JPS5917510A - Optical waveguide - Google Patents
Optical waveguideInfo
- Publication number
- JPS5917510A JPS5917510A JP12693482A JP12693482A JPS5917510A JP S5917510 A JPS5917510 A JP S5917510A JP 12693482 A JP12693482 A JP 12693482A JP 12693482 A JP12693482 A JP 12693482A JP S5917510 A JPS5917510 A JP S5917510A
- Authority
- JP
- Japan
- Prior art keywords
- optical waveguide
- light
- substrate
- optical
- coating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 97
- 239000000758 substrate Substances 0.000 claims abstract description 41
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052594 sapphire Inorganic materials 0.000 claims abstract description 8
- 239000010980 sapphire Substances 0.000 claims abstract description 7
- 239000011247 coating layer Substances 0.000 claims description 33
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 7
- 239000005388 borosilicate glass Substances 0.000 claims description 7
- 150000001875 compounds Chemical class 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 7
- 230000031700 light absorption Effects 0.000 claims description 4
- 229910007709 ZnTe Inorganic materials 0.000 claims description 3
- 239000011029 spinel Substances 0.000 claims description 3
- 229910052596 spinel Inorganic materials 0.000 claims description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims 1
- 229910012463 LiTaO3 Inorganic materials 0.000 claims 1
- 229910002113 barium titanate Inorganic materials 0.000 claims 1
- 239000013078 crystal Substances 0.000 abstract description 13
- 239000000463 material Substances 0.000 abstract description 13
- 229910003781 PbTiO3 Inorganic materials 0.000 abstract description 3
- 230000010354 integration Effects 0.000 abstract description 2
- 238000003892 spreading Methods 0.000 abstract description 2
- 230000001902 propagating effect Effects 0.000 abstract 1
- 239000010409 thin film Substances 0.000 description 21
- 239000000470 constituent Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000010410 layer Substances 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- -1 for example Chemical compound 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910010252 TiO3 Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910007541 Zn O Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/13—Integrated optical circuits characterised by the manufacturing method
- G02B6/132—Integrated optical circuits characterised by the manufacturing method by deposition of thin films
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は光導波路に関するものである。[Detailed description of the invention] The present invention relates to an optical waveguide.
小型光デバイス、或いは光ICに用いる被覆層を有する
光導波路として、第1図aに示すような拡散型導波路や
、同図すに示す薄膜型導波路が用いられていた。この場
合、第1図aに示す拡散型導波路では、たとえばL i
N b Oa基板11の表面にTi拡散層13からな
る光伝搬媒質体を設け、その上部に被覆層12を形成し
光導波路としていた。As an optical waveguide having a coating layer used in a small optical device or an optical IC, a diffusion type waveguide as shown in FIG. 1A and a thin film type waveguide as shown in FIG. 1A have been used. In this case, in the diffused waveguide shown in FIG. 1a, for example, L i
An optical propagation medium consisting of a Ti diffusion layer 13 was provided on the surface of the NbOa substrate 11, and a coating layer 12 was formed on top of the optical propagation medium to form an optical waveguide.
また第1図すに示す薄膜型導波路では、たとえばLiT
aO3基板14上に、たとえばLiNb○3薄膜15か
らなる光伝搬媒質体を設け、その上部に被覆層16を形
成し光導波路としていた。Furthermore, in the thin film waveguide shown in FIG. 1, for example, LiT
An optical propagation medium made of, for example, a LiNb○3 thin film 15 was provided on the aO3 substrate 14, and a coating layer 16 was formed on top of the medium to form an optical waveguide.
この種の光導波路は光の伝達のみならず、各種光回路、
たとえば光デバイスを小型化、あるいは集積化し、光機
能デバイスの形成あるいは光ICの形成などのために用
いられる。しかしながら、これらの光導波路においては
、導波光の収束、すなわち基板面内方向への導波光の拡
がり、が不充分であり、光導波路の境界が不明確であり
、たとえば同一表面に二次元的に複数の導波路を集積化
する場合、集積度に限界があるという欠点がある。This type of optical waveguide is used not only for light transmission, but also for various optical circuits.
For example, it is used to miniaturize or integrate optical devices and to form optical functional devices or optical ICs. However, in these optical waveguides, the convergence of the guided light, that is, the expansion of the guided light in the in-plane direction of the substrate, is insufficient, and the boundaries of the optical waveguide are unclear, for example, two-dimensional When a plurality of waveguides are integrated, there is a drawback that there is a limit to the degree of integration.
また、被覆層を設けることにより光伝搬損失が増加する
という欠点もある。Another disadvantage is that the provision of the coating layer increases optical propagation loss.
本発明は、これらの光導波路の構造とその構成材料に改
良を加え、従来の光導波路の欠点を除去したものである
。すなわち、本発明の目的は、小6・・−ジ
型光デバイスあるいは光ICに用いる光導波路の構造と
その構成材料を与え、さらに、光導波路部分の光の収束
能を高め、光伝搬損失を低減する。The present invention improves the structure of these optical waveguides and their constituent materials, and eliminates the drawbacks of conventional optical waveguides. That is, an object of the present invention is to provide a structure of an optical waveguide and its constituent materials for use in a small six-stage optical device or an optical IC, and further to improve the light convergence ability of the optical waveguide portion and reduce optical propagation loss. reduce
第2図に、本発明に基づく光導波路の基本的な構造を示
す。すなわち、基板21の表面上に光伝搬媒質体22を
設け、更に光伝搬媒質体22の表面の一部に被覆層23
を設は光導波路24が構成されている。この場合、光が
光導波路24のみを通るよう構成した光伝搬媒質体22
の光の屈折率は、基板21の表面および被覆層23の光
の屈折率より大きい。FIG. 2 shows the basic structure of an optical waveguide based on the present invention. That is, a light propagation medium 22 is provided on the surface of the substrate 21, and a coating layer 23 is further provided on a part of the surface of the light propagation medium 22.
An optical waveguide 24 is constructed. In this case, the optical propagation medium 22 is configured so that the light passes only through the optical waveguide 24.
The refractive index of light is larger than that of the surface of the substrate 21 and the covering layer 23 .
また、光伝搬媒質体22において、上記被覆層23にお
おわれた光伝搬媒質体、すなわち光導波路24の光の屈
折率が、被覆層23におおわれていない光伝搬媒質体2
2の光の屈折率より大きいことを特徴としている。In addition, in the light propagation medium 22 , the refractive index of the light of the light propagation medium covered with the coating layer 23 , that is, the optical waveguide 24 is different from that of the light propagation medium 22 not covered with the coating layer 23 .
It is characterized by having a refractive index greater than the refractive index of light of No. 2.
第2図から明らかなように、本発明に基づく光導波路は
、光伝搬媒質体22において、光導波路24の屈折率が
、その他の部分に比べ大きいだめ、従来の被覆型導波路
に見られる基板面内で光の拡6 ページ
がりが少なく、導波光の収束能が大きい。このため、本
発明に基づく上記の光導波路は、光デバイスの高密度化
、IC化に有用なものとなる。As is clear from FIG. 2, in the optical waveguide according to the present invention, the refractive index of the optical waveguide 24 in the optical propagation medium 22 is larger than that of other parts, so that the optical waveguide is different from the substrate seen in the conventional coated waveguide. There is little light spreading within the plane, and the convergence ability of the guided light is high. Therefore, the above optical waveguide based on the present invention is useful for increasing the density of optical devices and implementing ICs.
さらに、本発明者等は、光伝搬媒質体22中の屈折率の
大きい部分である光導波路24と被覆層23との位置を
正確に一致させることが重要であることを見い出した。Furthermore, the present inventors have discovered that it is important to accurately align the positions of the optical waveguide 24, which is a portion of the optical propagation medium 22 with a high refractive index, and the coating layer 23.
また、この種の光導波路の形成に以下の材料が最適であ
ることを見い出し、これに基づき、高性能の光導波路を
構成することに成功した。We also discovered that the following materials are optimal for forming this type of optical waveguide, and based on this we succeeded in constructing a high-performance optical waveguide.
すなわち、結晶性基板の表面部分をMqO,a−A12
o3(す7’フイヤ)、スピネル、5rTi○3のうち
のいずれかで構成し、光伝搬媒質体をBaTi0 P
bTiO3あるいはPLzT系化合物I
のうちのいずれかで構成し被覆層を石英ガラス、シリカ
ガラス、硼珪酸ガラスあるいはソーダガラスのうちのい
ずれかで構成すると、形成も容易でかつ各種の機能デバ
イスとの集積化も容易である。That is, the surface part of the crystalline substrate is MqO, a-A12
o3 (S7'fire), spinel, or 5rTi○3, and the light propagation medium is BaTi0P.
If it is composed of either bTiO3 or PLzT-based compound I and the coating layer is composed of quartz glass, silica glass, borosilicate glass, or soda glass, it is easy to form and easy to integrate with various functional devices. It is also easy to convert.
すなわち、光導波路を構成する光伝搬媒質体の光の屈折
率が被覆層や基板のそれより大きいという7 、=、、
、・
基本的な条件に加えて、光導波路による光の伝搬損失が
小さいこと、まだ基板が光導波路を形成することのでき
るものであることが重要な条件となる。さらに、この種
の導波路が、小型化あるいは集積化光デバイスにも応用
されるには、光導波路を構成する光伝搬媒質体がたとえ
ば大きい電気光学効果を示す必要がある。また、被覆層
を、光伝搬媒質中の屈折率の大きい部分に一致させて、
容易に形成可能であることもこれらの材料の選択に重要
である。In other words, the optical refractive index of the optical propagation medium constituting the optical waveguide is larger than that of the coating layer or substrate7.
,・ In addition to the basic conditions, important conditions are that the propagation loss of light through the optical waveguide is small and that the substrate can still form an optical waveguide. Furthermore, in order for this type of waveguide to be applied to miniaturized or integrated optical devices, the optical propagation medium constituting the optical waveguide must exhibit, for example, a large electro-optic effect. In addition, by making the coating layer coincide with a portion of the light propagation medium having a large refractive index,
Ease of formation is also important in the selection of these materials.
本発明者等は、第2図に示す光導波路の構成材料を変え
て探索した結果、−例として光伝搬媒質体として、Pb
TiO3薄膜が、基板にサファイヤ(α−A1203)
単結晶板が、まだ被覆層に石英ガラスが有用であること
を確認し7だ。すなわち、この種の構成材料では、スパ
ッタリング法という薄膜形成技術を導入することにより
、比較的低い温度で、本発明にかかる構造の光導波路を
実現することができ、光ICなど、光集積化デバイスの
実現に適している。As a result of searching for different constituent materials of the optical waveguide shown in FIG. 2, the present inventors found that, for example, Pb
TiO3 thin film on sapphire (α-A1203) substrate
7 confirmed that the single crystal plate is still useful as a coating layer of quartz glass. In other words, with this kind of constituent material, by introducing a thin film formation technique called sputtering method, it is possible to realize an optical waveguide having the structure according to the present invention at a relatively low temperature, and it is possible to realize an optical waveguide having a structure according to the present invention, which can be used for optical integrated devices such as optical ICs. It is suitable for realizing
次に本発明がより深く理解されるよう、本発明にがかる
光導波路の形成手順の一例と構成材料要素について具体
的に説明する。Next, in order to better understand the present invention, an example of the procedure for forming an optical waveguide according to the present invention and constituent material elements will be specifically explained.
まず、たとえばサファイヤ(0001)面の単結晶板を
基板にする。この基板面上に、例えば高周波スパッタリ
ング法で、PbTiO3薄膜を形成する。この場合、基
板温度を6oo°C程度に保持し、化学組成がPbT
iO3の化学当量化からのずれがないようにすると、(
111)面のP b T iOsの透明な単結晶薄膜が
形成され、光伝搬媒質体が形成される。First, a single crystal plate of sapphire (0001), for example, is used as a substrate. A PbTiO3 thin film is formed on this substrate surface by, for example, high frequency sputtering. In this case, the substrate temperature is maintained at about 60°C, and the chemical composition is PbT.
If there is no deviation from the chemical equivalence of iO3, then (
A transparent single-crystal thin film of P b TiOs with a 111) plane is formed to form a light propagation medium.
第3図は上述の方法で形成したP b T z Os薄
膜のX線回折パターン例を示す。FIG. 3 shows an example of an X-ray diffraction pattern of a P b T z Os thin film formed by the method described above.
更に、本発明者等は、上記のサファイアC面上に形成さ
れたPbTiO3薄膜を、瞬間的に熱処理(加熱処理)
をすることにより屈折率がわずかに大きくなることを見
つけだ。更に、上記P b T 103薄膜を局所的に
熱処理を施し、上記熱処理を施しだ部分に正確に一致さ
せて、例えば石英ガラスからなる被覆層を、例えば高周
波スパッタリング法91、−−・
により形成した。この場合、光伝搬媒質体の屈折率の大
きい部分に、被覆層を正確に一致させることが重要であ
ることを確認した。位置を正確に一致させることにより
、導波光の面内での拡がりが少なくなり、光伝搬損失が
大幅に減少することを見つけた。Furthermore, the present inventors instantaneously heat-treated the PbTiO3 thin film formed on the sapphire C-plane.
We found that the refractive index increases slightly by doing this. Further, the P b T 103 thin film was locally heat-treated, and a coating layer made of, for example, quartz glass was formed by, for example, a high-frequency sputtering method 91, by precisely matching the heat-treated portion. . In this case, it was confirmed that it is important to precisely align the coating layer with the portion of the light propagation medium that has a high refractive index. We found that by precisely matching the positions, the in-plane spread of guided light is reduced, and optical propagation loss is significantly reduced.
尚、現在のところ、瞬間的な熱処理により、屈折率がわ
ずかに大きくなり、光伝搬損失が減少する理由は十分に
は解明されていないが、膜内の欠陥、歪みなどが加熱処
理により取り除かれるためと考えらねる。Currently, it is not fully understood why instantaneous heat treatment slightly increases the refractive index and reduces optical propagation loss, but defects, distortions, etc. in the film are removed by heat treatment. I don't think so.
以上の説明では、基板としてサファイヤ(0001)簡
単結晶板について述べたが、同様な効果は、MgO、S
r T i O3単結晶の(10o)面や、スピネル
(MgO−A1203)単結晶の(110)面を基板に
用いて得られることを確認した。この場合は、P b
T iOs薄膜は(1oo )面が成長する。In the above explanation, a simple crystal plate of sapphire (0001) was used as the substrate, but similar effects can be obtained using MgO, S
It was confirmed that it could be obtained by using the (10o) plane of r Ti O3 single crystal or the (110) plane of spinel (MgO-A1203) single crystal as a substrate. In this case, P b
The TiOs thin film grows on the (1oo) plane.
さらに、光伝搬媒質も、P b T 10 a以外に、
B a T iOsや、PLZT系薄膜だとえばPLZ
T(9/ 65 / 35 )、P L T 、 P
Z T fz トcr)ヘロプ1oべ一゛ノ
スカイト構造の薄膜でも、PbT103 と同様の形成
プロセスで形成で遣電気光学効果も大きく、本発明にが
かる光導波路の構成材料として有効であることを発明者
らは確認した。すなわち、その電気光学効果は、通常の
バルクの数10%以上の値を示す。Furthermore, in addition to P b T 10 a, the optical propagation medium is
For B a TiOs and PLZT thin films, PLZ
T (9/65/35), P L T , P
The inventors have discovered that even a thin film with a monoskite structure can be formed using the same formation process as PbT103 and has a large electro-optic effect, and is therefore effective as a constituent material of the optical waveguide according to the present invention. confirmed. That is, the electro-optic effect exhibits a value several tens of percent or more of that of a normal bulk material.
上記被覆層は、石英ガラス以外に、たとえばシリカガラ
ス、硼珪酸ガラス、ソーダガラスでも使用できることを
確認した。It has been confirmed that, in addition to quartz glass, for example, silica glass, borosilicate glass, and soda glass can be used for the above-mentioned coating layer.
さらに、本発明者等は基板として、BGO(Bi12G
eo2o)単結晶を用い、光伝搬媒質体をBTO(Bi
12TiO2o)あるいはBS○(B112 S 10
20 )薄膜としてもよいことを確認した。なお、基板
にL i TaO単結晶板を光導波路にL iN b
O3薄膜を使用したときにもこれと同じ結果が認められ
た。Furthermore, the present inventors used BGO (Bi12G) as a substrate.
eo2o) single crystal is used, and the light propagation medium is BTO (Bi
12TiO2o) or BS○(B112 S 10
20) It was confirmed that it can be made into a thin film. Note that the substrate is a LiTaO single crystal plate and the optical waveguide is LiNb.
The same results were observed when using an O3 thin film.
まだ、具体例で示した、基板あるいは光導波路の構成材
料以外でも、化学組成やその結晶方位等を変化させるこ
とにより、本発明の主旨と同様の効果を得ることができ
る。たとえば、■−■族化合物でも本発明の構成の基本
条件さえ満足されていればよく、基板にG a P
を、光伝搬媒質をG a A、 sで構成する。これは
赤外線用として有効である。However, the same effects as the gist of the present invention can be obtained by changing the chemical composition, crystal orientation, etc. of materials other than those for the substrate or optical waveguide shown in the specific examples. For example, it is only necessary that the basic conditions of the structure of the present invention are satisfied even for ■-■ group compounds, and G a P
The optical propagation medium is composed of G a A, s. This is effective for infrared rays.
丑だ、■−■族化合物でもよく、たとえば、基板にZn
5e単結晶を、光伝搬媒質体にZnTeを使用するとよ
い。また、これらのTI−Vl族化合物、たとえばZn
O,ZnS、CdS、Zn5e、ZnTeあるいはこれ
らの化合物を光伝搬媒質体に用い、基板にa−A120
3を用いてもよい。ZnOを光導波路に用いる場合、た
とえば、(0001)面あるいは(0112)面のa
A 120 s単結晶の基板を用い、その上にZnO
膜をマグネトロンスパッタ法で蒸着形成すると、スパッ
タ蒸着中の基板温度が300〜4o○°Cという低い温
度でも、光伝搬損失が2dB/m以下という良好な単結
晶薄膜がエピタキシャル成長し、この種の光導波路の形
成に有用である。It may also be a ■-■ group compound, for example, Zn on the substrate.
It is preferable to use a 5e single crystal and ZnTe as a light propagation medium. In addition, these TI-Vl group compounds, such as Zn
O, ZnS, CdS, Zn5e, ZnTe or a compound thereof is used as a light propagation medium, and a-A120 is used as a substrate.
3 may be used. When using ZnO for an optical waveguide, for example, the a of the (0001) or (0112) plane
A 120s single crystal substrate is used, and ZnO is deposited on it.
When a film is deposited by magnetron sputtering, a good single crystal thin film with a light propagation loss of 2 dB/m or less can be epitaxially grown even when the substrate temperature during sputter deposition is as low as 300 to 4°C. Useful for forming wave paths.
さらに、本発明者等は、第2図に示した本発明に基づく
光導波路の構成において、被覆層、光伝搬媒質および基
板の光吸収係数を、それだハα。。Furthermore, in the configuration of the optical waveguide according to the present invention shown in FIG. 2, the present inventors have determined that the optical absorption coefficients of the coating layer, the optical propagation medium, and the substrate are α. .
α(およびa8とした場合、(2,≧10af、10α
8である材料が有効であることを見い出しだ。α (and a8, (2, ≧ 10af, 10α
It was found that materials with a rating of 8 are effective.
上述の材料を用いれば、被覆層が、光伝搬媒質中の屈折
率の大きい部分に正確に一致した光導波路を容易に形成
することが可能である。By using the above-mentioned materials, it is possible to easily form an optical waveguide in which the coating layer accurately matches the portion of the optical propagation medium having a high refractive index.
すなわち、サファイヤ基板上に形成されたP b T
103薄膜上に、丑ず光導波路とすべき部分に、例えば
高周波スパッタリング法により石英ガラスからなる被覆
層を形成する。次に石英ガラスに対しては不透明である
が、ザファイヤ基板あるいはP b T 103薄膜に
対しては透明である赤外線。That is, P b T formed on a sapphire substrate
A coating layer made of quartz glass is formed on the 103 thin film by, for example, a high frequency sputtering method at a portion to be used as an optical waveguide. Next is infrared radiation, which is opaque to quartz glass but transparent to zaphire substrates or P b T 103 thin films.
すなわち波長5〜6μmの赤外線を照射する。That is, infrared rays with a wavelength of 5 to 6 μm are irradiated.
赤外線照射により、」−記被覆層石英ガラス層だけが効
率よく加熱される。その結果、光伝搬媒質P b T
10 a薄膜において、上記石英ガラスと接している部
分のみが効率よく加熱処理がなされ、その部分の屈折率
がわずかに大きくなシ、光伝搬損失も低減する。このよ
うにして本発明に基づく光伝搬媒質中の屈折率の大きい
部分と、被覆層とが正確に一致した光導波路を容易に形
成することが出来る。この際、光吸収係数の差が10倍
程度あ13/、 ユ・
れば効率よく形成出来る。By infrared irradiation, only the quartz glass layer of the covering layer is efficiently heated. As a result, the optical propagation medium P b T
In the 10a thin film, only the portion in contact with the quartz glass is efficiently heat-treated, and the refractive index of that portion is slightly higher, reducing light propagation loss. In this way, it is possible to easily form an optical waveguide according to the present invention in which the portion of the optical propagation medium having a high refractive index and the coating layer accurately match. At this time, if the difference in light absorption coefficient is about 10 times, it can be formed efficiently.
すなわち、光吸収係数の差が1o倍程度あれば、被覆層
と光伝搬媒質体が同程度の膜厚であっても、吸収される
赤外線のエネルギーは10倍程度異なることを意味する
。従って、光吸収係数の差がより大きい場合、より薄い
被覆層を用いても局所的な加熱処理が実現可能であり、
より高度な微細加工が実現できることを示している。That is, if the difference in light absorption coefficient is about 10 times, it means that even if the coating layer and the light propagation medium have the same film thickness, the absorbed infrared energy will be different by about 10 times. Therefore, when the difference in light absorption coefficient is larger, localized heat treatment can be achieved even with a thinner coating layer,
This shows that more advanced microfabrication can be achieved.
まだ、基板に課せられる特性も、必ずしも基板全体に要
求されることはなく、基板の表面さえ満足されていれば
よい。However, the characteristics imposed on the substrate are not necessarily required for the entire substrate, and only the surface of the substrate needs to be satisfied.
以上の説明から明らかなごとく、本発明にがかる光導波
路は、光伝搬特性に優れ、まだ境界がきわめて明確な光
の導波路を提供することができる。As is clear from the above description, the optical waveguide according to the present invention has excellent optical propagation characteristics and can provide an optical waveguide with extremely clear boundaries.
その伝搬路の巾精度は、現在の半導体製造技術を用いれ
ば、1μm以下、いわゆるサブミクロンの範囲である。Using current semiconductor manufacturing technology, the width accuracy of the propagation path is 1 μm or less, in the so-called submicron range.
さらに、大きな電気光学効果をもつ材料で光導波路を構
成することによって、より一層元デバイスの小型化、集
積化が可能となり、光IC等の集積化機能デバイスの形
成に有効である。Furthermore, by configuring the optical waveguide with a material that has a large electro-optic effect, it becomes possible to further downsize and integrate the original device, which is effective in forming integrated functional devices such as optical ICs.
14ベージ14 pages
第1図a、bはそれぞれ従来の薄膜光導波路の構造を示
す図、第2図は本発明に基づく光導波路の基本的な構造
を示す図、第3図は同党導波路の特性の一例を示す図で
ある。
11.14.21・−・・基板、13 、15 、22
・・・・・光伝搬媒質体、12,16.23 −・被覆
層。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
12
第2図
4
第3図
ミ
2θ 7゛′ラツク゛′肩
45Figures 1a and b are diagrams showing the structure of a conventional thin-film optical waveguide, respectively. Figure 2 is a diagram showing the basic structure of an optical waveguide based on the present invention. Figure 3 is an example of the characteristics of a thin-film optical waveguide. FIG. 11.14.21...Substrate, 13, 15, 22
...Light propagation medium, 12,16.23 ---Covering layer. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Fig. 12 Fig. 2 4 Fig. 3 Mi 2θ 7''Easy' shoulder 45
Claims (5)
、上記光伝搬媒質体上の一部に設けられた被覆層とを備
え、上記光伝搬媒質体の光の屈折率が少なくとも上記基
板の表面および上記被覆層の光の屈折率より大きく、か
つ上記光伝搬媒質体において、上記被覆層におおわれた
上記光伝搬媒質体の光の屈折率が上記被覆層におおわれ
ていない上記光伝搬媒質体の光の屈折率より大きいこと
を特徴とする光導波路。(1) A substrate, a light propagation medium provided on the substrate, and a coating layer provided on a part of the light propagation medium, the light propagation medium having a light refractive index of at least The refractive index of light of the light propagation medium covered by the coating layer is greater than the refractive index of light of the surface of the substrate and the coating layer, and the refractive index of the light of the light propagation medium covered by the coating layer is not covered by the coating layer. An optical waveguide characterized by having a refractive index greater than that of a propagation medium.
o3(サファイヤ)、スピネル、5rTlo3のウチの
少なくとも一種で構成されており、また光伝搬媒質体が
BaTiO3,PbTiO2,PLZT系化合物の少な
くとも一種で構成されており、かつ被覆層が石英ガラス
、シリカガラス、硼珪酸ガラス、ソーダーガラスのうち
の少なくとも一種で構成されてぃ2 ページ ることを特徴とする特許請求の範囲第1項記載の光導波
路。(2) At least the surface part of the substrate is Mq○, α-Aρ2
o3 (sapphire), spinel, and 5rTlo3, the light propagation medium is composed of at least one of BaTiO3, PbTiO2, and PLZT-based compounds, and the coating layer is quartz glass or silica glass. 2. The optical waveguide according to claim 1, wherein the optical waveguide is made of at least one of the following: borosilicate glass, and soda glass.
e O20で構成され、かつ、光伝搬媒質体がB 11
2 T 1020あるいはB s 12 S 102o
で構成されており、かつ、被覆層が石英ガラス、シリカ
ガラス、硼珪酸ガラス、ソーダーガラスのうちの少なく
とも一種で構成されていることを特徴とする特許請求の
範囲第1項記載の光導波路。(3) At least the surface portion of the substrate is B 112 G
e O20, and the light propagation medium is B 11
2 T 1020 or B s 12 S 102o
2. The optical waveguide according to claim 1, wherein the coating layer is made of at least one of quartz glass, silica glass, borosilicate glass, and soda glass.
され、まだ光伝搬媒質がL I N b Osで構成さ
れており、被覆層が石英ガラス、硼珪酸ガラス、ソーダ
ーガラスのうちの少なくとも一種で構成されていること
を特徴とする特許請求の範囲第1項記載の光導波路。(4) At least the surface portion of the substrate is composed of LiTaO3, the optical propagation medium is composed of L I N b Os, and the coating layer is composed of at least one of quartz glass, borosilicate glass, and soda glass. An optical waveguide according to claim 1, characterized in that:
され、光伝搬媒質がG a A sで構成され、がっ、
被覆層が石英ガラス、シリカガラス、硼珪酸ガラス、ソ
ーダーガラスのうちの少なくとも一種で構成されている
ことを特徴とする特許請求の範囲第1項3/。−・ 記載の光導波路。 (6ン 少なくとも基板の表面部分がα−A1203で
構成され、光伝搬媒質がZn○、ZnS 、CclS
、Zn5e。 ZnTe、あるいはこれらの化合物のうちの一種で構成
され、かつ、被覆層が石英ガラス、シリカガラス、硼珪
酸ガラス、ソーダーガラス、のうちの少なくとも一種で
構成されていることを特徴とする特許請求の範囲第1項
記載の光導波路。 (72被覆層、光伝搬媒質および基板の光吸収係数を、
それぞれα。、(If、およびα8とした場合、α。≧
10af、10α8であることを特徴とする特許請求の
範囲第1項記載の光導波路。(5) At least the surface portion of the substrate is made of GaP, the optical propagation medium is made of GaAs,
Claim 1 3/, characterized in that the coating layer is made of at least one of quartz glass, silica glass, borosilicate glass, and soda glass. −・ The optical waveguide described. (6) At least the surface part of the substrate is composed of α-A1203, and the optical propagation medium is Zn○, ZnS, CclS.
, Zn5e. A patent claim characterized in that the coating layer is made of ZnTe or one of these compounds, and the coating layer is made of at least one of quartz glass, silica glass, borosilicate glass, and soda glass. The optical waveguide according to scope 1. (72 The light absorption coefficient of the coating layer, light propagation medium and substrate is
α each. , (If and α8, α.≧
10. The optical waveguide according to claim 1, wherein the optical waveguide is 10af and 10α8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12693482A JPS5917510A (en) | 1982-07-20 | 1982-07-20 | Optical waveguide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12693482A JPS5917510A (en) | 1982-07-20 | 1982-07-20 | Optical waveguide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5917510A true JPS5917510A (en) | 1984-01-28 |
Family
ID=14947511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12693482A Pending JPS5917510A (en) | 1982-07-20 | 1982-07-20 | Optical waveguide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5917510A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61214778A (en) * | 1985-03-20 | 1986-09-24 | Hitachi Ltd | Non-contact starting device |
US4793697A (en) * | 1986-08-04 | 1988-12-27 | Motorola, Inc. | PLZT shutter with minimized space charge degradation |
US4831432A (en) * | 1986-02-27 | 1989-05-16 | Nippondenso Co., Ltd. | Positive ceramic semiconductor device |
JPH01258401A (en) * | 1988-04-07 | 1989-10-16 | Murata Mfg Co Ltd | Thermistor device |
US4973934A (en) * | 1988-06-15 | 1990-11-27 | Tdk Corporation | PTC thermistor device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4940956A (en) * | 1972-08-25 | 1974-04-17 |
-
1982
- 1982-07-20 JP JP12693482A patent/JPS5917510A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4940956A (en) * | 1972-08-25 | 1974-04-17 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61214778A (en) * | 1985-03-20 | 1986-09-24 | Hitachi Ltd | Non-contact starting device |
JPH0612953B2 (en) * | 1985-03-20 | 1994-02-16 | 株式会社日立製作所 | Non-contact starter |
US4831432A (en) * | 1986-02-27 | 1989-05-16 | Nippondenso Co., Ltd. | Positive ceramic semiconductor device |
US4793697A (en) * | 1986-08-04 | 1988-12-27 | Motorola, Inc. | PLZT shutter with minimized space charge degradation |
JPH01258401A (en) * | 1988-04-07 | 1989-10-16 | Murata Mfg Co Ltd | Thermistor device |
US4973934A (en) * | 1988-06-15 | 1990-11-27 | Tdk Corporation | PTC thermistor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3785717A (en) | Stepped integrated waveguide structure with directional coupling and a method of manufacturing such structures | |
JPS60114811A (en) | Optical waveguide and its production | |
GB2165956A (en) | Thin film optical element | |
US4521443A (en) | Integrated optical waveguide fabrication by ion implantation | |
JPS604962B2 (en) | optical waveguide device | |
CN110764185B (en) | A kind of preparation method of low-loss lithium niobate thin film optical waveguide | |
JPS5917510A (en) | Optical waveguide | |
JPS63192004A (en) | Waveguide type optical element and its manufacturing method | |
JPS5944004A (en) | Substrate for thin-film optical circuit | |
Beckers et al. | Potassium niobate waveguides: He+ implantation in bulk single crystals and pulsed laser deposition of thin films | |
JPH05313033A (en) | Optical waveguide, manufacture thereof and optical element | |
JP2556206B2 (en) | Method for manufacturing dielectric thin film | |
Hirano et al. | Processing and ultraviolet patterning of LiNbO3 epitaxial films from metallorganic precursors | |
JPH0723927B2 (en) | Method of manufacturing optical waveguide | |
KR930010830B1 (en) | Method for manufacturing optical waveguide which prevents surface leach of lithium oxide during thermal diffusion | |
KR20040048564A (en) | PMN-PT optical waveguides by thermal diffusion and fabrication methods thereof | |
Haruna et al. | Epitaxial growth of LiNbO3 optical-waveguide films by excimer laser ablation | |
JPH04256904A (en) | Polarizing element | |
JPS62240908A (en) | Manufacturing method of waveguide type optical element | |
JPS58173704A (en) | Optical focusing device | |
JPH02236506A (en) | Optical waveguide device | |
Huang et al. | Study of the optical properties of rf sputtered lithium niobate thin films | |
JPS6145202A (en) | optical waveguide | |
JPS61240222A (en) | Optical shutter | |
JP2980716B2 (en) | Optical element using oxide high temperature superconducting thin film electrode layer |