[go: up one dir, main page]

JPS59165516A - Unstable multivibrator - Google Patents

Unstable multivibrator

Info

Publication number
JPS59165516A
JPS59165516A JP58038678A JP3867883A JPS59165516A JP S59165516 A JPS59165516 A JP S59165516A JP 58038678 A JP58038678 A JP 58038678A JP 3867883 A JP3867883 A JP 3867883A JP S59165516 A JPS59165516 A JP S59165516A
Authority
JP
Japan
Prior art keywords
constant current
amplifier
current source
potential
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58038678A
Other languages
Japanese (ja)
Other versions
JPH0256849B2 (en
Inventor
Tadashi Azegami
畔上 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP58038678A priority Critical patent/JPS59165516A/en
Publication of JPS59165516A publication Critical patent/JPS59165516A/en
Publication of JPH0256849B2 publication Critical patent/JPH0256849B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/023Generators characterised by the type of circuit or by the means used for producing pulses by the use of differential amplifiers or comparators, with internal or external positive feedback
    • H03K3/0231Astable circuits

Abstract

PURPOSE:To prevent an error due to an antiphase current flowing through the capacity between terminals of a constant current source by setting the potential of the output terminal of the constant current source which is not connected to the input terminal of an amplifier at a level near the threshold level of the amplifier. CONSTITUTION:The voltage of a positive voltage source terminal 4 is divided by resistances 12-14, and the terminals of switch elements 10 and 11 which are not connected to constant current sources 6 and 7 are connected to the juncture of the voltage dividing resistances. The voltage dividing ratios of resistances 12-14 are set so that the potential at the juncture of each resistance is set at a level near the threshold level of an amplifier 1. Thus the instantaneous change of potential is greatly reduced when the switch elements are changed over. This can reduce the effect of the inter-terminal capacity of the sources 6 and 7.

Description

【発明の詳細な説明】 記容is子に定電流を供給することによって浮遊容量の
影響をなくする無安定マルチバイブレータにおいて、上
記正負の定電流源の端子間容量に起因する誤差をなくす
る無安定マルチバイブレータに関する。
[Detailed Description of the Invention] In an astable multivibrator that eliminates the influence of stray capacitance by supplying a constant current to the resistor, there is a method that eliminates errors caused by the capacitance between the terminals of the positive and negative constant current sources. Regarding stable multivibrator.

〈従来技術の説明〉 出願人は先に%願昭57−98740号「無安定マルチ
バイブレータJにおいて、増miの正帰還ループに容量
素子を設け、正定電流源と負定電流源を交互に切り換え
て上記容量素子に定電流を供給する構成の、浮遊容量の
影響を受けない無安定マルチバイブレータを提供した。
<Description of the Prior Art> The applicant previously disclosed in Application No. 57-98740 "In an astable multivibrator J, a capacitive element is provided in the positive feedback loop of the mi increaser, and a positive constant current source and a negative constant current source are alternately switched. The present invention provides an astable multivibrator that is unaffected by stray capacitance and is configured to supply a constant current to the capacitive element.

第1図に基づいてまずこの回路を説明する。This circuit will first be explained based on FIG.

第1図において1は増幅器、2は発振周波数を決定する
ためのコンデンサ、3は浮遊容量、4は正電圧源端子、
5は負電圧源端子、6は正定電流源、7は負定電流源で
ある。8,9.10・ 11スイツチ素子11は正電圧
源端子4と負定′直流源7の間に接続されている。スイ
ッチ素子8.9の共通接続点は増幅器lの六方端子に接
続されてぃる。これらのスイッチ素子は増幅器1の出力
によって制御される。すなわち増幅器1の出力がrHJ
のときはスイッチ素子9,10が導通、同8゜11が不
導通罠なる。また増幅器1の出力が「L」のときは上記
の逆に制御される。
In Figure 1, 1 is an amplifier, 2 is a capacitor for determining the oscillation frequency, 3 is a stray capacitance, 4 is a positive voltage source terminal,
5 is a negative voltage source terminal, 6 is a positive constant current source, and 7 is a negative constant current source. The 8, 9, 10, 11 switch element 11 is connected between the positive voltage source terminal 4 and the negative constant DC source 7. The common connection point of the switching elements 8.9 is connected to the hexagonal terminal of the amplifier l. These switching elements are controlled by the output of amplifier 1. That is, the output of amplifier 1 is rHJ
When , switch elements 9 and 10 are conductive, and switch elements 8 and 11 are non-conductive. Further, when the output of the amplifier 1 is "L", the control is performed in the opposite manner to the above.

次に動作を説明する。増幅器1の出力が零から+ll1
K変化すると、増幅器1の入力端すなわちA点の電位t
Aはそのスレッシュホールドレベルニ対して だけ上昇する。0.Osはそれぞれコンデンサ2浮遊容
量3の容量である。このときスイッチ索子9が導通し、
A点は負定電流源に接続されるのでA点の電位は一定の
割合で下降し、増幅器1のスレッシュホールドレベル以
下になるとその出力は反転する。今度はA点の電位は上
記のtkだけ下降する。またスイッチ素子8が導通して
A点は正定電流源に接続されるので、その電位は一定の
割合で上昇し、スレッシュホールドレベルに達すると再
び増幅器1の出力は反転してもとにもどる。
Next, the operation will be explained. The output of amplifier 1 increases from zero to +ll1
When K changes, the potential t at the input terminal of amplifier 1, that is, point A
A increases only to that threshold level. 0. Os is the capacitance of capacitor 2 and stray capacitance 3, respectively. At this time, the switch cable 9 becomes conductive,
Since point A is connected to a negative constant current source, the potential at point A falls at a constant rate, and when it falls below the threshold level of amplifier 1, its output is inverted. This time, the potential at point A drops by the above tk. Further, since the switch element 8 is conductive and the point A is connected to the positive constant current source, its potential increases at a constant rate, and when it reaches the threshold level, the output of the amplifier 1 is inverted again and returns to the original value.

このような動作を繰り返して自励発振を行う。今もどる
時間をtl、負定電流源7の電流を11とすると tA・(C+0a)=il・tl・・・・・・・・・・
・・・・・(2)が成立する。これを前記の+11式に
代入するとt1=0・E/11・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・(3)となる
。すなわち発振周波数は浮遊容量CaK依存しなくなる
。尚定電流源6.7はスイッチ素子10.11によって
、その出力端子がA点に接続されていないときは、それ
ぞれ電圧端子5.4に接続している。このため定電流源
は常時電流を出力してい、乙。
Self-oscillation is performed by repeating these operations. If the time to return now is tl, and the current of the negative constant current source 7 is 11, then tA・(C+0a)=il・tl...
...(2) holds true. Substituting this into the formula +11 above, t1=0・E/11...
・・・・・・・・・・・・・・・・・・(3) That is, the oscillation frequency no longer depends on the stray capacitance CaK. The constant current source 6.7 is connected to the voltage terminal 5.4 by means of a switching element 10.11 when its output terminal is not connected to point A. Therefore, the constant current source always outputs current.

このように第1図記載の無安定マルチパイプレークは、
その発振周波数が浮遊容量に依存しないので、増@器1
の出力E、定電流源の出力電流11を一定にすると、発
振周波数は正確にコンデンサ2の容量に比例する。また
スイッチ素子1011により定電流源は常時電流を出力
しているので、スイッチ素子を切り換えたときでもその
出力電流は変化しないので、発振周波数がさらに安定に
なるという効果もある。
In this way, the astable multi-pipe lake shown in Figure 1 is
Since its oscillation frequency does not depend on stray capacitance, the amplifier 1
When the output E of the constant current source and the output current 11 of the constant current source are held constant, the oscillation frequency is exactly proportional to the capacitance of the capacitor 2. Furthermore, since the constant current source is constantly outputting a current due to the switching element 1011, the output current does not change even when the switching element is switched, which has the effect of further stabilizing the oscillation frequency.

しかしながらこの従来例には以下に示すような欠点があ
る。第2図は増幅器1の高いレベル出力をF、そのスレ
ッシュホールドレベルの電位ヲ0、5 Fi 、負電圧
端子5の電位を零にしたときの正定電流源6の出力端子
の電位を示す。時点t1でスイッチ索子8が導通、スイ
ッチ素子10が不導通制御されると、正定電流源6の出
力端子の電位は瞬間的に零から(0,51−LA ) 
(/−Aは前記+11式で示した値)K変化する。この
電位は一定の割合で上昇し、時点t2でスレッシュホー
ルドレベルに達するとスイッチ素子8が不専通、同11
が導通し、瞬間的に零電位に低下する。すなわち時点t
1.t2で電位は瞬間的に大きく変化する。
However, this conventional example has the following drawbacks. FIG. 2 shows the potential of the output terminal of the positive constant current source 6 when the high level output of the amplifier 1 is set to F, its threshold level potential is 0, 5 Fi , and the potential of the negative voltage terminal 5 is set to zero. When the switch element 8 is turned on and the switch element 10 is turned off at time t1, the potential at the output terminal of the positive constant current source 6 instantly changes from zero to (0,51-LA).
(/-A is the value shown in the formula +11 above) K changes. This potential rises at a constant rate, and when it reaches the threshold level at time t2, the switching element 8 is disabled.
becomes conductive and momentarily drops to zero potential. That is, time t
1. At t2, the potential changes significantly instantaneously.

負定電流源7の出力端子の電位も同様に変化、する。The potential of the output terminal of the negative constant current source 7 changes similarly.

そのため正負定電流源6.7の端子間容量を通して逆相
電流が流れ、発振周波数が変化する。正負定電流源の端
子間容量をCaとし、増幅器1のスレッシュホールドレ
ベルを0,5Eとすると、前記 5− (1) f2)式は下記(41(51式で置き換えなけ
ればならない。
Therefore, a negative phase current flows through the capacitance between the terminals of the positive and negative constant current sources 6.7, and the oscillation frequency changes. If the capacitance between the terminals of the positive and negative constant current sources is Ca, and the threshold level of the amplifier 1 is 0.5E, then the above formula 5-(1) f2) must be replaced with the following formula (41 (51).

(4)式の第2項が逆相電流による影響を表わす。The second term in equation (4) represents the influence of negative sequence current.

tA・(0+08+CG)−11・tl・・・・・・・
・・・・・・・・・・・・・・・・・・・・(5)従っ
て前記(3)式に相当する発振周期を表わす式は次のよ
うKなる。
tA・(0+08+CG)-11・tl・・・・・・・
(5) Therefore, the equation representing the oscillation period corresponding to the above equation (3) is K as follows.

t1=(c−0,5CG)・E/11・・・・・・・・
・・・・・・・・・・・・・(6)すなわち発振周波数
はコンデンサ2の容tieだけでなく、定電流源6,7
の端子間容量OGKも依存するようKなる。CGは素子
によってばらつきがあり、また周囲環境の変化によって
も変化するので、発振周波数が不安定になる原因となる
t1=(c-0,5CG)・E/11・・・・・・・・・
(6) That is, the oscillation frequency depends not only on the capacitance of the capacitor 2, but also on the constant current sources 6 and 7.
The inter-terminal capacitance OGK of is also dependent on K. CG varies depending on the element and also changes due to changes in the surrounding environment, which causes the oscillation frequency to become unstable.

〈発明の概要〉 この発明の目的は増幅器の入力端子に接続されていない
定電流源の出力端子の電位を該増幅器のスレッシュホー
ルドレベル近辺に固定することによって、定電流源の端
子間容量を通じて流れる逆相電流による誤差を防止する
ことができる無安定マルチバイブレータを提供すること
Kある。
<Summary of the Invention> The object of the present invention is to fix the potential of the output terminal of a constant current source, which is not connected to the input terminal of an amplifier, near the threshold level of the amplifier, thereby reducing the potential flowing through the capacitance between the terminals of the constant current source. It is an object of the present invention to provide an astable multivibrator that can prevent errors caused by negative sequence current.

〈第1実施例〉 第3図にこの発明の第1の実施例を示す。1は増幅器、
2はコンデンサ、3は浮遊容量、4は正電圧源端子、6
.7はそれぞれ正、負定電流源、8G、 10.11は
スイッチ素子であり、第1図従来例と同じ働きをするの
で説明を省略する。同この実施例では%に負電圧源端子
を設けず、負電流源7の一端は共通電位点に接続されて
いる。この実施例においては正電圧源端子4の電圧を抵
抗12゜13.14で分圧し、スイッチ素子10.11
の定電流源に接続されていない側の端子をこれら分圧抵
抗の接続点に接続する。抵抗12.13゜14の分圧比
は、各抵抗の接続点すなわちスイッチ素子10.11の
他端の電位が増幅器lの2レツシユホールドレベルの近
辺になるように設定される。第2図に対応する正定電流
源6の出力端子の電位を第4図に示す。この図かられか
るようにスイッチ素子が切り換わったときの電位の瞬間
的変化はElの程度となり、第2図に比べて大幅に少く
なる。そのため前記(4)式は下記の(7)式となり発
振周期を表わす前記(6)式は(8)式となる。
<First Embodiment> FIG. 3 shows a first embodiment of the present invention. 1 is an amplifier,
2 is a capacitor, 3 is a stray capacitance, 4 is a positive voltage source terminal, 6
.. 7 are positive and negative constant current sources, 8G, and 10.11 are switching elements, which function in the same way as the conventional example shown in FIG. 1, so their explanation will be omitted. In this embodiment, no negative voltage source terminal is provided, and one end of the negative current source 7 is connected to a common potential point. In this embodiment, the voltage at the positive voltage source terminal 4 is divided by a resistor 12°13.14, and the switching element 10.11
The terminal on the side that is not connected to the constant current source is connected to the connection point of these voltage dividing resistors. The voltage division ratio of the resistors 12.13.degree. 14 is set so that the potential at the connection point of each resistor, that is, the other end of the switching element 10.11, is near the 2-reshold level of the amplifier l. FIG. 4 shows the potential of the output terminal of the positive constant current source 6 corresponding to FIG. 2. As can be seen from this figure, the instantaneous change in potential when the switch element is switched is on the order of El, which is much smaller than in FIG. 2. Therefore, the above equation (4) becomes the following equation (7), and the above equation (6) representing the oscillation period becomes the equation (8).

− マ − 0           0G c+cs+cG  o+cs+cG 1 t1=(0−一・CG)・F!/il・・・・・・・・
・・・・・・・・・・・・・・・・+81すなわち抵抗
12.13.14の分圧比を調整して分圧電圧がスレッ
シュホールドに近くなるよう1cLE1を小さくするこ
とKよって、定電流源67の端子間容量COの影畳を軽
減することができる。伺この実施例において、抵抗13
を挿入してスイッチ素子10と同11Kかける電圧を異
ならしめたのは、時点t1′による電位の瞬間的変化を
小さくするためである。
- Ma - 0 0G c+cs+cG o+cs+cG 1 t1=(0-1・CG)・F! /il・・・・・・・・・
・・・・・・・・・・・・・・・+81, that is, by adjusting the voltage dividing ratio of resistors 12, 13, and 14, and decreasing 1cLE1 so that the divided voltage is close to the threshold, the constant The influence of the inter-terminal capacitance CO of the current source 67 can be reduced. In this example, resistor 13
The reason why the voltage applied to the switch element 10 and the switch element 10 by 11K is made different is to reduce the instantaneous change in potential at time t1'.

〈第2実施例〉 第5図に第2の実施例を示す。この実施例ではスイッチ
素子10.11の代わりにダイオード1516を接続し
ている。ダイオード15はそのアノードを正定電源6の
出力端子に1カソードを抵抗17.18からなる分圧回
路に接続する。またダイオード16はカソードを負定電
流源7の出力端子に、アノードを抵抗17.18からな
る分圧回路に接続している。第4図かられかるようにス
イッチ素子8が導通している間(第4図のtlとt2の
間)は正定電流源6の出力端子の電位は増幅器1のスレ
ッシュホールドレベルより低くなるので抵抗17と18
からなる分圧回路の出力電圧をスレッシュホールドレベ
ルに等しく設定スるト、分圧回路と正定電流源6の出力
立楯子はダイオード15により切り換される。またスイ
ッチ素子8が不導通になると、正定電流源6の出力電流
はダイオード15を通して流れる。またダイオード16
も同様にして動作する。すなわちダイオード1516は
第3図の第1の実施例のスイッチ素子1011と同じ動
作をすることKなる。
<Second Embodiment> FIG. 5 shows a second embodiment. In this embodiment, a diode 1516 is connected in place of the switch element 10.11. The diode 15 has its anode connected to the output terminal of the positive constant power supply 6, and its cathode connected to a voltage dividing circuit consisting of resistors 17 and 18. Further, the diode 16 has its cathode connected to the output terminal of the negative constant current source 7, and its anode connected to a voltage dividing circuit consisting of resistors 17 and 18. As shown in FIG. 4, while the switching element 8 is conducting (between tl and t2 in FIG. 4), the potential of the output terminal of the positive constant current source 6 is lower than the threshold level of the amplifier 1, so the resistance 17 and 18
To set the output voltage of the voltage divider circuit equal to the threshold level, the voltage divider circuit and the output shield of the positive constant current source 6 are switched by a diode 15. Further, when the switch element 8 becomes non-conductive, the output current of the positive constant current source 6 flows through the diode 15. Also, diode 16
works in the same way. That is, the diode 1516 operates in the same way as the switch element 1011 of the first embodiment shown in FIG.

〈第3実施例〉 第6図に第3の実施例を示す。この例ではスイッチ素子
としてダイオード19.20.21゜22を使用してい
る。今増幅器1の出力がrHJになったとするとインバ
ータ24の出力は「L」Kなる。そのため正定電流源6
の出力電流はダイオード19を通してインバータ24へ
流れ込む。
<Third Example> A third example is shown in FIG. In this example, diodes 19, 20, 21, 22 are used as switching elements. If the output of the amplifier 1 now becomes rHJ, the output of the inverter 24 becomes "L"K. Therefore, the positive constant current source 6
The output current flows into the inverter 24 through the diode 19.

またコンデンサ2.浮遊容1it31c蓄積された電荷
はダイオード21を通して負定電流源7に流れ込 9− 8− む。増幅器lの出力がrLJになると負定電流源7には
インバータ24から電流が流れ込み、また正定電流源6
からコンデンサ2.浮遊容量3に電荷が供給される。仁
のようKしてダイオード19〜22は第1の実施例のス
イッチ素子8〜11と同様の動作をする。この実施例で
はさらにインバータ24の出力@に抵抗23が設けられ
ている。
Also capacitor 2. The charges accumulated in the floating capacitor 1it31c flow into the negative constant current source 7 through the diode 21. When the output of the amplifier l becomes rLJ, current flows from the inverter 24 into the negative constant current source 7, and the positive constant current source 6
From capacitor 2. Charge is supplied to the floating capacitance 3. Similarly, the diodes 19-22 operate in the same manner as the switching elements 8-11 of the first embodiment. In this embodiment, a resistor 23 is further provided at the output of the inverter 24.

この抵抗の電圧降下により、増幅器10入力端に接続さ
れていないときの定電流源6,7の出力端子の電位を該
増幅器のスレッシュホールドレベル近辺に設定すること
によって第1.第2実施例と同様の効果を得ることがで
きる。伺インバータ24の出力は第7図のように抵抗2
5.26で分圧してダイオード回路に接続してもよい。
Due to the voltage drop across this resistor, the potential of the output terminals of the constant current sources 6 and 7 when they are not connected to the input terminal of the amplifier 10 is set near the threshold level of the amplifier. The same effects as in the second embodiment can be obtained. The output of the inverter 24 is connected to the resistor 2 as shown in Figure 7.
The voltage may be divided by 5.26 and connected to a diode circuit.

〈応用例〉 第3図の第1の実施例の無安定マルチバイブレータを用
いて2つの容量の和と差との比に比例した出力を得る例
を第8図に第3図と対応する部分に同一符号を付けて示
す。増幅器1がらの発振出力はnビットカウンタ37に
人力されて計数され 10− カウンタ37のルビット目の出力端子38はインバータ
39を介してまた介することなく直接NANDゲート2
7.28へ供給される。カウンタ37の計数値が2′1
になる前は端子38が低レベルでゲート27が開かれ、
増幅器1の発振出力はインバータ36を通じてNAND
ゲート27へ供給される。NARDゲート27.28の
各出力は容量311.31に+の電極32a、32bに
接続される。また電極32a、32bに対向して共通電
極33が設けられ、増幅器1の非反転入力端子に接続さ
れると共にスイッチ索子8,9の接続点に接続される。
<Application example> An example of obtaining an output proportional to the ratio of the sum and difference of two capacitances using the astable multivibrator of the first embodiment shown in Fig. 3 is shown in Fig. 8, which corresponds to Fig. 3. are shown with the same symbols. The oscillation output from the amplifier 1 is manually counted by the n-bit counter 37, and the rubit-th output terminal 38 of the 10-counter 37 is directly connected to the NAND gate 2 through the inverter 39 or without going through it.
7.28. The count value of counter 37 is 2'1
Before , the terminal 38 is at a low level and the gate 27 is opened,
The oscillation output of amplifier 1 is connected to NAND through inverter 36.
The signal is supplied to the gate 27. Each output of the NARD gate 27.28 is connected to a capacitor 311.31 and a positive electrode 32a, 32b. Further, a common electrode 33 is provided opposite the electrodes 32a and 32b, and is connected to the non-inverting input terminal of the amplifier 1 and to the connection point of the switch cables 8 and 9.

共通電極33は測定すべき物理量によって移動させられ
、そのため容量31a、32bは互いに逆方向に!位さ
せられる。増幅器1の非反転入力端子の発振信号は低域
通過F波器34で直流化されると共に、端子35の基*
11圧と加算されて、しきい値電圧として増幅器1の反
転入力端子へ供給される。HANDゲート27が開かれ
ていると増幅器IK容量31aが正帰還ループを構成す
るように接続され、従ってこの容量に逆比例する周波数
flで発振する。カウンタ37の計数値が2rL−1に
達すると、nビットの端子38が[JKなり、NAND
ゲート28が開き容量31bが増幅器1の正帰還ループ
に接続され、この容iK逆比例した周波数f2の発振が
発生する。
The common electrode 33 is moved by the physical quantity to be measured, so that the capacitances 31a, 32b are in opposite directions! be placed in a position. The oscillation signal at the non-inverting input terminal of the amplifier 1 is converted into DC by the low-pass F-wave generator 34, and the oscillation signal at the non-inverting input terminal
11 voltage and is supplied to the inverting input terminal of the amplifier 1 as a threshold voltage. When the HAND gate 27 is open, the amplifier IK capacitor 31a is connected to form a positive feedback loop, and therefore oscillates at a frequency fl that is inversely proportional to this capacitance. When the count value of the counter 37 reaches 2rL-1, the n-bit terminal 38 becomes [JK, NAND
The gate 28 is opened, the capacitor 31b is connected to the positive feedback loop of the amplifier 1, and oscillation with a frequency f2 that is inversely proportional to the capacitor iK occurs.

カウンタ37の計数値が2rLKなると、端子38の出
力が「L」になり、以上のことが繰り返される。従って
カウンタ37の端子38の出力は周波数f1を2rL−
1個計数している期間は「L」2周波数f2を2n−1
個計数している期間は「■」になり、これが繰り返され
る。この出力は平滑回路比例したアナログ値になる。N
ANDゲート2728の出力はWANDゲート29へも
供給され、NANDゲート29の出力側は容量31m、
31bK並列に付加される浮遊容量の影響を除く並列浮
遊容量補償容量素子30を通じて、増幅器1の非反転入
力端子に接続される。
When the count value of the counter 37 reaches 2rLK, the output of the terminal 38 becomes "L", and the above steps are repeated. Therefore, the output of the terminal 38 of the counter 37 changes the frequency f1 to 2rL-
During the period when one piece is counted, “L” 2 frequency f2 is 2n-1
The period during which pieces are being counted becomes "■", and this is repeated. This output becomes an analog value proportional to the smoothing circuit. N
The output of the AND gate 2728 is also supplied to the WAND gate 29, and the output side of the NAND gate 29 has a capacity of 31 m,
31bK is connected to the non-inverting input terminal of the amplifier 1 through a parallel stray capacitance compensation capacitor element 30 that removes the influence of stray capacitances added in parallel.

〈発明の効果〉 このようにこの発明では増幅器1の入力端子に接続され
ていない側の定電流源の出力端子の電位を該増幅器のス
レッシュホールドレベルの近辺に維持するととKよって
、定電流源の出力端子の電位を急激な変化を小さくして
いる。そのため定電流源の端子間容量を通して流れる誤
差電流の大きさが小さくなり、出力周波数が正確にコン
デンサの容量に比例するという特徴を有する。このよう
な無安定マルチバイブレータは、第8図の応用μに示し
たように1物流蓋を容量に変換してその容量の大きさを
測定することKよって、物理量を測定する測定装置に用
いて特に好適である。
<Effects of the Invention> As described above, in this invention, the potential of the output terminal of the constant current source on the side not connected to the input terminal of the amplifier 1 is maintained near the threshold level of the amplifier. This minimizes sudden changes in the potential of the output terminal. Therefore, the magnitude of the error current flowing through the capacitance between the terminals of the constant current source is reduced, and the output frequency is precisely proportional to the capacitance of the capacitor. Such an astable multivibrator can be used as a measuring device for measuring physical quantities by converting a single flow cap into a volume and measuring the volume, as shown in Application μ in Figure 8. Particularly suitable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の無安定マルチバイブレータを示す接続図
、第2図は第1図の従来例における正定電流源の出力端
子の電位を示す図、第3図はこの発明の無安定々ルチバ
イプレータの1実施例を示す接続図、第4図は第3図実
施例における正定電流源の出力端子の電位を示す図、第
5図はこの発明の無安定マルチバイブレータの第2の実
施例を示す接続図、第6図はこの発明の無安定マルチパ
ー 13− イブレータの第3の実施例を示す接続図、第7図は第6
図実施例の電圧降下手段の他の実施例、第8図はこの発
明の無安定マルチバイブレータを利用した2つの容量の
和と差の比に比例した出力を得る装置の接続図である。 1:増幅器、2:コンデンサ、3:浮遊容量。 6:止定電流源、7:負定電流源、&9,10゜11=
スイッチ素子、24,36.:インバータ。 特許出願人  株式会社 北辰電機製作所代表者清水正
博  14− 第2図 第4図 □0
Fig. 1 is a connection diagram showing a conventional astable multivibrator, Fig. 2 is a diagram showing the potential of the output terminal of the positive constant current source in the conventional example of Fig. 1, and Fig. 3 is a diagram of the astable multivibrator of the present invention. 4 is a diagram showing the potential of the output terminal of the positive constant current source in the embodiment shown in FIG. 3, and FIG. 5 is a connection diagram showing the second embodiment of the astable multivibrator of the present invention. 6 is a connection diagram showing the third embodiment of the astable multiper 13-ibrator of the present invention, and FIG.
Another embodiment of the voltage dropping means shown in the embodiment shown in FIG. 8 is a connection diagram of a device that uses the astable multivibrator of the present invention and obtains an output proportional to the ratio of the sum and difference of two capacitances. 1: Amplifier, 2: Capacitor, 3: Stray capacitance. 6: Fixed constant current source, 7: Negative constant current source, &9,10°11=
Switch element, 24, 36. :Inverter. Patent applicant Hokushin Electric Manufacturing Co., Ltd. Representative Masahiro Shimizu 14- Figure 2 Figure 4 □0

Claims (1)

【特許請求の範囲】[Claims] 増幅器と、その増幅器に正帰還ループを構成するように
接続された容量素子と、正定電流源と、負定電流源を有
し、上記増幅器の出力に応じて上記正定電流源と上記負
定電流源から交互に上記容量素子に電流を供給すると共
に上記正定電流源と上記負定電流源のうち上記容量素子
に電流を供給していない側の定電流源の出力端子の電位
をほぼ上記増幅器のスレッシュホールドレベルに維持ス
るようにしたことを特徴とする無安定マルチバイブレー
タ。
It has an amplifier, a capacitive element connected to the amplifier to form a positive feedback loop, a positive constant current source, and a negative constant current source, and the positive constant current source and the negative constant current source are connected to each other according to the output of the amplifier. Current is alternately supplied from the source to the capacitive element, and the potential of the output terminal of the constant current source that is not supplying current to the capacitive element among the positive constant current source and the negative constant current source is set approximately to that of the amplifier. An astable multivibrator characterized by maintaining the vibration at a threshold level.
JP58038678A 1983-03-09 1983-03-09 Unstable multivibrator Granted JPS59165516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58038678A JPS59165516A (en) 1983-03-09 1983-03-09 Unstable multivibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58038678A JPS59165516A (en) 1983-03-09 1983-03-09 Unstable multivibrator

Publications (2)

Publication Number Publication Date
JPS59165516A true JPS59165516A (en) 1984-09-18
JPH0256849B2 JPH0256849B2 (en) 1990-12-03

Family

ID=12531932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58038678A Granted JPS59165516A (en) 1983-03-09 1983-03-09 Unstable multivibrator

Country Status (1)

Country Link
JP (1) JPS59165516A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0735677A1 (en) * 1995-03-31 1996-10-02 Co.Ri.M.Me. Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno Oscillator circuit having oscillation frequency independent from the supply voltage value
US5990753A (en) * 1996-01-29 1999-11-23 Stmicroelectronics, Inc. Precision oscillator circuit having a controllable duty cycle and related methods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0735677A1 (en) * 1995-03-31 1996-10-02 Co.Ri.M.Me. Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno Oscillator circuit having oscillation frequency independent from the supply voltage value
US5668508A (en) * 1995-03-31 1997-09-16 Co.Ri.M.Me - Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno Oscillator circuit having oscillation frequency independent from the supply voltage value
US5990753A (en) * 1996-01-29 1999-11-23 Stmicroelectronics, Inc. Precision oscillator circuit having a controllable duty cycle and related methods

Also Published As

Publication number Publication date
JPH0256849B2 (en) 1990-12-03

Similar Documents

Publication Publication Date Title
US4806846A (en) High accuracy direct reading capacitance-to-voltage converter
US4878012A (en) Charge balanced feedback transmitter
KR100318177B1 (en) Means for detecting the integrated value of current flow, means for detecting the value of current flow and battery pack using the same
JP2665915B2 (en) Transmitter with vernier measuring device
GB2029586A (en) Resistance compensation in electrochemical measurements
US3012192A (en) Electric system
US4102202A (en) Electrostatic accelerometer
JPH0420238B2 (en)
CN108226646A (en) sensitive resistance measuring device and measuring method
JPS59165516A (en) Unstable multivibrator
US3555441A (en) Ac frequency to dc transducer
US4220905A (en) Battery charger
CN112567236B (en) Sensor device and method for sensor measurement
JPH0634700Y2 (en) Conductivity meter measurement circuit
JPH0346332Y2 (en)
GB1583536A (en) Electrostatic accelerometer
JPS5947698A (en) 2-wire current transmitter
SU435459A1 (en) ELECTRIC CAPACITY LEVEL OF P T B.L &#34;1 ;! п1т.? * г: otpYCH - ^ &#39;U1 = -i-l; ^ -i ^ uli SUO
JP3066921B2 (en) A gate oscillator that compensates for the effects of stray capacitance
SU1104440A1 (en) Method and device for measuring resistance
JPS5819966B2 (en) displacement converter
JPS6118461Y2 (en)
JPH0448280B2 (en)
JPS61237012A (en) Capacity-type convertor
JPS6244370Y2 (en)