあっても空間の差圧は常に一定に維
持されるので相互汚染のおそれもなくなり、このような
諸効果を奏する空間微差圧制御と換気省動力制御が自動
制御で実施することができる。
As described above, when the power-saving control equipment for room-to-room differential pressure ventilation of the present invention is operated, it is possible to operate the room where there is a forced exhaust draft chamber whose usage conditions change and where high airtight performance is required to be maintained. can be maintained at a constant set differential pressure, preventing cross-contamination between rooms, and preventing a decrease in air volume due to changes in pressure loss over time in the duct system where the filter is located, while at the same time reducing the power of the exhaust fan to the minimum necessary. consumption can be limited to . In addition, even when the air supply is stopped for reasons such as cleaning, the differential pressure in the space is always maintained constant, eliminating the risk of cross-contamination. and ventilation power saving control can be implemented automatically.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の室間微差圧換気省動力制御設備の一実
施例を示す機器配置系統図で、第2〜6図はいづれも本
発明設備の制御を行う場合のマイクロコンピュータでの
演算例をしめずフローチャートであり、第2〜3図は主
プログラム、第4図は風量補正係数のサブプログラム、
第5図は二酸化炭素濃度サンプリング及び平均化のサブ
プログラム、第6図は4種類の回転数演算のサブプログ
ラムである。 1・・・高気密室、  2・・・ドラフトチャンバー5
・・・排風機、4・・・排気ダクト、5・・・オンオフ
ダンパ、6・・・ドラフトチャンバーの使用状態検出セ
ンサー、7・・・給気ダクト、8・・・差圧調節ダンパ
、9・・・差圧検出センサー、10・・・絵風機、11
・・・マイクロコンピュータ、17・・・+)レー盤、
18・・・インバータユニット。 出願人 高砂熱学工業株式会社 17− 149 特開昭59−176530 (9) 値 AP 舅臣 4)2ソ 手続補正書0.え、 昭和58年5月 41」 1、事件の表示 昭和58年特 許 願第50447  号2 発明の名
称  室間微差圧換気省動力制御設備3 補正をする者 事件との関係 特許出願人 氏名(li)   高砂熱学工業株式会社代表者 日 
景 −部 4 代  理  人   〒162 明細書の図面の簡単な説明の欄および 図面 6、補正の内容 (1)明細書9頁下から2行の1第2〜4図」を「第2
〜5図Jに補正する。 (2)明細書16頁11〜18行の「第2〜6図はいづ
れも・・・・・・ザブプログラムである。J全「第2〜
5図は本発明設備の制御を行う場合のマイクロコンピュ
ータでの演算例をしめす一連の70−チャートである。 Jに補正する。 (3)図面第2〜6図を削除し、添付の第2〜5図を補
充する。 −159− gM*−T 、(s)/T、(2)
Fig. 1 is an equipment layout system diagram showing an embodiment of the power-saving control equipment for room differential pressure ventilation of the present invention, and Figs. This is a flowchart showing calculation examples, and Figures 2 and 3 are the main program, Figure 4 is the subprogram of the air volume correction coefficient,
FIG. 5 shows a subprogram for carbon dioxide concentration sampling and averaging, and FIG. 6 shows a subprogram for four types of rotation speed calculations. 1... Highly airtight room, 2... Draft chamber 5
... Exhaust fan, 4... Exhaust duct, 5... On-off damper, 6... Draft chamber usage state detection sensor, 7... Air supply duct, 8... Differential pressure adjustment damper, 9 ...Differential pressure detection sensor, 10...Efuuki, 11
...Microcomputer, 17...+) Leh board,
18...Inverter unit. Applicant Takasago Thermal Engineering Co., Ltd. 17-149 JP-A-59-176530 (9) Value AP Tomomi 4) 2-So Procedure Amendment 0. May 41, 1982 1. Indication of the case Patent Application No. 50447 of 1988 2 Title of the invention Low differential pressure ventilation between rooms Power saving control equipment 3 Person making the amendment Relationship to the case Name of patent applicant (li) Representative of Takasago Thermal Engineering Co., Ltd.
View - Part 4 Agent 〒162 Brief description of the drawings in the specification, drawing 6, contents of amendments (1) Figures 2 to 4 in the bottom two lines of page 9 of the specification
~5 Corrected to Figure J. (2) "Figures 2 to 6 on page 16 of the specification, lines 11 to 18 are all Zabu programs.
FIG. 5 is a series of 70-charts showing examples of calculations performed by a microcomputer when controlling the equipment of the present invention. Correct to J. (3) Figures 2 to 6 of the drawings are deleted and the attached figures 2 to 5 are added. -159- gM*-T, (s)/T, (2)

Claims (1)

【特許請求の範囲】[Claims] 一つの室1内に単数または複数のドラフトチャンバー2
を設け、このドラフトチャンバー2の使用の有無にかか
わらず室1と室外との差圧を一定に維持すると同時にド
ラフトチャンバー2の使用状況に応じて排風機5の排風
能力を制御する給排気設備において、各ドラフトチャン
バー2の排気ダクト4にオンオフダンパ5を介装すると
共にこのオンオフダンパ5を各ドラフトチャンバー2の
使用の有無を検出するセンサー6からの信号に基づいて
開閉動作させ、他方、室1への給気ダクト7に差圧調整
ダンパ8を介装すると共にこの差圧調整ダンパ8を室内
外の差圧を検出する差圧検出センサー9からの信号に基
づいて開度制御し、排風機3並びに絵風機10としてそ
れぞれ可変風量送風機を使用すると共に、この排風機5
並びに絵風機10の風量の制御を、各ドラフトチャンバ
ー2の使用状況と給排気系の圧損経時変化並びに室内外
差圧に基づいて行うためのマイクロコンピュータ11を
付設してなる室間微差圧換気省動力制御設備。
One or more draft chambers 2 in one chamber 1
, and maintains the differential pressure between the chamber 1 and the outside at a constant level regardless of whether or not the draft chamber 2 is used, and at the same time controls the exhaust capacity of the exhaust fan 5 according to the usage status of the draft chamber 2. An on-off damper 5 is interposed in the exhaust duct 4 of each draft chamber 2, and the on-off damper 5 is operated to open and close based on a signal from a sensor 6 that detects whether each draft chamber 2 is used. A differential pressure adjusting damper 8 is interposed in the air supply duct 7 to the air supply duct 1, and the opening degree of the differential pressure adjusting damper 8 is controlled based on a signal from a differential pressure detection sensor 9 that detects the differential pressure between indoor and outdoor. Variable air volume blowers are used as the wind fan 3 and the fan 10, and the exhaust fan 5
In addition, a microcomputer 11 is attached to control the air volume of the air blower 10 based on the usage status of each draft chamber 2, pressure loss changes over time in the air supply and exhaust system, and the differential pressure between indoors and outdoors. Power saving control equipment.
JP5044783A 1983-03-28 1983-03-28 Room-to-room low differential pressure ventilation power-saving control equipment Granted JPS59176530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5044783A JPS59176530A (en) 1983-03-28 1983-03-28 Room-to-room low differential pressure ventilation power-saving control equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5044783A JPS59176530A (en) 1983-03-28 1983-03-28 Room-to-room low differential pressure ventilation power-saving control equipment

Publications (2)

Publication Number Publication Date
JPS59176530A true JPS59176530A (en) 1984-10-05
JPH0345291B2 JPH0345291B2 (en) 1991-07-10

Family

ID=12859113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5044783A Granted JPS59176530A (en) 1983-03-28 1983-03-28 Room-to-room low differential pressure ventilation power-saving control equipment

Country Status (1)

Country Link
JP (1) JPS59176530A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5090303A (en) * 1990-09-28 1992-02-25 Landis & Gyr Powers, Inc. Laboratory fume hood control apparatus having improved safety considerations
US5115728A (en) * 1990-09-28 1992-05-26 Landis & Gyr Powers, Inc. System for controlling the differential pressure of a room having laboratory fume hoods

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5090303A (en) * 1990-09-28 1992-02-25 Landis & Gyr Powers, Inc. Laboratory fume hood control apparatus having improved safety considerations
US5115728A (en) * 1990-09-28 1992-05-26 Landis & Gyr Powers, Inc. System for controlling the differential pressure of a room having laboratory fume hoods

Also Published As

Publication number Publication date
JPH0345291B2 (en) 1991-07-10

Similar Documents

Publication Publication Date Title
CN107152744B (en) Air interchanger
US5228306A (en) Apparatus for controlling air-exchange and pressure and detecting airtight conditions in air-conditioned room
KR900006505B1 (en) Air Conditioner
KR102546394B1 (en) Leakage prediction and indoor airflow control device and control method thereof
CN108036438A (en) A kind of energy-saving fresh air system
JPS59176530A (en) Room-to-room low differential pressure ventilation power-saving control equipment
GB2266365A (en) Air conditioning
US10473349B2 (en) Adaptive makeup air system and method for tight enclosures
KR101186885B1 (en) A ventilation system for energy saving and a method of controlling the ventilation system
KR20050111144A (en) Regulated by pressure for ventilation system
JP2006329440A (en) Pressure control unit
CN107687694A (en) It is a kind of that there is purification, dehumidifying, the ventilator of room pressure regulatory function
JPH05264092A (en) Air conditioning apparatus
JP2005326093A (en) Simple bioclean room
JPH06323582A (en) Air flow rate constant control supply and exhaust type ventilation system
JPH0158428B2 (en)
KR100585238B1 (en) IAW control system through active response ventilation
KR102606966B1 (en) Control device and control method of ventilation system for maintaining indoor in a positive pressure state
JP3473127B2 (en) Air conditioning ventilation fan
JPH02290454A (en) Air conditioner
CN207797260U (en) A kind of energy-saving fresh air system
KR102473104B1 (en) Air conditioning system
CN220303780U (en) Constant temperature and humidity air conditioner with filtering capability
JP2699672B2 (en) Air conditioner
CN216746829U (en) System capable of accelerating dust deposition of heat exchanger