[go: up one dir, main page]

JPS59172286A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS59172286A
JPS59172286A JP4567483A JP4567483A JPS59172286A JP S59172286 A JPS59172286 A JP S59172286A JP 4567483 A JP4567483 A JP 4567483A JP 4567483 A JP4567483 A JP 4567483A JP S59172286 A JPS59172286 A JP S59172286A
Authority
JP
Japan
Prior art keywords
layer
straight line
substrate
stripe region
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4567483A
Other languages
Japanese (ja)
Inventor
Koichi Wakita
紘一 脇田
Takashi Matsuoka
隆志 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4567483A priority Critical patent/JPS59172286A/en
Publication of JPS59172286A publication Critical patent/JPS59172286A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/185Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]
    • H01S5/187Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL] using Bragg reflection

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To extract single wavelength laser beams with excellent directivity in the vertical direction to a P-N junction surface while inhibiting an unnecessary mode resulting from reflection by burying a light-emitting region and simplifying a lateral mode and reducing driving currents while confining beams changed into a uniaxial mode in a ring shape by using a diffraction grating. CONSTITUTION:A striped region 14 consisting of an InGaAsP active layer 2, a P-InGaAsP guide layer 3, a diffraction grating 4, a P-InP clad layer 5 and a P- InGaAsP contact layer 6 is formed on an N-InP substrate 1 to a ring shape with mutually parallel two straight line sections. The striped region 14 is buried by a P-InP optical confinement layer 7 and an N-InP current stopping layer 8. A projecting section 13, which is shaped along the direction of the striped region 14 and a section thereof takes an arcuate form, is formed to a section corresponding to one of both straight line sections of the surface on the electrode 9 side of the substrate 1. The semiconductor laser device avoids a utilization for an optical resonator of a section where a semiconductor crystal is directly in contact with the outside air such as a cleavage plane, utilizes periodic index distribution shaped in a liquid crystal for the feedback of beams, and reduces reflection resulting from a large refractive index difference.

Description

【発明の詳細な説明】 本発明は指向性のよい単一波長発振の半導体レーザ装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a single wavelength oscillation semiconductor laser device with good directivity.

半導体レーザダイオードは小型、竪固、あるいは[&L
接変調が可能という特徴を有し、各種の応用が考えられ
、一部実用化されている。しかし、そのレーザビーム拡
がり角は一般に≠00〜600とムく (これは光の放
射部分の寸法が小ざいことに起因した回折効果によるも
のもある)、例えば元ファイバ伝送用光源として用いる
場合、光ファイバへの結合効率を上げるにはレンズ系を
組合わせて、−反平行ビームにする等の構成が必要であ
った。このレンズ系の設定には高度の精度を要し、かつ
、レンズ系設定の長期信頼度についても問題があった。
Semiconductor laser diodes are small, vertical, or [&L
It has the characteristic of being capable of direct modulation, and various applications have been considered, and some have been put into practical use. However, the laser beam divergence angle is generally ≠00 to 600 (this is partly due to the diffraction effect caused by the small size of the light emitting part). For example, when used as a light source for original fiber transmission, In order to increase the coupling efficiency to the optical fiber, it was necessary to combine lens systems to form a -antiparallel beam. Setting this lens system requires a high degree of precision, and there are also problems with the long-term reliability of the lens system settings.

又、素子をヒートシンクの縁漏部ぎりぎりKおく必要か
ら融層作業が篭雑であった゛。このレーザビーム拡がり
角をレンズ系を用いずに半4体し−fダイオードそれ自
体金工夫することによって解決しようとする試みとして
、面発光型レーザがある (Japanese Jof
 Applied P]z3’aiastざ巻、237
ざ貢(7979年) )。しかしこのレーザは、レーザ
発振に寄与する長さく以下レーザ長と表現する)が短か
いためレーザ利得は小ざく、従ってレーザ発振に要する
しきい電流値は高くなり、室温で連続動作が不可能で実
用的ではない。又、これを克服するため、分布ブラッグ
反射層を設けて反射損失を減らし、しきい電流値を低減
化する試みがあるが(εIり回応用物理学会学Him演
会gt’J演予槁集P/30.29a−b−7,298
−B−J) 、これには2つの屈折率が異なり、かつ媒
質内波長の弘分のlに相当するjすさをもつ層を60層
以上成長させる必要があり、製作上困難であって、未だ
実現していない。
In addition, the fusing layer work was complicated because the element had to be placed close to the edge leakage of the heat sink. A surface-emitting laser is an attempt to solve this laser beam divergence angle by using a half-four diode and devising the -f diode itself without using a lens system.
Applied P] z3'aiast, 237
Zagu (7979)). However, because this laser has a short length that contributes to laser oscillation (hereinafter referred to as the laser length), the laser gain is small, and therefore the threshold current required for laser oscillation is high, making continuous operation at room temperature impossible. Not practical. In addition, in order to overcome this problem, there is an attempt to reduce the reflection loss by providing a distributed Bragg reflection layer and reduce the threshold current value (εI Applied Physics Society Him Conference gt'J Performance Collection P. /30.29a-b-7,298
-B-J), this requires the growth of 60 or more layers with two different refractive indexes and a thickness corresponding to l of the wavelength in the medium, which is difficult to manufacture. It hasn't happened yet.

さらに、回折格子を用いて光音活性層に垂直な方向に素
子上面から放射させる型の半導体レーザが提案されてい
るがC特開昭fi?−17+1fi82)、この6q危
では横モードが単一化されていないため、たとえ回折格
千全用いて単一軸モードを得ようとしても、単一波長発
振は得ることができず、また、yt、取出し窓における
光強度分布も単一のピークをもつに至らずファイバへの
結合効率も一部げられない。さらに、#Uノ冠流も旨く
なり、実用的でない。
Furthermore, a type of semiconductor laser that uses a diffraction grating to emit light from the top surface of the device in a direction perpendicular to the photoacoustic active layer has been proposed; -17+1fi82), in this 6q crisis, the transverse mode is not unified, so even if you try to obtain a single axis mode using a diffraction grating, you will not be able to obtain a single wavelength oscillation, and yt, The light intensity distribution at the extraction window does not have a single peak, and the coupling efficiency to the fiber cannot be improved. Furthermore, the #U crown also tastes good and is not practical.

一方、回折格子を用いた分布帰還型(Distribu
tedfi’eedbaolc以下略してDIFB) 
レーザは、単−波長発振用に研究開発が進められている
が、一対のレーザ共振器C通常、結晶の剪開血を利用)
が形成されると、それともとにレーザ発振が誘導され、
7アブリベロモードと呼ばれる単一波長発光が不nJ能
となるため、通常はり)開面の一方を化学エツチング等
で活性層に対して斜めになるような傾斜面を作製し、か
つその上にレーザ出力光に対して不透明な領域全所たに
付n口し、反射によるもどり光を減らして7アプリーベ
ローモードを抑える等の工夫をする心安があり、素子作
製工程が複雑化するばかりでなく、発揚に要する電流も
大きく、効率を下げるという欠点があった。
On the other hand, a distributed feedback type using a diffraction grating (Distribu
tedfi'eedbaolc (hereinafter abbreviated as DIFB)
Lasers are being researched and developed for single-wavelength oscillation, but they require a pair of laser resonators (usually using a sheared crystal).
Once formed, laser oscillation is induced in the
7 Since single-wavelength light emission called the abli-velo mode becomes ineffective, one side of the open plane is usually chemically etched to create an inclined plane that is oblique to the active layer, and then It is safe to take measures such as covering all areas that are opaque to the laser output light, reducing the return light due to reflection, and suppressing the 7-apple bellows mode, which will not only complicate the device fabrication process but also However, the current required for launch was large, reducing efficiency.

第1vJは従来のDFBレーザの例であって、lはn−
工nP基板、4は回折格子、8はp−InGaAsPガ
イド層、2は工HGaAaP活性層、5はp−工npク
ラッド層、6はp −G aInA日Pコ日夕コンタク
ト層p−InP光閉じ込め層、8はn−■nPi流阻止
層であり、9.10はそれぞれN、Pi極である。又、
llは労開面、12は傾斜面である。このレーザは回折
格子4の周期がレーザ発振波長にあった最短周期の整数
倍であるため、出力光はp−n接合面に垂直な方向ある
いは斜めに取り出せるが、N側電極9の一部をとり除い
た素子では遠視野像は第2図のようになる。すなわち、
回折格子4の方向では、埋め込み構造に起因する回折効
果のためl弘0#Aの拡がり角θI をもち、これに垂
直な方向では03°程度の拡がり角6と非常に狭い。従
って、n基板lの表面形状をストライプに沿って円弧状
に突出した凸状に加工すれば、指向性が向上する。第3
!eXJは、その適用例であって、1Bは加工部であり
基板lの上側表面から発光面までの距IfJliを81
基板1のレーザ出力光に対する屈折率をhとした場合、 11 r −−+−、g となるように曲率半径rを遠べば、放出光は平行(θ、
 4=0)となることがゎがる。例えば5=700μm
K対し、r=77μmが求まる。これは、イオンエツチ
ング、化学エツチング等を用いれば、容易に作製できる
。この作製方法については実施例において詳述する。
The first vJ is an example of a conventional DFB laser, where l is n-
4 is a diffraction grating, 8 is a p-InGaAsP guide layer, 2 is an HGaAaP active layer, 5 is a p-InP cladding layer, 6 is a p-GaInA contact layer, and p-InP optical confinement. Layer 8 is an n-■nPi flow blocking layer, and 9 and 10 are N and Pi poles, respectively. or,
11 is a labor release surface, and 12 is an inclined surface. In this laser, the period of the diffraction grating 4 is an integral multiple of the shortest period corresponding to the laser oscillation wavelength, so the output light can be extracted in a direction perpendicular to the p-n junction surface or obliquely. The far-field image of the removed element is as shown in Figure 2. That is,
In the direction of the diffraction grating 4, it has a spread angle θI of 100#A due to the diffraction effect caused by the buried structure, and in the direction perpendicular to this, it has a very narrow spread angle 6 of about 03°. Therefore, if the surface shape of the n-substrate l is processed into a convex shape that protrudes in an arc shape along the stripes, the directivity can be improved. Third
! eXJ is an example of its application, and 1B is a processing part, and the distance IfJli from the upper surface of the substrate l to the light emitting surface is 81
If the refractive index of the substrate 1 with respect to the laser output light is h, then if the radius of curvature r is increased so that 11 r −−+−,g, the emitted light becomes parallel (θ,
4=0). For example, 5=700μm
For K, r=77 μm is found. This can be easily produced by using ion etching, chemical etching, or the like. This manufacturing method will be described in detail in Examples.

以上は従来のレーザのp −n接合面に垂直な方り、か
つ、その光も反射に起因する7アプリーペローモードが
混りやすい。これは、屈折率の大きく異なる空気と牛等
体とが隣接しているので、その界面で光が反射されるた
めである。
The above is perpendicular to the p-n junction plane of the conventional laser, and the 7 Apry-Perot mode, which is caused by reflection, tends to be mixed. This is because the air and the cow body, which have greatly different refractive indexes, are adjacent to each other, and light is reflected at the interface.

本発明はこれらの欠点を解消するために、発光領域を埋
め込んで鵠モード単一化、低駆動也流化するとともに、
回折格子音用いて単一軸モード化した光をリング状にと
じ込め、反射に起因する不安モードを抑えつつ、p −
n接合面に垂直な方向に指向性よく単一波長レーザ光を
とり出すもので以下図面について詳細に説明する。
In order to eliminate these drawbacks, the present invention embeds the light emitting region to unify the mouse mode and reduce the driving current.
Using diffraction grating sound, the single-axis mode light is confined in a ring shape, suppressing the uneasy mode caused by reflection, and p −
This device extracts a single wavelength laser beam with good directivity in the direction perpendicular to the n-junction surface, and will be described in detail below with reference to the drawings.

第弘図および第5図は、この発明による半導体レーザ装
置の一実施例の瘤成を示すもので・これらの図において
、第1図ないし第3図の各部に対応する部分には同一の
符号が付しである。これらの図に示すように、この実施
例においては、工nGaAsP活性層2、p−工nGa
AsPガイド層8、回折格子4、p−工nPクラッド層
5、p−工nGaAsPコンタクト層6からなるストラ
イブ領域14がn−工nP基板l上に互に平行な2本の
直線部分を有するリング状に形成されている。そして、
111記ストライプ領域14はp−1nP元閉じ込め層
7とn−工nP電流阻止層8とによって埋め込まれてい
る。
Figures 1 and 5 show the structure of an embodiment of a semiconductor laser device according to the present invention. In these figures, parts corresponding to those in Figures 1 to 3 are designated by the same reference numerals. is attached. As shown in these figures, in this example, a p-nGaAsP active layer 2, a p-nGaAsP active layer 2, a p-nGaAsP active layer 2, a p-nGaAsP active layer 2,
A stripe region 14 consisting of an AsP guide layer 8, a diffraction grating 4, a p-tech nP cladding layer 5, and a p-tech nGaAsP contact layer 6 has two parallel linear portions on the n-tech nP substrate l. It is formed into a ring shape. and,
The stripe region 111 is filled with a p-1nP original confinement layer 7 and an n-type nP current blocking layer 8.

この場合、fjl記回折格子舎は、このストライブ領域
14における両直服部分にのみ形成され、かつその格子
の方向はこれら直線部分が延びる方向に―、交するよう
になっている。そして、基fflの電極9側の表面にお
ける前記両I11.線部分のうちの一方に対応する部分
には、ストライプ領域14に沿う方向に沿びかつ断面が
円弧状となる凸部18が形成されている。
In this case, the fjl diffraction gratings are formed only in the straight portions of the stripe region 14, and the direction of the gratings is such that it intersects the direction in which these straight portions extend. Both I11. on the surface of the base ffl on the electrode 9 side. In a portion corresponding to one of the line portions, a convex portion 18 extending in the direction along the stripe region 14 and having an arcuate cross section is formed.

かくして、この実施例による半導体レーザ装置は、卯開
面等の半導体結晶が直接外気とふれる部分を光の共振器
に利用すること?避け、結晶の内部に設けられた周期的
な屈折率分布を元のフィードバックに利用することによ
り、大きな屈折率差に起因する反射を少なくしている。
Thus, the semiconductor laser device according to this embodiment utilizes the portion of the semiconductor crystal, such as the open plane, which directly contacts the outside air, as an optical resonator. By using the periodic refractive index distribution provided inside the crystal as the original feedback, reflections caused by large refractive index differences are reduced.

通常この構造のレーザでは、光の取り出し口がないため
、光導波路を別に設け、これを介して光音外部にとり出
す必要があったが、不構危では、回折格子4により、基
板lの面に垂直な方向に光が取り出せるので、光導波路
等と設ける必要がない。本提案のリング状のストライプ
領域14における湾曲部の曲率半径は、曲がりによる損
失を考慮しても通常の埋め込み構造光導波路においては
、殆んど問題とならない。例えば、工nPの屈折重音3
.2としたとき、安定な単−崩モード発振が可能となる
幅t1μm1厚さ02μmのInGaAsP活性層4(
発光波長/、 55μm)の等価屈折率は3.2≦3と
なり、曲がりに起因する損失は、曲率半径50μmの場
合/ 0−’のオーダとなって極めて小さいことが、計
算によって確かめられる (’ Bends  1nD
ielaotrio Guides ’ Be1l S
ystem TeahnioalJornal Vol
 4#*& 7(September /ワ69)、P
P  2103−2/32参照)。又、この曲がりに起
因する損失は、曲率半径が大きいほど、小さくなる。一
方、直細部分は、元のフィードバック?効率よく生じさ
せるために必要であるが、この構敢では直線部分が2個
所となるため通常のDIFBレーザより短かくて済む特
徴がある。すなわちl対の直線部分で光の発振を起こし
、曲り部分で光音導波することが可能なため半導体チッ
プの効率的利用が可能となる。以上述べたように本構造
を用いれば回折格子4の周期によって決定される単一波
長の元を指向性よく発振させることができる。
Normally, a laser with this structure does not have a light extraction port, so it is necessary to separately provide an optical waveguide and take out the optical sound to the outside through this. Since light can be extracted in the direction perpendicular to the direction, there is no need to provide an optical waveguide or the like. The radius of curvature of the curved portion in the ring-shaped stripe region 14 of this proposal poses almost no problem in a normal buried structure optical waveguide even if loss due to bending is taken into account. For example, inflection double sound 3 of engineering nP
.. 2, the InGaAsP active layer 4 (
Calculations confirm that the equivalent refractive index for the emission wavelength /, 55 μm is 3.2≦3, and that the loss due to bending is extremely small, on the order of 0-' when the radius of curvature is 50 μm (' Bends 1nD
ielaotrio Guides' Be1l S
system Teahnioal Journal Vol.
4 # * & 7 (September / Wa 69), P
(See P 2103-2/32). Moreover, the loss due to this bending becomes smaller as the radius of curvature becomes larger. On the other hand, the detailed part is the original feedback? This is necessary for efficient generation, but this design has the advantage that it can be shorter than a normal DIFB laser because there are two straight sections. In other words, since it is possible to cause light oscillation in the straight portions of the pair and to guide optical sound in the curved portions, the semiconductor chip can be used efficiently. As described above, by using this structure, it is possible to oscillate a single wavelength element determined by the period of the diffraction grating 4 with good directionality.

次に、適6図ないし第1II図全参照して、前記実hi
lt例による半導体レーザ装置の製作方法について説明
する。
Next, with reference to all of Figures 6 to 1II, the above-mentioned actual
A method for manufacturing a semiconductor laser device according to an example will be described.

まず、第6図に示すようにn−工nP基板l上に、液相
成長法等により、1nGaAsP 活性層2、この活性
層2よりエネルギバしドキャップの大きいp−InGa
AsPガイド層8等をノリ1次成長己せる。
First, as shown in FIG. 6, a 1nGaAsP active layer 2 is formed on an n-type nP substrate l by a liquid phase growth method, and a p-InGa layer having a larger energy transfer and decap than this active layer 2 is formed on an n-type nP substrate l by a liquid phase growth method or the like.
The AsP guide layer 8 and the like are firstly grown.

次に、第71A、第ざ図に示すように、前記ガイド層8
の両端部上面に、レジス)15.15のパターンを通常
の7オトリゾグラフイ技術で形+ffiし、730″C
IU後でベークする。次に上面全面に膜厚!;00AF
ノjJ後の7オトレジスト?スピンフートし、次いで通
常の三光束干渉法等で回折格子40縞模様を露光した後
現像し、しかる後HBr系エツチンダ液でp−InGa
AsPI悼8に一エツチングして回折格子4を形成し、
ざらに全てのレジスト?プラズマ灰化法等により除去す
る(第9図および第10図参照)。この場合、回折格子
4の周期Aは、IJIJ記ストラストライプ領域141
.L 8.fiおよび元閉じ込め層7、′d″i流阻止
層8によって決まる等価屈折率をn1発振波長をλとす
れば、λ A=、ぶ二・m   (mは2以上の整数)に設定する
Next, as shown in Fig. 71A, the guide layer 8
On the upper surface of both ends, form a pattern of 15.15 (registration) using normal 7 otolithography technique, and
Bake after IU. Next, the film is thick on the entire top surface! ;00AF
7 Otre resist after NojJ? After spin-footing, the diffraction grating 40 striped pattern is exposed and developed using a conventional three-beam interference method, etc., and then p-InGa
A diffraction grating 4 is formed by etching the AsPI layer 8,
Roughly all the resists? Remove by plasma ashing method etc. (see Figures 9 and 10). In this case, the period A of the diffraction grating 4 is
.. L8. The equivalent refractive index determined by fi, the original confinement layer 7, and the 'd''i flow blocking layer 8 is set to λA=, 2·m (m is an integer of 2 or more), where λ is the n1 oscillation wavelength.

次に、上面全面に、p−工npクラッド層5、p−1n
GaAaPコンタクト層6t−液相成長法等によりll
IiJ次成長させる。そして、その上面全面に、S10
.膜16をスパッタ法等により形成する。次に、第1/
図、第12図に示すように、Jul記S10゜膜1t1
7オトリゾグラフイ法によりリング状に形成し、このリ
ング状のS10!膜lffマスクとし、かつブロムメタ
ノール液全用いてエツチングを行ない、リング状のスト
ライプ領域14t”形成する。次いで、第13図、ig
/#図に示すように、ストライプ領域14に除く部分に
、p−工nP層7、n−工nP層8t−液相成長法等に
より順次成長させ、しかる後、前記5102展1flエ
ツチングにより除去する。
Next, a p-type np cladding layer 5, a p-1n
GaAaP contact layer 6t-ll by liquid phase growth method etc.
IiJ growth. Then, on the entire top surface, S10
.. The film 16 is formed by sputtering or the like. Next, the first/
As shown in FIG.
7 It is formed into a ring shape using the otolithography method, and this ring-shaped S10! A ring-shaped stripe region 14t'' is formed by etching using the film lff mask and using all of the bromine methanol solution. Next, as shown in FIG.
/# As shown in the figure, the p-type nP layer 7 and the n-type nP layer 8 are sequentially grown in the portions except for the stripe region 14 by a liquid phase growth method, etc., and then removed by etching 1 fl of the 5102 layer described above. do.

次に、基板lの他方の表面に断面円弧状の凸部18を加
工形成する工程を説明する。
Next, a process of processing and forming a convex portion 18 having an arcuate cross section on the other surface of the substrate 1 will be described.

まず、第15図、第16図に示すように、基板lのFg
T定面の所望の個所に、予め準備されたフォトマスクを
用いて、レジストl’l長方形状に厚く塗布する。次に
、これを高温雰囲気にさらしてとかすと、第17図に示
すように、このレジスト17はその粘性により幅方向に
切った断面が略円弧状になる。次に第tざ図に示すよう
に、基板1を、同基板lの基板面に垂直であって前記レ
ジス)17の中心を通る線を軸として回転し、かつレジ
スト17の斜め上方からりアクティブイオン等によるエ
ツチングを行なう。このようにすれば、基板lの前記レ
ジス)1?全塗布した部分に対応する部分は、幅方向に
切った断面が円弧状となるような凸部18となる。
First, as shown in FIGS. 15 and 16, the Fg of the substrate l is
Using a previously prepared photomask, a thick rectangular resist is applied to a desired location on the T plane. Next, when this resist 17 is exposed to a high-temperature atmosphere and melted, the resist 17 becomes approximately arc-shaped in cross section in the width direction due to its viscosity, as shown in FIG. Next, as shown in FIG. Perform etching using ions, etc. If you do this, the resist 1? of the substrate l? The portion corresponding to the fully coated portion becomes a convex portion 18 whose cross section cut in the width direction is arcuate.

以上説明したように本発明によれば、単一波長の光を指
向性よくかつ横モードの単一化された状態で、半導体基
板に垂直な方向に取り出すことがl1能である。したが
って、本発明によれば、襞曲面を心安としないためペレ
ットの切出しが容易であり、光7アイパへの結合効率が
高く、光出力の放射方向がp −n接合に対して垂直で
あるため襞開面から光出力を得るレーザのようにマウン
トの除圧そのマウント、ヒの設置位置が制限されること
がない、、、また、構成上、元が基板に垂直な方向にと
り出せるため、同一ヒートシンク上に多数のペレットを
マウントすることができ、アレイ状に発光させることが
可能である。
As explained above, according to the present invention, it is possible to extract light of a single wavelength in a direction perpendicular to the semiconductor substrate with good directivity and a unified transverse mode. Therefore, according to the present invention, it is easy to cut out pellets because the folded curved surface is not a concern, the coupling efficiency to the optical 7 eyer is high, and the radiation direction of the optical output is perpendicular to the p-n junction. Like a laser that obtains optical output from the folded surface, the mount is depressurized and there are no restrictions on the installation position of the mount or beam.Also, due to the structure, the original can be taken out perpendicular to the substrate, so it can be used in the same manner. A large number of pellets can be mounted on a heat sink, allowing them to emit light in an array.

【図面の簡単な説明】[Brief explanation of the drawing]

第を図は従来の分布帰還形半導体レーザ装置を−g裁断
して示す斜視図、第2図および第3図は従来の分布帰還
形半導体レーザ装置の他の例を示す斜視図、第グ図およ
び第5図はこの発明の一実鴫例の構成を示すもので第j
図は平面図、第5図は第ψ図のV−V線に沿う断面図、
第6図ないし第1II図は同実施例の製作工程を示すも
ので、第6図、第ざ図、第10図は側面図、第7図、第
9図、第1/図、第13図は平面図、第12図は第1/
図のX1l−■線に沿うldr面図、第11I図は第1
3図のy−WNに沿う断面図、第15図ないし第1I図
は断面円弧状の凸部を加工する工程を示すもので、第1
S図は平面図、第16図は第1り図の)M−XVI巌に
沿う断面図、第17図、第1ざ図は同断面図である。 ■・・・・・・半導体基板、2・・・・・・活性層、8
・・・・・・ガイド層、4・・・・・・格子、5・・・
・・・クラッド層、1B・・・・・・凸gL14・・・
・・・ストライプ領域。 繁6図 特開昭59−172286 (6)
Figure 1 is a perspective view showing a conventional distributed feedback semiconductor laser device cut at -g, Figures 2 and 3 are perspective views showing other examples of the conventional distributed feedback semiconductor laser device, and Figure 3 is a perspective view showing other examples of the conventional distributed feedback semiconductor laser device. and FIG. 5 shows the structure of an example of this invention.
The figure is a plan view, Figure 5 is a cross-sectional view along the V-V line of Figure ψ,
Figures 6 to 1II show the manufacturing process of the same embodiment, and Figures 6, 10, and 10 are side views, and Figures 7, 9, 1/1, and 13. is a plan view, and Fig. 12 is the 1st/
ldr plane view along the line X1l-■ in the figure, Figure 11I is the 1st
The sectional views taken along y-WN in Figure 3 and Figures 15 to 1I show the process of machining a convex portion having an arcuate cross section.
Figure S is a plan view, Figure 16 is a sectional view taken along line M-XVI of Figure 1, and Figures 17 and 1 are the same sectional views. ■... Semiconductor substrate, 2... Active layer, 8
...Guide layer, 4...Grid, 5...
...Clad layer, 1B...Convex gL14...
...Stripe area. Traditional 6th figure JP-A-59-172286 (6)

Claims (1)

【特許請求の範囲】[Claims] 第1の導電型の半導体基板上に、第1の導゛醒型または
第2の導電型の活性層、第2の導電型で前記活性層とは
反対側の面に所定周期の格子が形成されたガイド層、お
よび第2の導電型のクラッド層が順次積層された腹数層
を含むストライプ領域を有し、かつ前記ストライプ領域
が前記活性層より屈折率の小ざい半導体で埋め込まれて
なる分布帰還型埋め込みダブルへテロ構造の半導体レー
ザ装置において、前記半導体基板上に同基板面に沿って
設けるストライプ領域倉、一部に直線部分t−有するリ
ング状に形成すると共に、この直線部分にはこの直線部
分が延びる方向と直交する方向に前記格子が形成され、
かつ11ケ記半導体基板の前記ストライプ領域が設けら
れる面とは反対側の面における前記直線部分に対応する
部分は同直線部分が延びる方向に延びかつ断面が円弧状
の凸部に形成され、かつこの凸部の一部はレーザ元の取
り出口となるように構成されていること全特徴とする半
導体レーザ装置。
A first conductivity type or second conductivity type active layer is formed on a first conductivity type semiconductor substrate, and a grating with a predetermined period is formed on the surface of the second conductivity type opposite to the active layer. a guide layer and a cladding layer of a second conductivity type, each of which has a stripe region including an antinodal layer stacked in sequence, and the stripe region is filled with a semiconductor having a refractive index smaller than that of the active layer. In a distributed feedback buried double heterostructure semiconductor laser device, a stripe region provided on the semiconductor substrate along the surface of the substrate is formed in a ring shape having a straight portion t in a part thereof, and a stripe region is formed on the semiconductor substrate along the substrate surface. The lattice is formed in a direction perpendicular to the direction in which the straight line portions extend,
and Item 11: A portion corresponding to the straight line portion on the surface of the semiconductor substrate opposite to the surface on which the stripe region is provided is formed into a convex portion extending in the direction in which the straight line portion extends and having an arcuate cross section; A semiconductor laser device characterized in that a portion of the convex portion is configured to serve as an outlet for a laser source.
JP4567483A 1983-03-18 1983-03-18 Semiconductor laser device Pending JPS59172286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4567483A JPS59172286A (en) 1983-03-18 1983-03-18 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4567483A JPS59172286A (en) 1983-03-18 1983-03-18 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS59172286A true JPS59172286A (en) 1984-09-28

Family

ID=12725932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4567483A Pending JPS59172286A (en) 1983-03-18 1983-03-18 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS59172286A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205984A (en) * 1987-02-23 1988-08-25 Mitsubishi Electric Corp Surface emitting type semiconductor laser
US5349601A (en) * 1993-09-20 1994-09-20 The United States Of America As Represented By The United States Department Of Energy Unidirectional ring lasers
EP0868766A4 (en) * 1995-12-01 1999-01-13 Univ Sydney Distributed feedback ring laser
EP1544967A1 (en) * 2003-12-17 2005-06-22 Palo Alto Research Center Incorporated Grating-outcoupled microcavity disk resonator
JP2009117578A (en) * 2007-11-06 2009-05-28 Rohm Co Ltd Surface-emitting laser diode

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205984A (en) * 1987-02-23 1988-08-25 Mitsubishi Electric Corp Surface emitting type semiconductor laser
US5349601A (en) * 1993-09-20 1994-09-20 The United States Of America As Represented By The United States Department Of Energy Unidirectional ring lasers
EP0868766A4 (en) * 1995-12-01 1999-01-13 Univ Sydney Distributed feedback ring laser
US6272165B1 (en) 1995-12-01 2001-08-07 The University Of Sydney Distributed feedback ring laser
EP1544967A1 (en) * 2003-12-17 2005-06-22 Palo Alto Research Center Incorporated Grating-outcoupled microcavity disk resonator
JP2005183963A (en) * 2003-12-17 2005-07-07 Palo Alto Research Center Inc Lattice out-coupled microcavity disk resonator and manufacturing method thereof
US7242705B2 (en) 2003-12-17 2007-07-10 Palo Alto Research Center, Incorporated Grating-outcoupled cavity resonator having uni-directional emission
JP2009117578A (en) * 2007-11-06 2009-05-28 Rohm Co Ltd Surface-emitting laser diode

Similar Documents

Publication Publication Date Title
JP3983933B2 (en) Semiconductor laser and manufacturing method of semiconductor laser
US20020024052A1 (en) Edge emission type semiconductor device for emitting super luminescent light, its manufacture and spatial optical communication device
AU4992999A (en) High power laterally antiguided semiconductor light source with reduced transverse optical confinement
JPS5940592A (en) Semiconductor laser element
JPS59172286A (en) Semiconductor laser device
US5396511A (en) Semiconductor laser apparatus with curved waveguide
RU2419934C2 (en) Diode multi-beam source of coherent laser radiation (versions)
JP2006515109A (en) Semiconductor laser
JPH01164077A (en) Light-emitting diode and its manufacture
JPH06252511A (en) Semiconductor diode laser and manufacture thereof
JP7351185B2 (en) quantum cascade laser
JP2798720B2 (en) Semiconductor laser array
JPS62282483A (en) Semiconductor laser array device
US10348055B2 (en) Folded waveguide structure semiconductor laser
US20010048704A1 (en) Distributed feedback laser diode
JPH0474876B2 (en)
JPS5980984A (en) Surface illuminant distribution feedback type semiconductor laser element
JPS6257275A (en) Semiconductor laser array device
JP7308948B2 (en) LASER DEVICE AND MANUFACTURING METHOD THEREOF
JP3067702B2 (en) Semiconductor optical integrated device and method of manufacturing the same
JP2676771B2 (en) Semiconductor laser manufacturing method and semiconductor laser
JPS61263185A (en) Semiconductor laser array device
JP2872741B2 (en) Edge emitting diode and method of manufacturing the same
JPS60211993A (en) Semiconductor laser
JPS59152686A (en) Semiconductor laser element