JPS59173734A - Infrared-ray gas analysis meter - Google Patents
Infrared-ray gas analysis meterInfo
- Publication number
- JPS59173734A JPS59173734A JP58048259A JP4825983A JPS59173734A JP S59173734 A JPS59173734 A JP S59173734A JP 58048259 A JP58048259 A JP 58048259A JP 4825983 A JP4825983 A JP 4825983A JP S59173734 A JPS59173734 A JP S59173734A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- infrared
- cell
- sample
- sample cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004868 gas analysis Methods 0.000 title 1
- 230000005540 biological transmission Effects 0.000 abstract description 7
- 239000007789 gas Substances 0.000 description 46
- 230000003287 optical effect Effects 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/10—Arrangements of light sources specially adapted for spectrometry or colorimetry
- G01J3/108—Arrangements of light sources specially adapted for spectrometry or colorimetry for measurement in the infrared range
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Optical Measuring Cells (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、赤外線を刺片してガスの含有成分濃度を分析
する赤外線ガス分析計に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an infrared gas analyzer that uses infrared radiation to analyze the concentration of components contained in gas.
一般に、赤外線ガス分析計は、安定性が良く、分析対象
成分が多種類に及ぶなどの利点を有するため、各種の工
業計測分野等で多用されている。このようなガス分析計
は、通常以下のよう々原理に基づいて構成されている。In general, infrared gas analyzers have advantages such as good stability and the ability to analyze a wide variety of components, so they are widely used in various industrial measurement fields. Such a gas analyzer is usually constructed based on the following principle.
即ち、第1図に示すように、被分析ガスのサンプルを封
入するせンプルセルlが、赤外線の発光部5および受光
部6間を結ぶ一軸上に設けられている。That is, as shown in FIG. 1, a sample cell l, which encloses a sample of the gas to be analyzed, is provided on one axis connecting an infrared light emitting section 5 and a light receiving section 6.
サンプルセル2は、通常円筒状に形成されており、その
両端部が赤外線を透過する透光性部材2により閉塞され
ている。サンプルガスは、サンプルセルIに設けられた
ガス人口3から入り、その内部を通過してガス出口4か
ら排出される。The sample cell 2 is usually formed in a cylindrical shape, and both ends thereof are closed by a translucent member 2 that transmits infrared rays. The sample gas enters through a gas port 3 provided in the sample cell I, passes through the interior thereof, and is discharged through a gas outlet 4.
一方、赤外線は、発光部5かへサンプルセルI内へ入射
され、ぜンプルガス内を通過(7て反対側の受光部6へ
透過される。On the other hand, infrared rays enter the sample cell I through the light emitting section 5, pass through the sample gas (7, and are transmitted to the light receiving section 6 on the opposite side).
そして、受光部6で検出した赤外線の波長の減衰率を測
定することによ番)、サンプルガス内の成分によって異
なる赤外線領域内の各波長域がそれぞれどの程度吸収さ
れたかを知ることができる。この場合、図示していない
が、基準ガス(通常、赤外線を吸収しない窒素ガス等)
を封入した基準セルを設けて、基準セルおよび廿ンプル
セルIの両者を通過した各赤外線の透過光度を比較する
ことによl]、サンプルガスの含有成分濃度を知る方式
が一般的である。By measuring the attenuation rate of the wavelength of the infrared rays detected by the light receiving section 6, it is possible to know how much each wavelength range in the infrared region, which varies depending on the components in the sample gas, is absorbed. In this case, although not shown, a reference gas (usually nitrogen gas, etc. that does not absorb infrared rays)
A common method is to provide a reference cell containing a sample gas and compare the transmitted light intensity of each infrared ray that has passed through both the reference cell and sample cell I to find out the concentration of the components contained in the sample gas.
ところで、被分析対象のガスが希薄であり、その濃度を
測定する場合には3.1サンプルセル2の長さを犬まく
する必要があり、例えば1mにも及ぶことがある。これ
は、濃度の測定においては上記のように赤外線吸収によ
る変化、即ち透過光量の変化を検出することにより行な
うため、長い光路長が必要となるためである。しかしな
がら、従来の装置では、サンプルセル1の長さに応じて
装置全体が大キくなり、占有itn 積の増大および装
置の取扱いが困負にhる々どの欠点があった。By the way, when the gas to be analyzed is dilute and its concentration is to be measured, it is necessary to extend the length of the 3.1 sample cell 2, which may be as long as 1 m, for example. This is because concentration measurement is performed by detecting changes due to infrared absorption, ie, changes in the amount of transmitted light, as described above, and therefore requires a long optical path length. However, the conventional apparatus has drawbacks such as the size of the entire apparatus increases depending on the length of the sample cell 1, an increase in the occupied itn product, and the handling of the apparatus becomes difficult.
本発明は上記の事情に鑑みてなされたもので、その目的
は、被分析対象が希薄なガスの場合でも、小型のせンプ
ルセルで長い光路長を実現することにより、確実にガス
の含有成分濃度を測定で〜、装置全体の小型化および取
扱いの容易化を実現できる赤外線ガス分析計を提供する
ことにある。The present invention was made in view of the above circumstances, and its purpose is to reliably control the concentration of components contained in the gas by realizing a long optical path length with a small sample cell, even when the target to be analyzed is a dilute gas. An object of the present invention is to provide an infrared gas analyzer that can realize miniaturization of the entire device and ease of handling.
以下図面を参照して本発明の一実施例につし1て説明す
る。第2図は本発明に係る赤外線ガス分析計の構成を示
すものである。I2は、赤外線を照射する光源11であ
る。光源11から照射された赤外線は、スリットを有す
る円板状で形成されたチョッパZ2により、連続光から
断続光に変換される。このチョッパz2は、通常図示し
ないモータの駆動で回転する。さらに、チョッパI2の
後方には、被分析対象のせンプルガス用の→Fンプルセ
ル13および基準ガス用の基準セル14とが上下に近接
I−て配設されている。この各↓ル13,14の後方に
は、測定値を検出して信翳を発する検出器15が設けら
れている。せンプルセル13け、円筒状のチューブを螺
旋状に形成して々す、上方へ開口するガス入口16a
とガス出口アロb とを有している。An embodiment of the present invention will be described below with reference to the drawings. FIG. 2 shows the configuration of an infrared gas analyzer according to the present invention. I2 is a light source 11 that emits infrared rays. The infrared rays emitted from the light source 11 are converted from continuous light to intermittent light by a chopper Z2 formed in the shape of a disc with slits. This chopper z2 is normally rotated by a motor (not shown). Further, behind the chopper I2, a →F sample cell 13 for the sample gas to be analyzed and a reference cell 14 for the reference gas are arranged vertically close to each other. A detector 15 is provided behind each of the arrows 13 and 14 to detect the measured value and emit a signal. Gas inlet 16a that opens upward, consisting of 13 sample cells formed by spirally forming cylindrical tubes.
and a gas outlet Aro b.
このぜンプルセル13の内面は、例えばアルミニウム蒸
着され、更に防錆手段として5I02人どの酸化皮膜が
施されている。この場合、アルミニウムに代えて、金、
銀、銅などを用いても有効である。さらに、サンプルセ
ルI3の両端部には、光源77側と検出器I5側へ向っ
てそれぞれ開口する入射孔Z2と透過孔18とが設けら
れており、その開口端は透過性を有する透過板I9およ
び20によって閉塞されている。The inner surface of the sample cell 13 is, for example, vapor-deposited with aluminum, and is further coated with a 5I02 oxide film as a rust preventive measure. In this case, instead of aluminum, gold,
It is also effective to use silver, copper, etc. Further, at both ends of the sample cell I3, there are provided an entrance hole Z2 and a transmission hole 18 that open toward the light source 77 side and the detector I5 side, respectively, and the open ends thereof are connected to a transmission plate I9 having transparency. and 20.
一方、基準ガス用の基準セルz4は、サンプルセルI3
と同様の構造であり、ガス人口212、ガス出口21b
、 入射孔22、透過孔23および透過板24.25を
それぞれ有I7ている。On the other hand, the reference cell z4 for the reference gas is the sample cell I3.
It has a similar structure, with a gas population 212 and a gas outlet 21b.
, an entrance hole 22, a transmission hole 23, and a transmission plate 24, 25, respectively.
このように構成された赤外線ガス分析計において、サン
プルガスをサンプルセル13のガス入口16a から
入れてガス出力16b から出17、また基鋸ガスを
基票セルI4のガス人口21aから入れてガス出口21
b から出す。そして、光源77の発する赤外線をチ
ョッパ12によって断続光に[2て、両方のセル1.3
.14の入射孔17.22からセル13.14内へ照射
する。照射された赤外線は、各セル13,14内の反射
面で反射されガから透過孔18.23へ導かれる。そし
て透過板20.25を透過した赤外線は、サンプルガス
用のせンプルセル13側のものと基準ガス用セルI4側
のものとが同時に検出Bxsで受光され、信号と々って
発信される。これらの値を比較することによって被分析
対象のサンプルガスの濃度を知ることかできる。In the infrared gas analyzer configured in this way, the sample gas is input from the gas inlet 16a of the sample cell 13 and the gas output 16b is output 17, and the base gas is input from the gas port 21a of the base cell I4 and the gas output is output from the gas output 16b. 21
Take it out from b. Then, the infrared rays emitted by the light source 77 are converted into intermittent light by the chopper 12.
.. 14 into the cell 13.14 through the entrance hole 17.22. The irradiated infrared rays are reflected by the reflective surfaces in each cell 13 and 14 and guided from the moth to the transmission holes 18 and 23. The infrared rays transmitted through the transmission plate 20.25 are simultaneously received by the detection Bxs on the sample gas sample cell 13 side and the reference gas cell I4 side, and are transmitted as signals. By comparing these values, the concentration of the sample gas to be analyzed can be determined.
このようにして、せンプルセルI3および基準セルI4
の両者を通過1.た各赤外線を検出することにより、各
赤外線の透光星を比較1.せンブルガスによる赤外線吸
収の変化を知ることができる。即ち、サンプルガスの含
有成分濃度を確実に測定できることに々る。そして、本
発明では、上記第2図に示すように、→Fンプルセル1
3および基準セル14の両者を、円筒状のチューブを螺
旋状に形成することにより、セル13.14本体を長さ
の小さい小型化した状態で長い光路長を有することがで
きる。■、たがって、被分析対象であるサンプルガスが
、希薄なガスの場合でも、せンプルセル13における赤
外線の辺過光緊の変化を確実に検出でき、結果的に希N
々斗ンプルガスの含有成分濃度を確実に測定でNる。In this way, sample cell I3 and reference cell I4
Pass through both 1. By detecting each infrared ray, we can compare the transparent stars of each infrared ray.1. You can see changes in infrared absorption due to semblance gas. That is, it is often possible to reliably measure the concentration of components contained in the sample gas. In the present invention, as shown in FIG. 2 above, →F sample cell 1
By forming both the reference cell 13 and the reference cell 14 in a spiral cylindrical tube, it is possible to have a long optical path length while the main bodies of the cells 13 and 14 are miniaturized and short in length. ■Therefore, even if the sample gas to be analyzed is a dilute gas, changes in the intensity of infrared rays in the sample cell 13 can be reliably detected, and as a result, dilute N
Reliably measure the concentration of the components contained in the sample gas.
以上詳述1.たように本発明によれば、赤外線ガス分析
計において、セル長が短かい小型のサンプルセルおよび
基準セルで長い光路長を有することができる。したがっ
て、被分析対象が希薄なガスの場合でも、確実にガスの
含有成分濃度を測定でき、しかも装置全体の小型化およ
び取扱いの容易化を実現できるものである。Detailed explanation above 1. As described above, according to the present invention, in an infrared gas analyzer, a small sample cell and a reference cell with short cell lengths can have a long optical path length. Therefore, even when the target to be analyzed is a dilute gas, the concentration of the components contained in the gas can be reliably measured, and the entire apparatus can be made smaller and easier to handle.
第1図は従来の赤外線ガス分析計の概略的構成図、第2
図は本発明の一実旋例に係る赤外線ガス分析計の構成図
である。Figure 1 is a schematic diagram of a conventional infrared gas analyzer;
The figure is a configuration diagram of an infrared gas analyzer according to an example of the present invention.
Claims (1)
の赤外線を透過し被分析対象であるチンプルガスを封入
する円筒状のチューブを螺旋状に形成I7てなるサンプ
ルセルと、上記赤外線光源からの赤外線を透過し基準ガ
スを封入する円筒状のチューブを螺旋状に形成してなる
基準セルと、上記サンプルセルおよび基準セルの両者を
透過して出力される各赤外線をそれぞれ検出する検出器
とを具備1.たことを特許rとする赤外線ガス分析計。An infrared light source that emits infrared rays, a sample cell formed by spirally forming a cylindrical tube I7 that transmits infrared rays from this infrared light source and encapsulates chimple gas to be analyzed, and a sample cell that emits infrared rays from said infrared light source. A reference cell is formed by spirally forming a cylindrical tube that passes through the sample cell and encloses a reference gas, and a detector that detects each infrared ray transmitted through both the sample cell and the reference cell and output. .. This is an infrared gas analyzer with a patent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58048259A JPS59173734A (en) | 1983-03-23 | 1983-03-23 | Infrared-ray gas analysis meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58048259A JPS59173734A (en) | 1983-03-23 | 1983-03-23 | Infrared-ray gas analysis meter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59173734A true JPS59173734A (en) | 1984-10-01 |
Family
ID=12798441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58048259A Pending JPS59173734A (en) | 1983-03-23 | 1983-03-23 | Infrared-ray gas analysis meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59173734A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5163332A (en) * | 1990-04-02 | 1992-11-17 | Gaztech International Corporation | Gas sample chamber |
US5222389A (en) * | 1990-04-02 | 1993-06-29 | Gaztech International Corporation | Multi-channel gas sample chamber |
US5340987A (en) * | 1991-03-15 | 1994-08-23 | Li-Cor, Inc. | Apparatus and method for analyzing gas |
US5414264A (en) * | 1993-04-16 | 1995-05-09 | Gaztech International Corporation | Enhanced pathlength gas sample chamber |
US5850354A (en) * | 1995-03-22 | 1998-12-15 | Vaisala Oy | Calibration method for NDIR equipment and calibration apparatus |
US6369387B1 (en) | 1999-10-15 | 2002-04-09 | Li-Cor, Inc. | Gas analyzer |
-
1983
- 1983-03-23 JP JP58048259A patent/JPS59173734A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5163332A (en) * | 1990-04-02 | 1992-11-17 | Gaztech International Corporation | Gas sample chamber |
WO1993011418A1 (en) * | 1990-04-02 | 1993-06-10 | Gaztech International Corporation | Improved gas sample chamber |
US5222389A (en) * | 1990-04-02 | 1993-06-29 | Gaztech International Corporation | Multi-channel gas sample chamber |
US5340987A (en) * | 1991-03-15 | 1994-08-23 | Li-Cor, Inc. | Apparatus and method for analyzing gas |
WO1993013401A1 (en) * | 1991-12-31 | 1993-07-08 | Gaztech International Corporation | Multi-channel gas sample chamber |
US5414264A (en) * | 1993-04-16 | 1995-05-09 | Gaztech International Corporation | Enhanced pathlength gas sample chamber |
US5850354A (en) * | 1995-03-22 | 1998-12-15 | Vaisala Oy | Calibration method for NDIR equipment and calibration apparatus |
US6369387B1 (en) | 1999-10-15 | 2002-04-09 | Li-Cor, Inc. | Gas analyzer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5957858A (en) | Systems and methods for monitoring relative concentrations of different isotopic forms of a chemical species | |
US6469303B1 (en) | Non-dispersive infrared gas sensor | |
US3562524A (en) | Apparatus for measuring the concentration of alcohol vapor in alveolar air | |
US3849654A (en) | Fluorescence cuvette | |
US5127729A (en) | Method and apparatus for guiding and collecting light in photometry or the like | |
EP0493401B1 (en) | Infrared-based gas detector | |
JPS5836057Y2 (en) | Fluorescence reaction measuring device | |
CA1136886A (en) | Spectrophotometer | |
US4945250A (en) | Optical read head for immunoassay instrument | |
JP2001141654A (en) | Spectral luminous intensity and specific turbidity detecting unit | |
US5936250A (en) | Ultraviolet toxic gas point detector | |
EP2344862B1 (en) | An arrangement adapted for spectral analysis of high concentrations of gas | |
FI95322B (en) | Spectroscopic measuring sensor for the analysis of media | |
US5428222A (en) | Spectral analyzer with new high efficiency collection optics and method of using same | |
CA2442445A1 (en) | Atr crystal device | |
US4281248A (en) | Nondispersive infrared gas analyzer | |
US6844934B2 (en) | Optical turbidimeter with a lens tube | |
US3733130A (en) | Slotted probe for spectroscopic measurements | |
JPS59173734A (en) | Infrared-ray gas analysis meter | |
US11022489B2 (en) | Portable multi-spectrometry system for chemical and biological sensing in atmospheric air | |
JPH0875639A (en) | Light-absorption-spectrum measuring apparatus making use of slab optical waveguide | |
EP4189341A1 (en) | Absorbance spectroscopy analyzer and method of use | |
JP4218954B2 (en) | Absorption analyzer | |
US3247758A (en) | Dual monochromator system | |
US6887430B1 (en) | Apparatus for immune analysis |