[go: up one dir, main page]

JPS59167267A - Multi-nozzle printing head - Google Patents

Multi-nozzle printing head

Info

Publication number
JPS59167267A
JPS59167267A JP4256883A JP4256883A JPS59167267A JP S59167267 A JPS59167267 A JP S59167267A JP 4256883 A JP4256883 A JP 4256883A JP 4256883 A JP4256883 A JP 4256883A JP S59167267 A JPS59167267 A JP S59167267A
Authority
JP
Japan
Prior art keywords
ink
pressure
chamber
nozzle hole
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4256883A
Other languages
Japanese (ja)
Inventor
Hiromichi Fukuchi
福地 弘道
Toyoji Shioda
潮田 豊司
Masahiro Takahashi
正弘 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP4256883A priority Critical patent/JPS59167267A/en
Publication of JPS59167267A publication Critical patent/JPS59167267A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17563Ink filters

Landscapes

  • Ink Jet (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

PURPOSE:To stably perform high-speed jetting of ink droplets at a rate of 3,000 dots/sec or more without intermixture of air by a multi-nozzle printing head by using a system in which a capacity chamber and a fluid resistor group are set and the equilibrated state of ink is kept only by the surface tension of ink in the nozzle hole. CONSTITUTION:A capacity chamber 11 leading to a nozzle hole 10 through which ink droplets are jetted and having a smaller capacity than a pressure generating chamber serves to prevent the intermixture of air bubbles from the nozzle hole 10 into the pressure-generating chamber 12 and also to stabilize the discharge of ink droplets. The other end of the pressure-generating chamber 12 leading to the capacity chamber 11 through a throttled portion A1 is led to an thin-layer ink supplier 13 through a throttled portion A2. The thin-layer ink supplier 13 is of a depth of 0.04-0.2mm. and supplies unformly ink to each jet channel by a capillary phenomenon. Ink supplied from an ink supply hole 15 is temporarily stored in an ink trap 14, and air is drawn out by an air vent 18.

Description

【発明の詳細な説明】 本発明はドロップオンデマンド形印字ヘッドに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to drop-on-demand printheads.

従来、この種の印字ヘッドは、第1図(aL (b)(
一部破断して示している)に示す第1および第2の従来
例の如き、ノズル孔101とインク溜め105との間(
で、圧力発生室104を有する複数個の噴射チャンネル
系統から成る、チャンネル基板100に何らかの手段に
て接合されたガラスセラミックスないしステンレスなど
の材質から成る薄平板状の可撓性上部プレート102を
接合する。
Conventionally, this type of print head is as shown in Fig. 1 (aL (b) (
Between the nozzle hole 101 and the ink reservoir 105 (
Then, a thin flat flexible upper plate 102 made of a material such as glass ceramics or stainless steel is bonded by some means to the channel substrate 100, which consists of a plurality of injection channel systems each having a pressure generating chamber 104. .

ジルコンチタン酸鉛系磁器、チタン酸バリウム磁器等か
ら成る電気機械変換手段103が上部プレー) 102
上の圧力発生室104に対応した位置に接着した構成か
ら成る印字ヘッドである。なお、同図(b)は上部プレ
ート102および電気機械変換素子103の図示を省略
している。記録信号に従って各電気機械変換手段103
に電気信号を印加することで上部プレー)102が瞬時
に大きく変形する。この結果、圧力発生室104の容積
が瞬目的に減少し、圧力波を発生する。この圧力波にて
ノズル孔101よ9472滴を1ケ噴射すると言う噴射
原理である。従って、第1図に示す如き垂直方向に7個
のノズルを配列した印字ヘッドを水平方向に移動しガか
ら、記録信号に従って、各ノズル孔よりインク滴を噴出
することで、例えば、7(垂直)×5(水平)ドツトマ
トリックス構成から成る文字パターンを記録媒体上に記
録印字できる。
Electromechanical conversion means 103 made of zirconate lead titanate porcelain, barium titanate porcelain, etc. is the upper plate) 102
This is a print head that is configured to be glued at a position corresponding to the upper pressure generating chamber 104. Note that the upper plate 102 and the electromechanical transducer 103 are not shown in FIG. Each electromechanical conversion means 103 according to the recording signal
By applying an electric signal to the upper plate 102, the upper plate 102 is instantly and greatly deformed. As a result, the volume of the pressure generating chamber 104 instantly decreases, generating pressure waves. The injection principle is that one droplet of 9472 is ejected from the nozzle hole 101 using this pressure wave. Therefore, by moving the print head in which seven nozzles are arranged in the vertical direction as shown in FIG. )×5 (horizontal) dot matrix structure can be recorded and printed on a recording medium.

所で、非記録時には、第1図(a)、(b)の如き構成
された印字ヘッドにおいて、インク溜め105のインク
静圧とノズル孔101のインク表面張力との力関係によ
り、インクがノズル孔101から流れで秀いようにイン
クを平衡に保っている。例えば第1図(a)の如き示す
印字ヘッドでは、水頭圧差Hはせいぜい数c1rLH2
0程度であった。所がこのノズル孔101の数を増して
いくと、゛この水頭圧差■はどうしても大きくならざる
を得なく、このため水頭圧が高くなる。しかし、水頭圧
Hが数cmE、0以上になる゛とノズル孔101先端の
インク表面張力よpこの水頭圧によって生ずる静圧力が
大きくなり、ノズル孔101よpインクが流れでると言
う大きな問題があった。
By the way, during non-recording, in the print head configured as shown in FIGS. 1(a) and 1(b), ink is pushed to the nozzle due to the force relationship between the ink static pressure in the ink reservoir 105 and the ink surface tension in the nozzle hole 101. The flow from the hole 101 keeps the ink in equilibrium. For example, in the print head shown in FIG. 1(a), the water head pressure difference H is at most several c1rLH2
It was about 0. However, as the number of nozzle holes 101 increases, this water head pressure difference (2) inevitably increases, and as a result, the water head pressure increases. However, when the water head pressure H becomes several centimeters or more than 0, the static pressure generated by this water head pressure becomes larger than the surface tension of the ink at the tip of the nozzle hole 101, causing a big problem in that the ink flows out from the nozzle hole 101. there were.

また、第1図(b)に示す印字ヘッドでは、水頭圧差旦
がマイナスなので、ノズル孔101からイン〉が流れ出
るという現象は生じないが、ノズル数を増していくうえ
で幾何形状上問題で、あtpノズル数を増すことができ
ないと言う問題があった。
In addition, in the print head shown in FIG. 1(b), since the water head pressure difference is negative, the phenomenon of in> flowing out from the nozzle hole 101 does not occur, but this poses a geometrical problem when increasing the number of nozzles. There was a problem in that the number of Atp nozzles could not be increased.

更にインク溜め105のインク静圧とノズル孔101と
のインク表面張力とによってインクの平衡状態を保つ手
段では何らかの外乱(例えば温度変化、衝撃など)によ
ってインク溜め105の静圧が変動を起すと、この平衡
状態は保てなくなり、少ズル孔101よりインク垂れ現
象を起すと言う問題もあった。
Furthermore, with the means for keeping the ink in an equilibrium state using the static pressure of the ink in the ink reservoir 105 and the surface tension of the ink with the nozzle hole 101, if the static pressure of the ink reservoir 105 fluctuates due to some disturbance (for example, temperature change, shock, etc.), This equilibrium state cannot be maintained, and there is a problem that ink drips from the small drop hole 101.

一方、ピエゾ振動子101に電気信号を印加すると、圧
力発生室103の内圧が瞬時に上昇し、ノズル孔104
よりインク滴が噴出すると同時に、インク貯蔵器(図示
せず)にインクの逆流が生じ、インク滴発生に寄与しな
い余分な容積変化を圧力発生室103で生ずると言う大
きな問題があっ、た。
On the other hand, when an electric signal is applied to the piezo vibrator 101, the internal pressure of the pressure generating chamber 103 increases instantaneously, and the nozzle hole 104
There is a major problem in that at the same time as more ink droplets are ejected, a backflow of ink occurs in the ink reservoir (not shown), causing an extra volume change in the pressure generating chamber 103 that does not contribute to the generation of ink droplets.

このため、所定のインク滴径を吐出するには、ピエゾ振
動子101をより大きく歪変形させるように印加電圧を
高くとる必要があった。
Therefore, in order to eject a predetermined ink droplet diameter, it is necessary to apply a high voltage so as to cause the piezoelectric vibrator 101 to become more distorted.

更に、とのピエゾ振動子101を大きく歪変形させるこ
°とで、圧力発生室103内のインクが大きな振巾振動
を起す。このため、駆動周波数が高くなるにつれてイン
ク振幅振動が減衰・静止しない状態で、次の電気信号が
印加されるためインク滴の噴出速度変動を生ずる。終局
的にはインク滴発生状態が電気信号に追従しなくなるた
め、ノズル孔104より気泡が圧力発生室103に混入
し、インク滴が噴出しなくなると言う大きな欠点があっ
た。
Furthermore, by greatly distorting and deforming the piezoelectric vibrator 101, the ink within the pressure generating chamber 103 causes a large amplitude vibration. Therefore, as the driving frequency increases, the next electrical signal is applied before the ink amplitude vibration is damped and stopped, causing fluctuations in the ejection speed of the ink droplets. Eventually, the state of ink droplet generation no longer follows the electrical signal, so air bubbles enter the pressure generation chamber 103 from the nozzle hole 104, resulting in a major drawback in that ink droplets no longer eject.

他方、ノズル孔104よシ噴出したインク流量を充填す
る必要があp1圧力室103他端の絞9部を介して行う
が、インクの逆流分が多いほど充填時間が長くなう、数
100μSの時間を要する。
On the other hand, it is necessary to fill the flow rate of ink ejected from the nozzle hole 104 through the throttle 9 at the other end of the P1 pressure chamber 103, but the larger the backflow of ink, the longer the filling time. It takes time.

所で3000ドツ) / see以上の駆動周波数で動
作するときには、この充填時間も問題となり、高速印字
動作を障害となっていた。
When operating at a drive frequency of 3,000 dots/see or higher, this filling time also becomes a problem, and is an obstacle to high-speed printing operations.

本発明の目的はノズル孔より圧力発生室に空気が混入し
にくいかつインク溜めへのインク逆流分を少なくするこ
とができる、噴射チャンネル形を有する高信頼性と、ノ
ズル数を多数配列できる極めて実用的なマルチノズル印
字ヘッドを提供することにある。
The purpose of the present invention is to provide high reliability with an ejection channel shape that prevents air from entering the pressure generation chamber from the nozzle hole and to reduce backflow of ink to the ink reservoir, and extremely practical use that allows a large number of nozzles to be arranged. The objective is to provide a versatile multi-nozzle print head.

本発明によれば、ノズル孔と圧力発生室との間に圧力発
生室よp小さな容積をもつキャパシティ室と、ノズル孔
・キャパシティ室および圧力発生室から成る複数の噴射
チャンネル系統と共通インク溜めとの間に毛細管作用に
てインクを前記圧力発生室に供給するだめの薄層インク
供給部と、前記インク溜め上方部に空気孔および下方部
にインク供給口を配置し、かつ圧力発生室の前記薄層イ
ンク供給部側にローパスフィルタ特性を有する流体抵抗
群とを配置して構成されたマルチノズル印字ヘッドが得
られる。
According to the present invention, there is a capacity chamber between the nozzle hole and the pressure generation chamber, which has a volume p smaller than that of the pressure generation chamber, and a plurality of ejection channel systems consisting of the nozzle hole, the capacity chamber, and the pressure generation chamber, and a common ink a thin layer ink supply section between the reservoir and the reservoir that supplies ink to the pressure generation chamber by capillary action; an air hole in the upper part of the ink reservoir and an ink supply port in the lower part; A multi-nozzle print head is obtained in which a fluid resistance group having low-pass filter characteristics is disposed on the side of the thin layer ink supply section.

以下、本発明の一実施例について図面をもって詳細に説
明する。第2図は本発明の一実施例の原理図で一部を破
断して示した図で、第3図はノズルを多数配列したマル
チノズル印字ヘッド概略図である。第4図は本発明に用
いられているローノくスフィルタ特性を有する流体抵抗
群の拡大図である。第2図、第3図において、10はイ
ンク滴を噴射するだめのノズル孔、11はノズル孔10
に連通し、かつ圧力発生室より小さな容積をもつキャパ
シティ室で、インク滴吐出の安定化と圧力発生室12へ
のノズル孔10からの気泡混入防止をする役目をもって
いる。12は絞り部A1 を介してキャパシティ室11
に連通した圧力発生室で、圧力発生室12の他端は絞り
部A2を介して薄層インク供給部13に通じる。この薄
層インク供給部13は、エツチング技術等によって0.
04〜0.2%程度の深さに形成されている。この薄層
部のため毛細管現象によって各噴射チャンネルにインク
を均一に供給することができる。14はインク溜めで、
インク貯蔵器16から供給されたインクを一時的に貯え
ておくだめのものである。30は可撓性上部プレート、
31はジルコンチタン酸鉛系磁器、チタン酸バリウム磁
器等で構成されたピエゾ振動子である。15は印字ヘッ
ドのインク供給口で、16は一定の加圧が加わっている
インク貯蔵器で、バイブ17を介して印字ヘッド1にイ
ンクを供給する。このインク貯蔵器16の加圧の最大値
は、インク溜め14の液面がaレベル以下になる様に設
定する必要がある。18は空気抜きで、印字ヘッド1に
インクを充てんする際には、インク貯蔵器16に大きな
外力を加えて強制的にインクを充てんする。この際、イ
ンク溜め14に残存している空気をfm単に抜くだめの
孔である。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings. FIG. 2 is a partially cutaway diagram showing the principle of an embodiment of the present invention, and FIG. 3 is a schematic diagram of a multi-nozzle print head in which a large number of nozzles are arranged. FIG. 4 is an enlarged view of a fluid resistance group having a low-nox filter characteristic used in the present invention. In FIGS. 2 and 3, 10 is a nozzle hole for ejecting ink droplets, and 11 is a nozzle hole 10.
This is a capacity chamber that communicates with the pressure generating chamber 12 and has a smaller volume than the pressure generating chamber, and has the role of stabilizing the ejection of ink droplets and preventing air bubbles from entering the pressure generating chamber 12 from the nozzle hole 10. 12 is the capacity chamber 11 via the throttle part A1.
The other end of the pressure generating chamber 12 communicates with the thin layer ink supply section 13 via the constriction section A2. This thin layer ink supply section 13 is formed by etching technology or the like.
It is formed to a depth of about 0.4 to 0.2%. This thin layer allows ink to be uniformly supplied to each ejection channel by capillary action. 14 is an ink reservoir,
It is used to temporarily store ink supplied from the ink reservoir 16. 30 is a flexible upper plate;
31 is a piezo vibrator made of zirconium titanate-based porcelain, barium titanate porcelain, or the like. 15 is an ink supply port of the print head, and 16 is an ink reservoir to which constant pressure is applied, which supplies ink to the print head 1 via a vibrator 17. The maximum value of the pressurization of the ink reservoir 16 must be set so that the liquid level of the ink reservoir 14 is below level a. 18 is an air vent, and when filling the print head 1 with ink, a large external force is applied to the ink reservoir 16 to forcibly fill it with ink. At this time, the hole fm is simply for venting the air remaining in the ink reservoir 14.

第3図は本発明によりノズル孔10の数を多数扇状に配
列した笑施例を示す構成図で、構成要素は第2図の原理
と同一の印字ヘッドである。
FIG. 3 is a block diagram showing an embodiment in which a large number of nozzle holes 10 are arranged in a fan shape according to the present invention, and the constituent elements are the same print head as the principle shown in FIG.

いま、ピエゾ振動子31に記録信号を印加すると、可撓
性プレート30が瞬時に伸縮変形し、ノズル孔10から
インク滴が1個噴出される。インク貯蔵器16からのイ
ンクはインク溜め14に供給されると同時に薄層インク
供給部13が0゜04〜0.2・χ稈度の薄層で形成さ
れているため、毛細管作用によってインクが上昇し、各
噴射チャンネル系統に均一に供給される。従って圧力発
生室12のポンプ作用によってノズル孔10からインク
滴が噴射された後、噴出量に相当するインク流量は薄層
インク供給部13を介して圧力発生室12に供給される
。また薄層インク供給部13は0.04〜0.2 ″X
n程度の薄層で成っているため、一種の絞り効果を生じ
、このためインク溜め14で発生したインク静圧変動に
よる影響を受けることが少なくインクの供給が可能とな
った。従って、ノズル孔10でのインクの平衡状態がイ
ンク表面張力のみで決まり、従来の印字ヘッドのように
、ノズル孔10のインク表面張力とインク溜め14の静
圧との正確なバランスを保つ必要かはどんとなくなシ、
このため、ノズル数をかなり増すことができるという利
点が生じた。この結果、インク溜め14は一時的にイン
クを貯えておく機能だけでよく、インク静圧の正確なコ
ントロールも必要なくなった。
Now, when a recording signal is applied to the piezo vibrator 31, the flexible plate 30 instantly expands and contracts, and one ink droplet is ejected from the nozzle hole 10. Ink from the ink reservoir 16 is supplied to the ink reservoir 14, and at the same time, since the thin layer ink supply portion 13 is formed of a thin layer with a culmency of 0°04 to 0.2·χ, the ink is absorbed by capillary action. It rises and is evenly supplied to each injection channel system. Therefore, after ink droplets are ejected from the nozzle holes 10 by the pump action of the pressure generating chamber 12, an ink flow rate corresponding to the ejected amount is supplied to the pressure generating chamber 12 via the thin layer ink supply section 13. In addition, the thin layer ink supply section 13 has a thickness of 0.04 to 0.2''
Since it is made up of a thin layer of about n thickness, a kind of squeezing effect is produced, and therefore, it is possible to supply ink without being affected by fluctuations in the static pressure of the ink generated in the ink reservoir 14. Therefore, the equilibrium state of the ink in the nozzle hole 10 is determined only by the ink surface tension, and it is necessary to maintain an accurate balance between the ink surface tension in the nozzle hole 10 and the static pressure in the ink reservoir 14, as in conventional print heads. Suddenly,
This has the advantage that the number of nozzles can be increased considerably. As a result, the ink reservoir 14 only needs to temporarily store ink, and precise control of the static pressure of the ink is no longer necessary.

一方、記録信号の繰り返し駆動周波数を高くするにつれ
て、圧力発生室12のインク圧力振動が大きくなる。従
来の印字ヘッドではこの影響でノズル孔10から圧力発
生室12に空気が簡単に混入し、この結果インク滴の噴
射動作が不能になると言う問題があった。これに対して
、このキャノくシティ室11を設けることによシ、空気
の圧力発生室12への混入をしK< < している。こ
の結果ノズル孔10から混入した空気はキャノζシティ
室11内に溜まり、圧力発生室12に入らなくなった。
On the other hand, as the repetition drive frequency of the recording signal increases, the ink pressure vibration in the pressure generating chamber 12 increases. In the conventional print head, air easily enters the pressure generating chamber 12 from the nozzle hole 10 due to this effect, and as a result, there is a problem in that the ejecting operation of ink droplets becomes impossible. On the other hand, by providing this canonical city chamber 11, air is mixed into the pressure generating chamber 12 so that K<<. As a result, the air that entered through the nozzle hole 10 accumulated in the canopy chamber 11 and did not enter the pressure generating chamber 12.

したがって、圧力発生室12は常に正常な圧力波を発生
するので、キャパシティ室11にたまった空気は吐出動
作を連続的にくり返し行う事で簡単に外部に押し出され
てしまい、すみやかに正常な噴射状態に復帰することが
できた。この結果毎秒3000ドツト以上の高速くり返
し動作にも十分追従することができた。なお、これらに
ついては特願昭56−159945号明細書、特願昭5
6−159,947号明細書に詳細に示されている。
Therefore, since the pressure generation chamber 12 always generates normal pressure waves, the air accumulated in the capacity chamber 11 is easily pushed out by continuously repeating the discharge operation, and normal injection is quickly performed. I was able to get back to normal. As a result, it was possible to sufficiently follow high-speed repetitive motions of 3,000 dots per second or more. Regarding these, please refer to the specification of Japanese Patent Application No. 56-159945 and Japanese Patent Application No. 1983.
6-159,947 in detail.

所で、ピエゾ振動子31を印加時、圧力発生室12内に
生ずる衝ボ波は絞り部A□を通ってノズル孔10に伝搬
されインク滴を噴出する。同時に圧力発生室12他端か
ら絞シ部A2を通ってインクがインク溜め14の方向に
高速に逆流する。この絞り部人、をA1 よジ絞ること
により、インクの逆流分を少なくすることができる。し
かしこの絞υ部A2を微細に絞ジすぎると、流体抵抗が
大きく、インクが流れにくくなり、インク充填時間が長
くなると言う問題にぶつかり、絞り部A2の形状変化に
よるインク逆流分を少なくするには限界を生じた。そこ
で、本発明の狙いとして、との絞シ部A2を絞ジすぎる
こと左<、かつ上述のような問題で不可・能であった、
インクの逆流分をより少なくする方法を実現したもので
ある。つまり、第4図(a)に示す、半円筒状の流体抵
抗群20を一定間隔で多数配列しておくと、ピエゾ振動
子31を印加時、圧力発生室12に生じた衝撃波は高周
波成分を含んだ圧力波なのでこの流体抵抗8P20を反
射減衰しんから絞り部A、に達する。この結果、この圧
力波はかガクの減衰を伴なって絞り部A2に伝搬される
ので、インク逆流分は単なる絞り部A、の形状変化のみ
よりもかなり少なくすることができた。また、第4図(
b)に示す如き、インクの充填動作は毛細管作用で行な
われるので、この流体抵抗群20はほどんと抵抗になら
ずインクが流れ、インクの充填時間はこの流体抵抗群2
0を配置しても長くならなかった。この半円筒形状の流
体抵抗群20は印加時逆流する高周波成分を含んだイン
クに対しては高流体抵抗として働き、充填時の低周波成
分を含んだインクの動きに対しては低い流体抵抗として
働く。つまり、この流体抵抗群20はローパス特性のフ
ィルタの役目をしている。この結果、絞り部A、を絞る
ことなく印加時のインク逆流分を極力少なくすることが
でき、印加電圧の低下と、インクの充填時間の短縮化お
よび高速印字が可能などその効果は多大なものである。
By the way, when the piezo vibrator 31 is applied, an impulse wave generated in the pressure generating chamber 12 is propagated to the nozzle hole 10 through the constriction part A□, and ejects ink droplets. At the same time, ink flows back from the other end of the pressure generating chamber 12 toward the ink reservoir 14 through the constriction part A2 at high speed. By squeezing this throttle part A1, it is possible to reduce the backflow of ink. However, if the constriction section A2 is constricted too finely, fluid resistance becomes large, ink becomes difficult to flow, and ink filling time becomes longer. has created a limit. Therefore, as an aim of the present invention, it is not possible to tighten the drawing part A2 too much, and it is impossible to do so due to the above-mentioned problems.
This method has been realized to further reduce the backflow of ink. In other words, if a large number of semi-cylindrical fluid resistance groups 20 are arranged at regular intervals as shown in FIG. Since it is a pressure wave containing pressure waves, this fluid resistance 8P20 reaches the constriction part A from the reflection attenuation line. As a result, this pressure wave is propagated to the constriction section A2 with a slight attenuation, so that the amount of ink backflow can be significantly reduced compared to a mere change in the shape of the constriction section A. Also, Figure 4 (
As shown in b), since the ink filling operation is performed by capillary action, this fluid resistance group 20 does not become much resistance and the ink flows, and the ink filling time is equal to this fluid resistance group 2.
Placing 0 did not make it longer. This semi-cylindrical fluid resistance group 20 acts as a high fluid resistance against ink containing a high frequency component that flows backward when applied, and acts as a low fluid resistance against the movement of ink containing a low frequency component during filling. work. In other words, this fluid resistance group 20 serves as a filter with low-pass characteristics. As a result, the ink backflow during application can be minimized without squeezing the constriction part A, which has significant effects such as lowering the applied voltage, shortening the ink filling time, and enabling high-speed printing. It is.

橙お、印字ヘッドのインク流路溝と流体抵抗群とはエツ
チング加工にて同時に製作できる。又、我々の実験によ
れば、ノズル孔10.キャパシティ室11および圧力発
生室12のエツチング深さは0.04〜0.1%、薄層
インク供給部の深さ0.04〜0.2 % 、インク溜
めの深さは0.4〜3゛χの範囲が実用上張も適してい
た。
Orange: The ink flow grooves and fluid resistance group of the print head can be manufactured at the same time by etching. Also, according to our experiments, the nozzle hole 10. The etching depth of the capacity chamber 11 and the pressure generation chamber 12 is 0.04 to 0.1%, the depth of the thin layer ink supply part is 0.04 to 0.2%, and the depth of the ink reservoir is 0.4 to 0.1%. The range of 3゛χ was suitable for practical use.

以上記載したように、本発明のマルチノズル印字ヘッド
はノズル孔のインク表面張力のみでインクの平衡状態を
保つことができるので、多数ノズル配列マルチノズル印
字ヘッドが可能と々す、かつキャパシティ室と流体抵抗
群との配置により毎秒3000ドア)以上の高速噴射と
、その吐出状態の安定化並びに空気混入もない高信頼性
が得られる印字ヘッドとなり、その効果は多大なもので
あるQ
As described above, the multi-nozzle print head of the present invention can maintain the equilibrium state of the ink only by the ink surface tension of the nozzle holes, so a multi-nozzle print head with a large number of nozzles arranged is possible, and the capacity chamber The arrangement of the fluid resistance group and the fluid resistance group results in a print head that can achieve high-speed jetting of more than 3,000 doors per second, stable jetting conditions, and high reliability with no air contamination.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は一部破断して示した従来のマル
チノズル印字ヘッド例の概略図で、第2図は本発明の原
理図で一部を破断して示しだ図、第3図は本発明により
多数ノズルを扇状に配列し高密度化群の拡大図である。 図において、10はノズル孔、11はキャパシティ室、
12は圧力発生室、13は薄層インク供給部、111は
インク溜め、15はインク供給口、16はインク貯蔵器
、18は空気抜き孔、30゜IC)’2!ri可撓性上
部プレート、31,103はピエゾ振動子、20は流体
抵抗群である。 へ垣人?埋t 内原  普 (1 ゝ( オ 1 閃 /bθ オ   ?  図 オ U (θ) (b)
FIGS. 1(a) and 1(b) are partially cutaway schematic diagrams of examples of conventional multi-nozzle print heads, and FIG. 2 is a partially cutaway diagram showing the principle of the present invention. FIG. 3 is an enlarged view of a high-density group in which a large number of nozzles are arranged in a fan shape according to the present invention. In the figure, 10 is a nozzle hole, 11 is a capacity chamber,
12 is a pressure generation chamber, 13 is a thin layer ink supply section, 111 is an ink reservoir, 15 is an ink supply port, 16 is an ink reservoir, 18 is an air vent hole, 30° IC)'2! ri flexible upper plate, 31 and 103 are piezo vibrators, and 20 is a fluid resistance group. Hegakito? Uchihara Fu (1 ゝ(O 1 Flash/bθ O? Figure O U (θ) (b)

Claims (1)

【特許請求の範囲】[Claims] ノズル孔と圧力発生室とを有する構造から成る複数個の
噴射チャンネル系統が1つの共通インク溜りに連通しだ
構成のマルチノズル印字ヘッドにおいて、前記ノズル孔
と圧力発生室との間にそれぞれ前記圧力発生室より小さ
な容積をもつキャパシティ室を配置し、前記複数の噴射
チャンネル系統と前記共通インク溜りとの間に毛細管作
用にてインクを前記各圧力発生室に供給するだめの薄層
インク供給部とを設置するとともに、前記インク溜め上
方部に空気孔を、前記インク溜め下方部にインク供給口
を、更に前記圧力発生室の薄層インク供給部側にローパ
スフィルタ特性を有する流体抵抗群を配置したことを特
徴とするマルチノズル印字ヘッド。
In a multi-nozzle print head in which a plurality of ejection channel systems each having a structure having a nozzle hole and a pressure generating chamber communicate with one common ink reservoir, the pressure is applied between the nozzle hole and the pressure generating chamber, respectively. a thin-layer ink supply section for disposing a capacity chamber having a smaller volume than the generation chamber, and supplying ink to each of the pressure generation chambers by capillary action between the plurality of ejection channel systems and the common ink reservoir; and an air hole in the upper part of the ink reservoir, an ink supply port in the lower part of the ink reservoir, and a fluid resistance group having low-pass filter characteristics on the thin layer ink supply part side of the pressure generation chamber. A multi-nozzle print head that features:
JP4256883A 1983-03-15 1983-03-15 Multi-nozzle printing head Pending JPS59167267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4256883A JPS59167267A (en) 1983-03-15 1983-03-15 Multi-nozzle printing head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4256883A JPS59167267A (en) 1983-03-15 1983-03-15 Multi-nozzle printing head

Publications (1)

Publication Number Publication Date
JPS59167267A true JPS59167267A (en) 1984-09-20

Family

ID=12639659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4256883A Pending JPS59167267A (en) 1983-03-15 1983-03-15 Multi-nozzle printing head

Country Status (1)

Country Link
JP (1) JPS59167267A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022145A1 (en) * 1999-01-25 2000-07-26 Océ-Technologies B.V. Ink jet array
JP2005131974A (en) * 2003-10-30 2005-05-26 Ricoh Printing Systems Ltd Inkjet head

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022145A1 (en) * 1999-01-25 2000-07-26 Océ-Technologies B.V. Ink jet array
NL1011127C2 (en) * 1999-01-25 2000-07-27 Oce Tech Bv Ink delivery device.
JP2005131974A (en) * 2003-10-30 2005-05-26 Ricoh Printing Systems Ltd Inkjet head

Similar Documents

Publication Publication Date Title
JPH0251734B2 (en)
US3946398A (en) Method and apparatus for recording with writing fluids and drop projection means therefor
JP5228105B2 (en) Process and apparatus for providing variable drop size ejection with embedded waveforms
CN101544110B (en) Liquid ejecting method, liquid ejecting head, and liquid ejecting apparatus
US20110148988A1 (en) Fluid droplet ejecting
US4549191A (en) Multi-nozzle ink-jet print head of drop-on-demand type
KR101056321B1 (en) Droplet ejection device
JPH05338165A (en) Method for driving liquid jet recording head
JPH0462157A (en) Ink-jet recording device
JPS59167267A (en) Multi-nozzle printing head
JPS5840508B2 (en) Impulse type multi-nozzle inkjet head
JPS61112648A (en) Multi-nozzle printing head
JPS6325944B2 (en)
JPH05338149A (en) Ink jet head
US20120007925A1 (en) Liquid ejection head
JP4763418B2 (en) Ink jet head driving method, ink jet head, and ink jet recording apparatus
JPH0480037A (en) Driving method of inkjet recording device
JPS6241111B2 (en)
JP4379963B2 (en) Driving method of on-demand type multi-nozzle inkjet head
JPS59127770A (en) Ink jet type printing head
JPS6052352A (en) Inkjet recorder
JPS6116863A (en) Ink jet head
JPS59106973A (en) Ink jet recording apparatus
JPS6013558A (en) Ink jet head
JPS58187367A (en) Multi-nozzle printing head