JPS59171905A - Fiber for infrared light - Google Patents
Fiber for infrared lightInfo
- Publication number
- JPS59171905A JPS59171905A JP58044511A JP4451183A JPS59171905A JP S59171905 A JPS59171905 A JP S59171905A JP 58044511 A JP58044511 A JP 58044511A JP 4451183 A JP4451183 A JP 4451183A JP S59171905 A JPS59171905 A JP S59171905A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- silver
- mixed crystal
- weight
- silver bromide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/102—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type for infrared and ultraviolet radiation
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は機械的特性の優れた赤外光用ファイバに関する
ものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an infrared fiber with excellent mechanical properties.
赤外光を透過する光学結晶を押出し加工、あるいはファ
イバ状の単結晶を成長させることにより赤外光用のファ
イバを作成することは種々検討されており(日経エレク
トロニクス、1980年、12月8日号、P、+40等
ン、第1図のように結晶質ファイバ1をパイプ状の保護
層3に入れ、結晶質ファイバをコア部、パイプの間隙部
分をクラッド部2にする赤外光用ファイバ、あるいは光
通信用のステップインデックス型ファイバのように、第
2図、第3図の構成からなる赤外光用ファイバが考えら
れている。Various studies have been made to create fibers for infrared light by extruding optical crystals that transmit infrared light or growing fiber-shaped single crystals (Nikkei Electronics, December 8, 1980). As shown in Fig. 1, a crystalline fiber 1 is placed in a pipe-shaped protective layer 3, and the crystalline fiber is used as a core part and the gap part of the pipe is used as a cladding part 2. Alternatively, infrared light fibers having the configurations shown in FIGS. 2 and 3, such as step-index fibers for optical communications, have been considered.
塩化銀および臭化銀は波長透過領域が広く、CO,レー
ザ光(波長1a6μm)を低損失で伝送することができ
、赤外光用材料として適している。Silver chloride and silver bromide have a wide wavelength transmission range, can transmit CO and laser light (wavelength 1a6 μm) with low loss, and are suitable as materials for infrared light.
銀ハライド結晶による赤外光用ファイバは特開昭55−
121406号公報、米国特許第4255731号明細
書等にあるように、銀ハライド光学結6晶を押出し加工
し、塩化銀をクランド、臭化銀をコアとしたステップイ
ンデックス型ファイバが知られている。しかしながら、
このように塩化銀と臭化銀の組合せで赤外光用ファイバ
を作製しようとする場合、破断応力および降伏応力が小
さく、押出し加工時、あるいは作製したファイバを曲げ
るなどの操作を行なう場合、ファイバ表面が傷つき易い
、あるいは破断し易い欠点がある。この欠点は、光の伝
送損失を小さくするためファイバ材料中の不純物を除去
すると、その傾向が著しくなる。Infrared light fiber using silver halide crystal was published in Japanese Patent Application Laid-open No. 1986-
As disclosed in Japanese Patent No. 121,406, US Pat. No. 4,255,731, etc., step-index fibers are known in which silver halide optical hexagonal crystals are extruded, with a crund of silver chloride and a core of silver bromide. however,
When attempting to produce an infrared fiber using a combination of silver chloride and silver bromide, the breaking stress and yield stress are small, and when performing operations such as extrusion processing or bending the produced fiber, the fiber The disadvantage is that the surface is easily damaged or broken. This disadvantage becomes more pronounced when impurities in the fiber material are removed in order to reduce optical transmission loss.
一方、特開昭55124105号公報には、コア部は臭
化銀または臭化銀と塩化銀の溶融混合物からな力、クラ
ッド部はコア部における臭化銀含有率よりも低率とした
臭化銀と塩化銀の溶融混合物か、ま′fcL塩化銀から
なるものが記載されており、特に伝送特性の点からコア
部の組成配分を50モル%以下の臭化物と塩化銀との混
合物、中でも臭化銀を5〜30モルチ含む混合物とする
ものがあげられている。この場合、破断応力および降伏
応力は大きくなるが、破断伸びは著しく小さくなり、フ
ァイバは硬く、脆くなり、曲げなどの操作により折れ易
い欠点がある。On the other hand, in JP-A-55124105, the core part is made of silver bromide or a molten mixture of silver bromide and silver chloride, and the clad part is made of bromide at a lower silver bromide content than the core part. A mixture of bromide and silver chloride of up to 50 mol %, especially a mixture of bromide and silver chloride, is described, especially from the viewpoint of transmission characteristics. A mixture containing 5 to 30 moles of silver oxide is mentioned. In this case, the breaking stress and yield stress become large, but the breaking elongation becomes significantly small, and the fiber becomes hard and brittle, and has the drawback of being easily broken by operations such as bending.
本発明は塩化銀、臭化銀のような銀/・ライドによる赤
外充用ファイバにおいて、破断応力、降伏応力および破
断伸びの大きい混晶組成の検討を行ない、ファイバの操
作性、耐久性の向上をはかったものである。The present invention investigates a mixed crystal composition with large breaking stress, yield stress, and breaking elongation in an infrared-filled fiber using a silver/ride such as silver chloride and silver bromide, and improves the operability and durability of the fiber. It is calculated by
次に臭化銀−塩化銀の混晶の機械的性質の検討を行なっ
た結果を示す。Next, the results of a study on the mechanical properties of a silver bromide-silver chloride mixed crystal will be shown.
塩化銀と臭化銀粉末を任意に混合した後、480℃で溶
融しブリッジマン法で結晶化した。After arbitrarily mixing silver chloride and silver bromide powders, they were melted at 480°C and crystallized by the Bridgman method.
この結晶を400℃で24時間溶体化処理して均一な組
成の混晶を作製した。この各種組成の結晶を押出し温度
180〜350℃で熱間押出′加工し、α1〜1,5簡
φのファイバを作製し、このファイバの引張り試験を行
なった結果を第4図に示す。第4図から判るように、塩
化銀に臭化銀を少量添加、また臭化銀に塩化銀を少量添
加することにより降伏応力、破断応力および破断伸びは
太きくなり、経験的には0.01重量係の添加によシ効
果がみられた。具体的には塩化銀に0.01〜10重量
%臭化銀を添加した混晶、または臭化銀に0.01〜1
0重量%塩化銀を添加した混晶が、破断応力、降伏応力
および破断伸びのいずれもが満足できる領域にあること
を、はじめて見出すことができた。This crystal was solution-treated at 400° C. for 24 hours to produce a mixed crystal with a uniform composition. These crystals of various compositions were hot extruded at an extrusion temperature of 180 DEG to 350 DEG C. to produce fibers having a diameter of .alpha.1 to 1.5 .phi.. The fibers were subjected to a tensile test. The results are shown in FIG. As can be seen from FIG. 4, by adding a small amount of silver bromide to silver chloride, and by adding a small amount of silver chloride to silver bromide, the yield stress, breaking stress, and breaking elongation become thicker, and empirically, 0. A positive effect was observed by adding 01 weight ratio. Specifically, a mixed crystal in which 0.01 to 10% by weight of silver bromide is added to silver chloride, or a mixed crystal in which 0.01 to 1% by weight of silver bromide is added to silver bromide.
It was found for the first time that the mixed crystal containing 0% by weight silver chloride has a satisfactory range of breaking stress, yield stress, and breaking elongation.
また、上記と同様にして製造した別の試料の破断伸び(
試料数3の平均)を測定して得られ表 1
サンダルNo、1〜14に見られるように、臭化銀に1
0重量%まで塩化銀を添加した混晶ファイバおよび塩化
銀に10重量%まで臭化銀を添加した混晶ファイバの破
断伸びは、臭化銀あるいは塩化銀だけからなるファイバ
の破断伸びに相当するか、それ以上の大きさの破断伸び
を示し、機械的に安定したファイバを得ることができた
。In addition, the elongation at break of another sample manufactured in the same manner as above (
As shown in Table 1 Sandals No. 1 to 14, silver bromide contains 1
The elongation at break of a mixed crystal fiber with silver chloride added to 0% by weight and a mixed crystal fiber with silver bromide added to silver chloride up to 10% by weight corresponds to the elongation at break of a fiber consisting only of silver bromide or silver chloride. We were able to obtain a mechanically stable fiber that exhibited an elongation at break of 200 nm or more.
中でも塩化銀に10重量%まで臭化銀を添加した混晶フ
ァイバおよび臭化銀に5重量係までの塩化銀を添加した
混晶ファイバの破断伸びはすぐれており、その中でも塩
化銀に0.01〜5重量%まで臭化銀を添加した混晶フ
ァイバ、および臭化銀にcL01〜5重量%まで塩化銀
を添加した混晶ファイバ、更には塩化銀に1〜&5重i
%まで臭化銀を添加した混晶ファイバおよび臭化銀に1
〜55重量%まで塩化銀を添加した混晶ファイバがその
破断伸びにおいて著しくすぐれていることが表1から判
る。Among them, mixed crystal fibers in which up to 10% by weight of silver bromide is added to silver chloride and mixed crystal fibers in which up to 5% by weight of silver chloride is added to silver bromide have excellent elongation at break. Mixed crystal fiber with silver bromide added to 01 to 5% by weight, and mixed crystal fiber with silver chloride added to silver bromide to 1 to 5% by weight, and furthermore, 1 to 5 weight% of silver chloride.
Mixed crystal fibers doped with silver bromide up to 1% and silver bromide doped with 1
It can be seen from Table 1 that the mixed crystal fibers doped with silver chloride up to 55% by weight are significantly superior in elongation at break.
これらの組成の液晶ファイバは臭化銀単独の組成のファ
イバと比べると、傷つきに<<、可撓性の点でも優れた
ファイバが得られ、かつ添加物量の多い混晶ファイバで
見られがちだった脆さがなく、機械的に安定したファイ
バを得ることができた。Liquid crystal fibers with these compositions are more resistant to scratches and have better flexibility than fibers with a single silver bromide composition, and they are less likely to be scratched than fibers with a higher amount of additives than mixed crystal fibers. We were able to obtain a mechanically stable fiber with no brittleness.
このため、第1図のように、この組成域の混晶ファイバ
をパイプ状保護層に入れ、結晶部分をコア部1、パイプ
との間隙をクラッド部2とすることにより、機械的特性
の優れた赤外光用ファイバを得ることができた。Therefore, as shown in Figure 1, by placing a mixed crystal fiber in this composition range in a pipe-shaped protective layer, with the crystal part as the core part 1 and the gap between the pipe and the clad part 2, excellent mechanical properties can be achieved. We were able to obtain a fiber for infrared light.
このパイプ状保護層として、軟かく、緩衝材として働く
多孔質プラスチックあるいはゴムなど、たとえばポリウ
レタン、ポリスチレン、ABS樹脂、ポリ塩化ビニル、
ポリエチレン、ポリプロピレン、フェノール樹脂、ケイ
素樹脂、尿素樹脂、およびフッ素樹脂のパイプを用いる
ことができる。さらに必要によってはこのパイプの上に
防水性の緻密なプラスチックあるいはゴムなどをさらに
被覆してもよ(、ABS樹脂、ポリブタジェン、ポリプ
ロピレン、ポリカーボネート、ポリ塩化ビニル、ポリフ
ェニレンオキシド、ポリスルホンあるいは、これらの混
合物を溶融押出し成形するか、ポリエステルイミド、ポ
リエステル、ポリウレタン、ポリオール、ポリイミド、
ポリアミドイミド、シリコン樹脂、四フッ化樹脂、エポ
キシ樹脂あるいはこれらの混合物などを塗布、焼付けに
よシ被覆することができる。This pipe-shaped protective layer may be made of soft, porous plastic or rubber that acts as a cushioning material, such as polyurethane, polystyrene, ABS resin, polyvinyl chloride, etc.
Polyethylene, polypropylene, phenolic, silicone, urea, and fluororesin pipes can be used. Furthermore, if necessary, the pipe may be further coated with waterproof dense plastic or rubber (eg, ABS resin, polybutadiene, polypropylene, polycarbonate, polyvinyl chloride, polyphenylene oxide, polysulfone, or a mixture thereof). Melt extrusion or polyesterimide, polyester, polyurethane, polyol, polyimide,
It can be coated by coating and baking polyamideimide, silicone resin, tetrafluoride resin, epoxy resin, or a mixture thereof.
また、外装に用いる被覆層は熱収縮パイプを用いること
も有効で、例えば、ポリエチレン、ポリ塩化ビニル、ポ
リエチレン、ポリビニルアセテート共重合物、塩素化ポ
リエチレン、ポリフッ化ビニリデンなどを用いることが
でき、これらの樹脂を必要により単独あるいは多層に被
覆してもよい。It is also effective to use a heat-shrinkable pipe as the coating layer used for the exterior. For example, polyethylene, polyvinyl chloride, polyethylene, polyvinyl acetate copolymer, chlorinated polyethylene, polyvinylidene fluoride, etc. can be used. If necessary, the resin may be coated singly or in multiple layers.
一方、保護層として、上記のパイプ保護層たる緩衝層の
上に被覆するプラスチック、あるいはゴムを、クラツド
材上に直接、単独あるいは多層に被覆することもできる
。On the other hand, as a protective layer, the plastic or rubber coated on the buffer layer, which is the pipe protective layer, can be directly coated on the cladding material, either singly or in multiple layers.
また臭化銀に0.01〜10重量%塩化銀を添加した混
晶の10.6μm光における屈折率は2.1前後、塩化
銀にQ、01〜10重量%臭化銀を添カロした混晶の’
i El 6μm元における屈折率は2前後であり、前
者の混晶をコア部1、後者の混晶をクラッド部2とする
ことにより、コア内に赤外光を案内することができ、破
断応力、降伏応力および破断伸びも前記混晶と同じ位大
きく、傷つきにくい、可撓性のある第2図、第5図のよ
うな機械的特性の優れfcQ外光用ファイバを得ること
ができた。この赤外光用ファイバでは、塑性変形を起こ
す曲げが加わる場合でも破断応力および破断伸びが大き
く、破断しに〈<、繰り返し曲げに強く、機械的にも安
定しているものである。In addition, the refractive index at 10.6 μm light of a mixed crystal obtained by adding 0.01 to 10% by weight of silver chloride to silver bromide is around 2.1. mixed crystal'
i El The refractive index at 6 μm is around 2, and by using the former mixed crystal as the core part 1 and the latter mixed crystal as the cladding part 2, it is possible to guide infrared light into the core, and the breaking stress can be reduced. The yield stress and elongation at break were as large as those of the mixed crystal, and it was possible to obtain fcQ external optical fibers with excellent mechanical properties as shown in FIGS. 2 and 5, which were scratch resistant and flexible. This infrared light fiber has large breaking stress and breaking elongation even when subjected to bending that causes plastic deformation, is resistant to repeated bending, and is mechanically stable.
上記コア部、クランド部の組合せにおいて、臭化銀に1
〜五5重量%塩化銀を添加した混晶をコア部、塩化銀に
1〜&5重量%臭化銀を添加した混晶をクラッド部とし
たものが、その特性において非常にすぐれている。In the above combination of core part and crund part, silver bromide contains 1
A core made of a mixed crystal containing silver chloride in an amount of 55% by weight and a cladding made of a mixed crystal containing 1 to 5% by weight of silver bromide in silver chloride has excellent properties.
本発明の赤外光用ファイバはレーザメス、レーザコアギ
ユレータ(凝固器等ンのレーザ治療器の002あるいは
COレーザ光導光路に、また遠隔の警報器等の赤外検出
器に接続するための赤外導光路に用いることができる。The infrared light fiber of the present invention can be used to connect to a 002 or CO laser light guide path of a laser treatment device such as a laser scalpel or laser coagulator (coagulator), or to an infrared detector such as a remote alarm. Can be used for infrared light guide.
実施例1
高純度の塩化銀および臭化銀粉末を99:1の重量比で
混合し、ブリッジマン法で円柱状結晶を作製した。この
結晶を350〜410℃の範囲で24時間溶体化処理し
て均一な組成の混晶を作製した。この結晶を押出しビレ
ットとし、外部ヒータでビレットおよび押出し金型を加
熱し、押出し温度100〜580℃の範囲で熱間押出し
加工し、15〜1.5覇φ径のファイバを作製した。Example 1 High purity silver chloride and silver bromide powders were mixed at a weight ratio of 99:1, and cylindrical crystals were produced by the Bridgman method. This crystal was solution-treated at a temperature of 350 to 410° C. for 24 hours to produce a mixed crystal with a uniform composition. This crystal was extruded into a billet, the billet and extrusion mold were heated with an external heater, and hot extrusion was carried out at an extrusion temperature range of 100 to 580°C to produce a fiber with a diameter of 15 to 1.5 mm.
実施例2
高純度の塩化銀および臭化銀粉末を2=98の重量比で
混合し、ブリッジマン法で円柱状結晶を作製し、実施例
1と同条件で熱間押出し加工し、0.5〜1.5郷φ径
のファイバを作製した。Example 2 High-purity silver chloride and silver bromide powders were mixed at a weight ratio of 2=98, cylindrical crystals were produced by the Bridgman method, and hot extruded under the same conditions as in Example 1. Fibers with a diameter of 5 to 1.5 mm were fabricated.
このようにして得られた実施例1および2の結晶質ファ
イバは傷つきにくく可撓性のあるファイバで、これを樹
脂パイプの中に緩く挿入し赤外光用ファイバとした。The crystalline fibers of Examples 1 and 2 thus obtained were flexible fibers that were not easily damaged, and were loosely inserted into a resin pipe to form infrared light fibers.
実施例3
実施例2の即成の混晶の円柱状結晶と、実施例1の組成
の混晶のパイプ状結晶を作製し、嵌合し、押出し用ビレ
ットとする。この結晶全実施例1と同一条件で熱間押出
し加工し、0.5〜1.5製φ径のファイバを作製した
。実施例2の組成の混晶がコア部、実施例1の組成の混
晶がクラッド部となり、このステップインデックス型の
ファイバは実施例1,2のファイバと同様に傷つきに<
<、可撓性のあるファイバである。Example 3 The ready-made mixed crystal columnar crystal of Example 2 and the mixed crystal pipe-shaped crystal of the composition of Example 1 are produced and fitted together to form a billet for extrusion. This crystal was hot extruded under the same conditions as in Example 1 to produce a fiber having a diameter of 0.5 to 1.5. The mixed crystal with the composition of Example 2 becomes the core part, and the mixed crystal with the composition of Example 1 forms the cladding part, and this step-index fiber is resistant to scratches like the fibers of Examples 1 and 2.
<, a flexible fiber.
実施例5の結晶質ファイバは、クラッド部2によりコア
部1に光が案内されるため、通常の光通信用ファイバの
ように、樹脂層および金部層の保護層を被覆し、赤外光
用ファイバとした。In the crystalline fiber of Example 5, since light is guided to the core part 1 by the cladding part 2, the infrared light is It was used as a fiber for use.
上記のようにして得られた赤外光用ファイバf 2 m
の長さに切断し、その一端から出力lOWのCO2ガス
レーザ光(波長1α6μm)を入射し、他端からレーザ
光を出射して、これ全セレン化亜鉛などの赤外光用集束
レンズで光を絞り、アクリル板などのプラスチック板あ
るいは木材などに穴をあけたり、またはこれを切断する
ととができた。Infrared fiber f 2 m obtained as above
A CO2 gas laser beam (wavelength 1α6 μm) with an output of 1 OW is input into one end, the laser beam is emitted from the other end, and the light is focused using an infrared focusing lens such as all-zinc selenide. When a hole is made in a plastic plate such as an acrylic plate or wood, or when it is cut, a tip is created.
第1〜5図は赤外光用あるいは光ファイバの断面図であ
り、第4図は臭化銀−塩化銀混晶ファイバの混晶組成と
機械的特性の関係を示すグラフである。
代理人 内 1) 明
代理人 萩 原 亮 −
第1図
第2図
第3図1 to 5 are cross-sectional views of infrared light or optical fibers, and FIG. 4 is a graph showing the relationship between the mixed crystal composition and mechanical properties of a silver bromide-silver chloride mixed crystal fiber. Agents 1) Akira Agent Ryo Hagiwara - Figure 1 Figure 2 Figure 3
Claims (1)
混晶、′または塩化銀に1101〜10重量%臭化銀を
添加した混晶よりなる赤外光透過材料。 2、 臭化銀に0.01〜10重量係塩化銀を添加した
混晶、または塩化銀に0.01〜10重量%臭化釧を添
加した混晶による結晶質ファイバの外周にパイプ状の保
護層を設けた赤外光用ファイバ。 & コア部とクラッド部、またはコア部、クラッド部と
その外周の保護層被覆からなり、コア部は臭化銀に10
重量%以下の塩化銀を添加した混晶、クラッド部は塩化
銀に10重量%以下の臭化銀を添加した混晶から選ばれ
た材料で構成される赤外光用ファイバ。 4、 コア部の塩化銀濃度がα01〜IO重量%であり
、クラッド部の臭化銀濃度が0.01〜10重量係で・
ある特許請求の範囲6記載の赤外光用ファイバ。[Scope of Claims] 1. An infrared light transmitting compound consisting of a mixed crystal obtained by adding 101 to 10% by weight of silver chloride to silver bromide, or a mixed crystal obtained by adding 1101 to 10% by weight of silver bromide to silver chloride. material. 2. A pipe-shaped fiber is formed on the outer periphery of a crystalline fiber made of a mixed crystal in which 0.01 to 10% by weight of silver chloride is added to silver bromide, or a mixed crystal in which 0.01 to 10% by weight of silver bromide is added to silver chloride. Infrared fiber with a protective layer. & Consisting of a core part and a cladding part, or a core part, a cladding part, and a protective layer covering the outer periphery, the core part is coated with silver bromide at 10%.
An infrared light fiber made of a material selected from a mixed crystal containing silver chloride in an amount of up to 10% by weight, and a mixed crystal in which the cladding part contains silver chloride and silver bromide in an amount of up to 10% by weight. 4. The silver chloride concentration in the core part is α01 to IO% by weight, and the silver bromide concentration in the cladding part is 0.01 to 10% by weight.
An infrared fiber according to claim 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58044511A JPS59171905A (en) | 1983-03-18 | 1983-03-18 | Fiber for infrared light |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58044511A JPS59171905A (en) | 1983-03-18 | 1983-03-18 | Fiber for infrared light |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59171905A true JPS59171905A (en) | 1984-09-28 |
Family
ID=12693571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58044511A Pending JPS59171905A (en) | 1983-03-18 | 1983-03-18 | Fiber for infrared light |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59171905A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0410601A (en) * | 1990-04-27 | 1992-01-14 | Tdk Corp | Thick film resistor and manufacture thereof |
-
1983
- 1983-03-18 JP JP58044511A patent/JPS59171905A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0410601A (en) * | 1990-04-27 | 1992-01-14 | Tdk Corp | Thick film resistor and manufacture thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4490008A (en) | Infrared fibers | |
US4451116A (en) | Infrared transmitting fiber optical waveguide extruded from halides of the metal thallium and the method of preparation | |
CN1139630C (en) | Polyolefin Materials for Optical Fiber Cable Assemblies | |
EP1308763B1 (en) | Buffer tube for use in optical cables providing easy and reliable access to the optical fibres | |
JPS60158404A (en) | Low-loss clad optical fiber made of halogenide and manufacture thereof | |
JPS6053844B2 (en) | Infrared optical fiber and its manufacturing method | |
EP0357354B1 (en) | Polymer composition and optical fiber having cladding composed of that composition | |
JPS5844403A (en) | Light transmission cable | |
JPS59171905A (en) | Fiber for infrared light | |
Sakuragi | Polycrystalline KRS-5 infrared fibers for power transmission | |
EP0172988A1 (en) | Optical fibers for infrared transmission | |
JP2003322729A (en) | Optical fiber and method of manufacturing the same | |
Harrington | Infrared fiber optics for CO2 laser applications | |
GB2140582A (en) | Plastics light guiding fibre | |
JPS61292105A (en) | Plastic optical fiber having superior heat resistance | |
JPS6484205A (en) | Plastic optical fiber cord | |
JP2003014967A (en) | Optical fiber | |
JPH0576003B2 (en) | ||
Croitoru et al. | Mechanical and optical properties of the chalcogenide glass system As 2 Se 3-x Te x | |
JPS60101502A (en) | Infrared transmitting fiber and its manufacture | |
JP2000028833A (en) | Image fiber | |
JP2003084148A (en) | Plastic optical fiber, plastic optical fiber cable and plastic optical fiber cable with plug | |
JPH01169401A (en) | Resin molding for optical parts | |
JP2001021737A (en) | Heat resisting plastic optical fiber and signal transmission method therefor | |
JPS59171904A (en) | Plastic fiber for optical transmission |