JPS59168331A - pressure transducer - Google Patents
pressure transducerInfo
- Publication number
- JPS59168331A JPS59168331A JP4146683A JP4146683A JPS59168331A JP S59168331 A JPS59168331 A JP S59168331A JP 4146683 A JP4146683 A JP 4146683A JP 4146683 A JP4146683 A JP 4146683A JP S59168331 A JPS59168331 A JP S59168331A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- pressure
- zero
- zero point
- bridge circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/20—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
- G01L1/22—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
- G01L1/2268—Arrangements for correcting or for compensating unwanted effects
- G01L1/2281—Arrangements for correcting or for compensating unwanted effects for temperature variations
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Fluid Pressure (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔技術分野〕
本発明は、零点の温度特性を補償して温度変化に対して
安定した零点が得られるようにしたダイヤフラム型の圧
力変換器に関し、特に、複数個の拡散型ストレンゲージ
を分数配置したシリコン製のダイヤフラム(起歪部)を
備えた高感度の圧力変換器に好適なものである。[Detailed Description of the Invention] [Technical Field] The present invention relates to a diaphragm pressure transducer that compensates for the temperature characteristics of the zero point to obtain a stable zero point against temperature changes. It is suitable for a high-sensitivity pressure transducer equipped with a silicon diaphragm (strain-generating part) in which a diffusion type strain gauge is arranged in a fractional manner.
従来、一般にシリコン感圧ダイヤフラムを備えた高感度
圧力変換器などにおける温度特性、とりわけ零点の温度
特性は、ダイヤフラムにブリッジ回路の形態に配置され
るストレンゲージ相互間の温度特性のわずかの差によっ
て発生する。特に、シリコン感圧ダイヤフラムが使用さ
れる品積。Conventionally, the temperature characteristics, especially the temperature characteristics at the zero point, in high-sensitivity pressure transducers equipped with silicon pressure-sensitive diaphragms are caused by slight differences in temperature characteristics between strain gauges arranged in the form of a bridge circuit on the diaphragm. do. In particular, products where silicon pressure sensitive diaphragms are used.
度の圧力変換器の18合には、大部分のものが零点温度
特性の補償を必要とする。Most of the 18 degree pressure transducers require compensation of the zero point temperature characteristics.
この温度特性を補償するために従来から用いられている
方法は、ストレンゲージの抵抗温度係数とは異なる抵抗
温度係数をもつ抵抗RX(たとえばサーミスタ、金属皮
膜抵抗または拡散抵抗など)を第1図の如く、ストレン
ゲージ5GI−SG4で構成されるブリッジ回路に挿入
して、このブリッジ回路にアンバランスの温度特性を持
たせて補償するものである。この場合には、抵抗RXを
挿入したことによりブリッジ回路の出力レベルか変化す
るので、これを補償するために、ストレンゲージと同じ
かあるいはそれに近い温度特性をもつ抵抗RYを、抵抗
RXを挿入した辺の隣辺に挿入することもある。この従
来方法は直接的で簡便であるが、次のような欠点かあっ
た。The conventional method used to compensate for this temperature characteristic is to use a resistor RX (such as a thermistor, metal film resistor, or diffused resistor) with a temperature coefficient of resistance different from that of the strain gauge, as shown in Figure 1. Thus, it is inserted into a bridge circuit composed of strain gauges 5GI-SG4, and this bridge circuit is given an unbalanced temperature characteristic to compensate for it. In this case, the output level of the bridge circuit changes due to the insertion of the resistor RX, so to compensate for this, a resistor RY with the same or similar temperature characteristics as the strain gauge is inserted. It may also be inserted next to an edge. Although this conventional method is direct and simple, it has the following drawbacks.
■ ストレンゲージS01〜SG4で構成するブリッジ
回路に、他の抵抗RXおよびRYを挿入するので、事前
の調整工程において調整された値、例えば感度などが影
響を受け、再調整が必要となる場合も生じる。特に、抵
抗RXおよびRYの値が大きくなるほどこの影響は顕著
となる。■ Since other resistors RX and RY are inserted into the bridge circuit consisting of strain gauges S01 to SG4, the values adjusted in the previous adjustment process, such as sensitivity, may be affected and readjustment may be necessary. arise. In particular, this effect becomes more significant as the values of the resistors RX and RY increase.
■ ストレンゲ−ジブリッジ回路出力で発生する零点温
度特性の個々の圧力変換器でのほらつきが問題となる場
合には、個々に圧力変換器の零点温度特性の調整を行う
必要が生じる。その際、この従来方法では、抵抗RXお
よびRYの抵抗値を個々の圧力変換器ごとに設定するこ
とにより、零点温度特性の調整を行っている。しかしな
がら、抵抗R×あるいはRYとストレンゲージとの間の
温度特性がそれぞれ異なるため、抵抗RXおよびRYの
抵抗調整値のばらつきにより、零点温度特性の曲がり(
すなわち温度特性が直線ではないこと)のばらつきを生
じる。そして、零点yla度特性の傾きのばらつきが大
きいほど、上述の調整によって生じる零点温度特性の曲
がりのばらつきも大きくなる。(2) If fluctuations in the zero-point temperature characteristics of individual pressure transducers occurring in the output of the strain gauge bridge circuit become a problem, it becomes necessary to adjust the zero-point temperature characteristics of each pressure transducer individually. At this time, in this conventional method, the zero point temperature characteristics are adjusted by setting the resistance values of the resistors RX and RY for each pressure transducer. However, since the temperature characteristics between the resistance R× or RY and the strain gauge are different, the zero point temperature characteristics may curve (
In other words, the temperature characteristics are not linear). The greater the variation in the slope of the zero point yla degree characteristic, the greater the variation in the curve of the zero point temperature characteristic caused by the above-mentioned adjustment.
〔目白9〕
そこで、本発明の目的は、上述した欠点を除去し、零点
の温度特性補償かそれ以前の調整工程に影響せず、同時
に零点温度特性の調整に伴う零点温度特性の曲がりのば
らつきをなくした圧力変換器を提供することにある。[Mejiro 9] Therefore, the purpose of the present invention is to eliminate the above-mentioned drawbacks, do not affect the zero point temperature characteristic compensation or the adjustment process before that, and at the same time reduce the variation in the curve of the zero point temperature characteristic due to the adjustment of the zero point temperature characteristic. The object of the present invention is to provide a pressure transducer that eliminates the
かかる目的を達成するために、本発明は、ダイヤフラム
と一体に基準圧力室を設けて、この基べ1.圧力室内中
に気体を封入し、この気体の温度変化による膨張・収縮
に伴う零点の温度依存性を利用して、零点の温度特性の
補償を行うようにしたものである。In order to achieve such an object, the present invention provides a reference pressure chamber integrally with the diaphragm, and provides this base with 1. A gas is sealed in a pressure chamber, and the temperature dependence of the zero point accompanying the expansion and contraction of this gas due to temperature changes is utilized to compensate for the temperature characteristics of the zero point.
以下、図面を参照して本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.
第2図は本発明圧力変換器の構成の一例を示し、ここで
SGI〜SG4は、それぞれ:i3図示のシリコンチッ
プ1に形成されたダイヤフラムIAにブリッジ回路B1
の形態で構成配置されたストレンゲージである。FIG. 2 shows an example of the configuration of the pressure transducer of the present invention, in which SGI to SG4 are connected to a diaphragm IA formed on a silicon chip 1 shown in i3, and a bridge circuit B1, respectively.
It is a strain gauge configured and arranged in the form of.
これを第3図を参照してさらに詳述すると、シリコンチ
ップlの中央部をエツチングで削り取ってダイヤフラム
IAを作り、このダイヤフラムIAのエツチングされて
いない内側の面に4個のストレンケーシSGI〜SG4
を拡故により作り込む。この際、一対のストレンゲージ
SGIおよびSG3とをダイヤフラムIAの周辺部に配
置し、残りのスi・レングージSG2およびSG4とを
ダイヤフラムlAの中央部に配置する。2はその内側を
基準圧力室2Aとする容器であり、この容器2により基
準圧力室2Aの′A密を保ち、さらにノ、(準圧力室2
A内に例えばヘリウムガス等の不活性ガスを封入するこ
とにより所定の基準圧力Pを発生させる。ダイヤフラム
IAのエツチングされた外側の面1Bまで測定圧力を導
く。To explain this in more detail with reference to FIG. 3, a diaphragm IA is created by etching the central part of the silicon chip l, and four strain cases SGI to SG4 are placed on the unetched inner surface of the diaphragm IA.
built in through expansion. At this time, a pair of strain gauges SGI and SG3 are arranged at the periphery of diaphragm IA, and the remaining strain gauges SG2 and SG4 are arranged at the center of diaphragm IA. Reference numeral 2 is a container whose inside is a reference pressure chamber 2A, and this container 2 keeps the reference pressure chamber 2A airtight.
By filling A with an inert gas such as helium gas, a predetermined reference pressure P is generated. The measuring pressure is conducted to the etched outer surface 1B of the diaphragm IA.
さらに、第2図に示すように、ストレンゲージSG1
とSG4 との接続点を電WVcに接続するとともに、
ストレンゲージSG2とSG3との接続点を大地電位G
NDにする。かつ、ストレンゲージSG3とSG4 と
の接続点をストレンゲ−ジブリッジ回路B1の一方の出
力端子として、抵抗R1を介して一方の演初増幅器OP
lの反転入力端子に接続するとともに、ストレンゲージ
SGI とS02との接続点をストレンゲ−ジブリッジ
回路B1の他方の出力端子として、抵抗R2を介して演
鵠増幅器OPIの非反転入力端子に接続する。他方の演
算増幅器OP2の出力端子と上述の演算増幅(P OP
+の非反転入力端子との間に抵抗R3を接続するとと
もに、演算増幅器OP1の反転入力端子とその出力端子
との間に帰還抵抗R4を接続する。Furthermore, as shown in FIG. 2, strain gauge SG1
Connect the connection point between and SG4 to electric WVc, and
The connection point between strain gauges SG2 and SG3 is connected to the ground potential G.
Make it ND. In addition, the connection point between the strain gauges SG3 and SG4 is used as one output terminal of the strain gauge bridge circuit B1, and one output amplifier OP is connected via the resistor R1.
The connection point between the strain gauges SGI and S02 is connected as the other output terminal of the strain gauge bridge circuit B1 to the non-inverting input terminal of the operational amplifier OPI via a resistor R2. The output terminal of the other operational amplifier OP2 and the above-mentioned operational amplifier (P OP
A resistor R3 is connected between the + non-inverting input terminal, and a feedback resistor R4 is connected between the inverting input terminal of the operational amplifier OP1 and its output terminal.
このように、演算増幅器OPIおよび抵抗R1〜R4と
で差動増幅器を構成する。ここで、上述の各抵抗R1〜
R4の抵抗値を、R1−R2、およびR3=R4とし、
かつ抵抗R1およびR2の抵抗値をストレンゲ−シブリ
ッジ回路Blの出力インピーダンスと比較して十分大き
な値とするのが一般的である。この場合には、スI・レ
ンケージブリッジ回路B1の出力電圧をVinとし、が
」a増幅器OP2の出力′屯)−1三をvしとすると、
演算増幅器OPIの出力端子から得られる圧力変換器出
力電圧vOは次の(1)式で表わされる。In this way, the operational amplifier OPI and the resistors R1 to R4 constitute a differential amplifier. Here, each of the above-mentioned resistors R1 to
Let the resistance value of R4 be R1-R2 and R3=R4,
Generally, the resistance values of the resistors R1 and R2 are set to a sufficiently large value compared to the output impedance of the strain bridge circuit Bl. In this case, let the output voltage of the input range bridge circuit B1 be Vin, and let the output of the amplifier OP2 be v.
The pressure transducer output voltage vO obtained from the output terminal of the operational amplifier OPI is expressed by the following equation (1).
3
VO= −Vin + −Vし
(1)I
次に、電′#vcと大地電位G’NDとの間に抵抗R5
およびR6とを直列接続するとともに、抵抗R5とR6
との共通接続点を演算増幅器OP2の非反転入力端子に
接続する。また、抵抗R7と大きな正の温度特性をもつ
抵抗(例えは正特性サーミスタ) RAとを並列接続し
、この2つの抵抗R7およびRAとをまとめてRαとす
る。さらに、電源vcと大地電位GNDとの間に抵抗R
αおよびR8とを直列接続し、この抵抗RαとR8との
共通接続点と演算増幅器OP2の反転入力端子との間に
抵抗R8を接続する。3 VO= -Vin + -V
(1)I Next, a resistor R5 is connected between the voltage '#vc and the ground potential G'ND.
and R6 are connected in series, and resistors R5 and R6 are connected in series.
The common connection point with the OP2 is connected to the non-inverting input terminal of the operational amplifier OP2. Further, the resistor R7 and a resistor RA having a large positive temperature characteristic (for example, a positive temperature characteristic thermistor) are connected in parallel, and these two resistors R7 and RA are collectively referred to as Rα. Furthermore, a resistor R is connected between the power supply VC and the ground potential GND.
α and R8 are connected in series, and a resistor R8 is connected between the common connection point of the resistors Rα and R8 and the inverting input terminal of the operational amplifier OP2.
演算増幅器OP2の反転入力端子とその出力端子との間
には帰還抵抗R1(+を接続する。A feedback resistor R1 (+) is connected between the inverting input terminal of the operational amplifier OP2 and its output terminal.
このように、抵抗R5、R6、RαおよびR8とでフル
ブリッジ回路B2を構成し、このブリッジ回路B2の出
力電圧を、演算増幅器OP2と抵抗RαおよびR8〜R
IOとで構成される増幅器で増幅する。ここで、抵抗R
5とR6との共通接続点の電位をVヤ、抵抗RαとR8
との共通接続点の電位をV−とし、抵抗Rα、R8およ
びR9の抵抗値の関係を次の(2)式%式%
(2)
演算増幅器OP2の出力゛電圧vしは次の(3)式で表
わされる。In this way, the resistors R5, R6, Rα and R8 constitute a full bridge circuit B2, and the output voltage of this bridge circuit B2 is connected to the operational amplifier OP2 and the resistors Rα and R8 to R8.
It is amplified by an amplifier consisting of IO. Here, resistance R
The potential of the common connection point of 5 and R6 is Vya, and the resistors Rα and R8 are
The potential of the common connection point with V- is set as V-, and the relationship between the resistance values of resistors Rα, R8, and R9 is expressed by the following equation (2). ) is expressed by the formula.
以」二のような回路構成において、例えば27°CでP
mm)Ig (絶対圧)となるようにヘリウムガスを基
べ1!圧力室2A内に」・1人すると、基準圧力室2A
内のji、1度変化によりこの基Qli圧力Pはホイル
・シャルルの法則に、従って変化する。すなわち、その
際の温度変化をΔTとすると、温度変化ΔTによる基準
圧力Pの変化ΔP7は次の(4)の式で表わされる。In the circuit configuration shown below, for example, P at 27°C.
mm) Ig (absolute pressure) based on helium gas 1!・If one person enters the pressure chamber 2A, the standard pressure chamber 2A
By changing ji by 1 degree, this group Qli pressure P changes according to the Hoyle-Charles law. That is, if the temperature change at that time is ΔT, the change ΔP7 in the reference pressure P due to the temperature change ΔT is expressed by the following equation (4).
一煎に、圧力変換器出力の零点の温度補償は、スパン(
出力電圧範囲)調整およびスパン温度特性の補償の終了
後に行う。この場合に、圧力変換器の測定圧力の変化に
対する感度をaとすると、ノ、(準圧力室2Aの封入圧
力の変化に対する感度は−aとなる。木火施例ではこの
感度aの符号は正であるので、温度変化ΔTに伴うシ(
べ(圧力Pの変化ΔP工による圧力変換器出力電圧VO
の変化ΔVOIは、次の(5)式で表わされる。Temperature compensation at the zero point of the pressure transducer output is performed over the span (
Perform this after adjusting the output voltage range and compensating for the span temperature characteristics. In this case, if the sensitivity of the pressure transducer to a change in the measured pressure is a, then the sensitivity to a change in the filling pressure of the semi-pressure chamber 2A is -a. In the fire example, the sign of this sensitivity a is Since it is positive, the shift due to temperature change ΔT (
(Pressure transducer output voltage VO due to change in pressure P ΔP
The change ΔVOI is expressed by the following equation (5).
ブリッジ回路Blを構成する各ストレンゲージs1〜S
4は、通常、その温度特性が1・Y・かずっ異なる。Each strain gauge s1 to S forming the bridge circuit Bl
4 usually have temperature characteristics that differ by 1·Y·.
そのために、ストレンゲ−ジブリッジ回路Blの零点出
力電圧は温度依存性を持つ。さらに、7iif算増幅器
DPIおよびOR3のオフセット電圧も温度依存性を持
つ。これらの温j&依存性による温度特性の1■き(た
だし、ストレンゲ−ジブリッジ回路出力にお(するイ1
白に換坤、シたイ+へとする)をbとすると、この/I
J度特性の傾きbによる温度変化へTに伴った圧力変換
器出力電圧vOの変化ΔVO2は、次の(6)式で表わ
される・
3
ΔVO2= −b △T (6)1
演算増幅器OP2の前段に構成した抵抗ブリッジ回路B
2中の抵抗RAは、大きな正の温度特性を持つているの
で、温度の上昇に伴い抵抗RAの抵抗値が増加する。こ
れに伴い、抵抗RαとR8との共通接続点の電位V−は
減少し、上述の(3)式に示すように演算増幅器OP2
の出力電圧vしが増加するので、(1)式に示すように
圧力変換器出力電圧vOも増加する。ここで、この抵抗
RAの温度特性による圧力変換器出力電圧vOの温度特
性の傾きをCとすると、この傾きCによる温度変化ΔT
に伴った圧力変換器出力電圧vOの変化ΔVO3は、次
の(7)式で表わされる。ただし、温度特性の傾きCの
符号は正である。Therefore, the zero point output voltage of the strain gauge circuit Bl has temperature dependence. Furthermore, the offset voltages of the 7iif calculation amplifiers DPI and OR3 also have temperature dependence. Temperature characteristics due to these temperature j & dependences (however, the
If b is the value of white, then this /I
The change ΔVO2 in the pressure transducer output voltage vO due to the temperature change T due to the slope b of the J-degree characteristic is expressed by the following equation (6): 3 ΔVO2= −b ΔT (6) 1 Resistor bridge circuit B configured in the previous stage
Since the resistor RA in No. 2 has a large positive temperature characteristic, the resistance value of the resistor RA increases as the temperature rises. Along with this, the potential V- at the common connection point of the resistors Rα and R8 decreases, and as shown in the above equation (3), the operational amplifier OP2
Since the output voltage v of increases, the pressure transducer output voltage vO also increases as shown in equation (1). Here, if the slope of the temperature characteristic of the pressure transducer output voltage vO due to the temperature characteristic of this resistance RA is C, then the temperature change ΔT due to this slope C
The change ΔVO3 in the pressure transducer output voltage vO due to the change in pressure transducer output voltage vO is expressed by the following equation (7). However, the sign of the slope C of the temperature characteristic is positive.
ΔVO3= cXΔT (?)
このように、本実施例において、零点の温度依存性を発
生させる主な原因としては、前述した(5)〜(7)の
各式で表わされる3つの要因が挙げられる。よってこの
(5)〜(7)式により、温度変化ΔTに伴った圧力変
換器出力′電圧vOの零点の変化ΔvOは、次の(8)
式で表わされる。ΔVO3=cXΔT (?)
As described above, in this embodiment, the three factors expressed by the above-mentioned equations (5) to (7) are the main causes of the temperature dependence of the zero point. Therefore, according to equations (5) to (7), the change ΔvO in the zero point of the pressure transducer output' voltage vO due to the temperature change ΔT can be calculated as follows (8)
It is expressed by the formula.
ΔVO=ΔVO1+ΔVO2+ΔVO3そこで、圧力変
換器出力電圧vOの零点温度特性の傾きを無くすために
は、次の(9)式が満たされればよいということがわか
る。ΔVO=ΔVO1+ΔVO2+ΔVO3 Therefore, it can be seen that in order to eliminate the slope of the zero point temperature characteristic of the pressure converter output voltage vO, the following equation (9) needs to be satisfied.
300(’k) R1
一;浅に、本実施例のような高精度な拡散型半導体圧力
変グ、I器の場合には、ストレンケージブリッシ回路B
lの凡゛点出力電圧の温度依存性のばらつき、および演
算増l1Ii÷(1)のオフセット電圧の温度依存性の
ほらつきによる(8)式の右辺第2項の温度特性の傾き
bのばらつきが問題となる−0しかし、この傾きbのば
らつきは、(8)式の右辺力1 Jf4に示す基準圧力
室2A内の基1店圧力Pを調整することにより補償でき
る。300 ('k) R1 - Shallowly, in the case of a high-precision diffusion type semiconductor pressure changer or I device like this embodiment, the strain cage bridge circuit B
Variations in the slope b of the temperature characteristic of the second term on the right side of equation (8) due to variations in the temperature dependence of the average point output voltage of l and fluctuations in the temperature dependence of the offset voltage of the calculation increase l1Ii ÷ (1) However, this variation in the slope b can be compensated for by adjusting the base pressure P in the reference pressure chamber 2A, which is represented by the right-hand side force 1Jf4 of equation (8).
さらに、(8)式の右辺第1項は負の伯でのみしかあり
1μないので、本実施例では、」−述の傾きbのばらつ
きの全範囲において基準圧力室2A内の基僧圧力Pで補
償が可能となるように、第2図示の抵抗RAおよびR7
〜RIOの抵抗値を適切に選んで、1−述の傾きCの値
(一定値)を与える。その際、Jl!l;抗RAおよび
RIOの抵抗値は、」−述した条件を満足すると同時に
、零点温度特性の曲がりのばらつきを無くするという条
件を満足するように選ぶこともできる。Furthermore, since the first term on the right side of equation (8) is only a negative fraction and is 1μ, in this embodiment, the basic pressure P in the reference pressure chamber 2A is The resistors RA and R7 shown in the second diagram
~Choose the resistance value of RIO appropriately to give the value of slope C (constant value) described in 1-. At that time, Jl! l; The resistance values of the anti-RA and RIO can be selected so as to satisfy the above-mentioned conditions and at the same time, to eliminate variations in the curve of the zero point temperature characteristic.
なお、上述の温度特性の傾きbが常に正の場合には、温
度特性の傾きCがC=Oでも(9)式を満足する。すな
わち、この場合には、」−述のような零点温度特性の傾
きを発生5せる補償回路が無くとも零点温度特性の傾き
の補償が可能である。Note that if the above-mentioned slope b of the temperature characteristic is always positive, the equation (9) is satisfied even if the slope C of the temperature characteristic is C=O. That is, in this case, it is possible to compensate for the slope of the zero point temperature characteristic even without a compensation circuit that generates the slope of the zero point temperature characteristic as described above.
また、基準圧力Pの値を調整すれは、それに伴い圧力変
換器の零点出力電圧が変化する。基準圧力Pの変化ΔP
に伴う零点の変化ΔvOPは次の(10)式で表わされ
る。Further, when the value of the reference pressure P is adjusted, the zero point output voltage of the pressure transducer changes accordingly. Change in reference pressure P ΔP
The change in zero point ΔvOP accompanying this is expressed by the following equation (10).
△VOP = −a−△P (1
0)この零点の変化ΔvOPは、抵抗R5もしくはR6
の抵抗値を適切に変化させることにより(3)式におけ
る抵抗R5とR6との共通接続点の電位V+を変化させ
、それにより演算増幅器OP2の出力電圧vLを適切な
値に選ぶことにより補償される。△VOP = −a−△P (1
0) This zero point change ΔvOP is determined by the resistance R5 or R6.
By appropriately changing the resistance value of the resistors R5 and R6, the potential V+ at the common connection point of the resistors R5 and R6 in equation (3) is changed, and the output voltage vL of the operational amplifier OP2 is thereby compensated for by selecting an appropriate value. Ru.
次に、第2図の回路構成において、測定圧力の変化に対
する感度aが4.m V / °C1測定圧力範囲が1
50〜7eOmmHg (絶対圧)である場合における
零点温度特性の傾きR3/R1・b ((9)式の左辺
第2項)のばらつきの分布の一般的な例を第4図に示す
。ざらに、第2V!Jの回路構成におけるp、t; 1
1Oi圧力Pによる出力の零点温度特性の傾き=aP/
300(’k)((8)式の左辺第1項)と基べξ圧
力Pとの関係の一例を第5図に示す。通常、ノ、(型圧
力Pは測音圧力範囲(本実施例では100〜780+n
mHg)と同程度の圧力範囲内で任意の設定かIIT能
である。Next, in the circuit configuration of FIG. 2, the sensitivity a to changes in measured pressure is 4. mV/°C1 measurement pressure range is 1
FIG. 4 shows a general example of the distribution of variations in the slope R3/R1·b (second term on the left side of equation (9)) of the zero point temperature characteristic when the absolute pressure is 50 to 7 eOmmHg (absolute pressure). Zarani, 2nd V! p, t in the circuit configuration of J; 1
Slope of zero point temperature characteristic of output due to 1Oi pressure P = aP/
An example of the relationship between 300('k) (the first term on the left side of equation (8)) and the base ξ pressure P is shown in FIG. Normally, (the mold pressure P is in the sonic pressure range (100 to 780+n in this example)
IIT can be set arbitrarily within the same pressure range as mHg).
第4図によれば、零点温度特性の傾きR3/R1・bは
一般に一2〜+2mV/°Cの幅で分布している。According to FIG. 4, the slope R3/R1·b of the zero point temperature characteristic is generally distributed in a range of -2 to +2 mV/°C.
よって、第5図かられかるように、全数の圧力変換器を
調整するためには、基準圧力Pを300mml(gの範
囲で動かせばよい。すなわち、例えば温度特性の傾き
Cが+4mV/’Cのと讃に、)、(型圧力Pを15O
n++nHg 〜450m+nHgの範囲で動かせば(
9)式の右辺を零にすることができる。このように、本
実施例によれは、零点温度特性の傾きのばらつきに対し
て十分に広い補償範囲が得られる。Therefore, as can be seen from Fig. 5, in order to adjust all the pressure transducers, it is sufficient to move the reference pressure P within a range of 300 mml (g. In other words, for example, the slope of the temperature characteristic
Assuming that C is +4mV/'C, ), (mold pressure P is 150
If you move it in the range of n++nHg to 450m+nHg (
9) The right side of the equation can be set to zero. In this way, according to this embodiment, a sufficiently wide compensation range can be obtained for variations in the slope of the zero point temperature characteristic.
なお、2(増圧力室2A内に封入する気体が、ヘリウム
のように理想気体に近い気体であれば、ホイル・シャル
ルの法則により温度変化と基準圧力の変化は比例関係に
あるとみなすことができる。さらに、圧力変換器の感度
の温度特性は、使用温度範囲内において補償する場合が
一般゛的であり、その場合には、圧力変換器の測定圧力
の変化に対する感度aは温度に依存せずに一定値となる
。つまり、その際の基へ11圧力室2A内のヘリウムガ
スにより生じる温度特性は温度特性の傾きのみであり、
温度特性の曲がりは生じない。従って、未実施例のよう
に基準圧力Pを変えることにより、個々の圧力変換器の
零点温度特性の調整を行う場合には、1錯度特性の曲が
りのばらつきを生じることがないという利点がある。Note that 2 (if the gas sealed in the pressure booster chamber 2A is close to an ideal gas, such as helium, changes in temperature and changes in reference pressure can be considered to be in a proportional relationship according to the Hoyle-Charles law). Furthermore, the temperature characteristic of the sensitivity of a pressure transducer is generally compensated within the operating temperature range, and in that case, the sensitivity a of the pressure transducer to changes in measured pressure does not depend on temperature. In other words, the temperature characteristic caused by the helium gas in the pressure chamber 2A at that time is only the slope of the temperature characteristic,
No bending of temperature characteristics occurs. Therefore, when adjusting the zero-point temperature characteristics of individual pressure transducers by changing the reference pressure P as in the unimplemented example, there is an advantage that variations in the bending of the one-complexity characteristic do not occur. .
以」−説明したように、本発明によれば、基準圧力室中
に所定圧の気体を封入し、この気体の温度変化による膨
張・収、縮に伴う零点の温度依存性を利用して圧力変換
器の零点の温度特性を補償するようにしたので、零点の
温度特性補償がそれ以前の調整工程に影に!せす、かつ
零点温度特性の調整に伴う零点温度特性の曲がりのばら
つきを生じないという圧力変換器がYJIられる。As described above, according to the present invention, a gas at a predetermined pressure is sealed in a reference pressure chamber, and the pressure is adjusted by utilizing the temperature dependence of the zero point as the gas expands, contracts, and contracts due to temperature changes. Since we compensated for the temperature characteristics at the zero point of the converter, the compensation for the temperature characteristics at the zero point overshadowed the previous adjustment process! YJI has developed a pressure transducer that allows the zero point temperature characteristic to be adjusted and does not cause variations in the curve of the zero point temperature characteristic due to adjustment of the zero point temperature characteristic.
さらに本発明では、上述のように調整範囲か広い零点の
温度特性補償が容易にでき、かつ基準圧力室内に封入す
る気体として例えばヘリウムを選ぶことにより、ヘリウ
ムリークディテクタを用いて基準圧力室の気密度を容易
に測定することもできる。Furthermore, in the present invention, it is possible to easily compensate for the temperature characteristics of the zero point over a wide adjustment range as described above, and by selecting, for example, helium as the gas to be sealed in the reference pressure chamber, the gas in the reference pressure chamber can be adjusted using a helium leak detector. Density can also be easily measured.
第1図は従来の圧力変換器の要部回路構成例を示す回路
図、第2図は本発明圧力変換器の回路構成の一例を示す
回路図、第3図は第2図の圧力変換器のダイヤフラム構
成の一例を示す要部断面図、第4図は第2図の回路構成
における零点温度特性の傾きR3/R1・bのばらつき
分布の一例を示す特性図、第5図は第2図の回路構成に
おける零点温度特性の傾き−aP/ 300(’k)と
基へ(圧力Pとの関係の一例を示す特性図である。
1・・・シリコンチップ、
IA・・・ダイヤフラム、
2・・・容器、
2A・・・基準圧力室、
5GI−9G4・・・ストレンケージ、OPI、OR3
・・・演1p、増幅器、R1〜RIO,Rα・・・抵抗
、
RA 、RX 、RY・・・温度依存性抵抗、Vc・・
・電源、
GND・・・大地電圧、
vO・・・出力電圧、
Bl、B2・・・ブリッジ回路、
基準圧力・・・P。
第1図
第3図
第4図
一’b (mV/’C)
1FIG. 1 is a circuit diagram showing an example of the main circuit configuration of a conventional pressure transducer, FIG. 2 is a circuit diagram showing an example of the circuit configuration of the pressure transducer of the present invention, and FIG. 3 is a circuit diagram showing an example of the circuit configuration of the pressure transducer of the present invention. FIG. 4 is a characteristic diagram showing an example of the variation distribution of the slope R3/R1・b of the zero point temperature characteristic in the circuit configuration of FIG. 2, and FIG. It is a characteristic diagram showing an example of the relationship between the slope of the zero point temperature characteristic -aP/300('k) and the base (pressure P) in the circuit configuration of 1...Silicon chip, IA...Diaphragm, 2. ...Container, 2A...Reference pressure chamber, 5GI-9G4...Strain cage, OPI, OR3
... Performance 1p, amplifier, R1 to RIO, Rα... resistance, RA, RX, RY... temperature dependent resistance, Vc...
・Power supply, GND...Earth voltage, vO...Output voltage, Bl, B2...Bridge circuit, Reference pressure...P. Figure 1 Figure 3 Figure 4 1'b (mV/'C) 1
Claims (1)
フラムと、該ダイヤフラムと一体に設けた基準圧力室と
をイイし、該基準圧力室中に所定圧の気体を封入し、該
気体の温度変化による膨張・収縮により前記ス)・レン
ゲ−ジブリッジ回路の零点の温度依存性を変化させ、そ
の温度依存性に応じて、圧力変換器出力の零点温度特性
の補償を行うようにしたことを特徴とする圧力変換器。 2、特許請求の範囲第1項記載の圧力変換器において、
前記気体をヘリウムとしたことを特徴とする圧力変換器
。 3)特許請求の範囲第1項記載の圧力変換器において、
常温における前記基準圧力室中の圧力を被4111定圧
力範囲内の圧力に定めたことを特徴とする圧力変換器。[Claims of Claims] 1) A tire flamm equipped with a switch/range bridge circuit and a reference pressure chamber provided integrally with the diaphragm, and gas at a predetermined pressure sealed in the reference pressure chamber. The temperature dependence of the zero point of the range bridge circuit is changed by the expansion and contraction of the gas due to the temperature change, and the zero point temperature characteristic of the pressure transducer output is compensated according to the temperature dependence. A pressure transducer characterized by: 2. In the pressure transducer according to claim 1,
A pressure transducer characterized in that the gas is helium. 3) In the pressure transducer according to claim 1,
A pressure transducer characterized in that the pressure in the reference pressure chamber at room temperature is set to a pressure within a constant pressure range.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4146683A JPS59168331A (en) | 1983-03-15 | 1983-03-15 | pressure transducer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4146683A JPS59168331A (en) | 1983-03-15 | 1983-03-15 | pressure transducer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59168331A true JPS59168331A (en) | 1984-09-22 |
Family
ID=12609145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4146683A Pending JPS59168331A (en) | 1983-03-15 | 1983-03-15 | pressure transducer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59168331A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02128546U (en) * | 1989-03-27 | 1990-10-23 | ||
JPH05164635A (en) * | 1991-12-11 | 1993-06-29 | Fujikura Ltd | Amplifier and compensating circuit of semiconductor pressure sensor |
WO1995031701A1 (en) * | 1994-05-17 | 1995-11-23 | Michael Altwein | Measurement device based on a strain gauge, use thereof and modulation amplifier for such measurement devices |
-
1983
- 1983-03-15 JP JP4146683A patent/JPS59168331A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02128546U (en) * | 1989-03-27 | 1990-10-23 | ||
JPH05164635A (en) * | 1991-12-11 | 1993-06-29 | Fujikura Ltd | Amplifier and compensating circuit of semiconductor pressure sensor |
WO1995031701A1 (en) * | 1994-05-17 | 1995-11-23 | Michael Altwein | Measurement device based on a strain gauge, use thereof and modulation amplifier for such measurement devices |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3071202B2 (en) | Semiconductor pressure sensor amplification compensation circuit | |
US5471884A (en) | Gain-adjusting circuitry for combining two sensors to form a media isolated differential pressure sensor | |
KR900004369B1 (en) | Semiconductor strain gauge bridge circuit | |
JPS6144242B2 (en) | ||
JPH0777266B2 (en) | Semiconductor strain detector | |
JPS59168331A (en) | pressure transducer | |
JP3964037B2 (en) | Pressure gauge calibration method and apparatus | |
JPH0434091B2 (en) | ||
JPH0455542B2 (en) | ||
JPS6222272B2 (en) | ||
JPS6147371B2 (en) | ||
JPH0125425B2 (en) | ||
US3303702A (en) | Pressure transducers | |
SU613219A1 (en) | Semiconductor pressure pickup | |
JPH06102128A (en) | Semiconductor multi-function sensor | |
JP2610736B2 (en) | Amplification compensation circuit of semiconductor pressure sensor | |
JPS60144632A (en) | temperature compensation circuit | |
JPH0368830A (en) | Temperature compensation circuit for semiconductor pressure sensor | |
JP2002039888A (en) | Method of setting position of gage resistance of semiconductor pressure sensor | |
JPH0313537B2 (en) | ||
JP2792522B2 (en) | Signal processing circuit for semiconductor sensor | |
JPS5845532A (en) | Pressure transducer | |
JPH0682844B2 (en) | Semiconductor strain converter | |
JPS61259134A (en) | Semiconductive pressure sensor | |
JPS60152912A (en) | Temperature compensating circuit |