[go: up one dir, main page]

JPS59164994A - Cobalt removable device for light water reactor - Google Patents

Cobalt removable device for light water reactor

Info

Publication number
JPS59164994A
JPS59164994A JP58039105A JP3910583A JPS59164994A JP S59164994 A JPS59164994 A JP S59164994A JP 58039105 A JP58039105 A JP 58039105A JP 3910583 A JP3910583 A JP 3910583A JP S59164994 A JPS59164994 A JP S59164994A
Authority
JP
Japan
Prior art keywords
reactor
cobalt
water
filter
circulation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58039105A
Other languages
Japanese (ja)
Inventor
竹田 信之
山科 泰之
雄二 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58039105A priority Critical patent/JPS59164994A/en
Publication of JPS59164994A publication Critical patent/JPS59164994A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は軽水炉用コバルト除去装置に関し、更に詳しく
は、軽水炉の一次冷却水系に微量に含まれるコバルトに
対する吸着除去能力が大きく、しかも機械的強度にも優
れた軽水炉用高温フィルタ要素を備えたコバルト除去装
置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a cobalt removal device for a light water reactor, and more specifically, it has a high adsorption removal ability for a small amount of cobalt contained in the primary cooling water system of a light water reactor, and has a high mechanical strength. The present invention also relates to a cobalt removal device equipped with an excellent high temperature filter element for light water reactors.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近時、軽水炉の運転年数の増大とともに、−次冷却水系
配管の各所に放射性核種が沈積し、炉停止時の放射線線
量率が次第に増大している。このような放射能蓄積は定
期検査などのために炉停止した時の定期検査要員の被曝
線量の増大を招き、ひいては稼動率の低下などの悪影響
を与える。このような放射能蓄積による炉停止時の線量
率の増大は、炉の形式、維持管理方法によって千差万別
であるが、例えば、EPRI (Electric  
powerResearch  In5titute、
U−8,A、)のまとめによれば、米国のいくつかの沸
騰水型軽水炉(BWR)の再循環ラインの表面線量率は
実効有効運転期間1年(I FPY : I Full
 Power Year ) 幽F) 10100−l
50/hrの上昇を見せている。
Recently, as the number of years of operation of light water reactors has increased, radionuclides have been deposited in various parts of the secondary cooling water system piping, and the radiation dose rate when the reactor is shut down is gradually increasing. Such accumulation of radioactivity leads to an increase in the radiation dose of periodic inspection personnel when the reactor is shut down for periodic inspections, which in turn has negative effects such as a decrease in operating rates. The increase in dose rate at the time of reactor shutdown due to radioactivity accumulation varies widely depending on the type of reactor and maintenance method.
powerResearch Institute,
According to a summary by U-8, A,), the surface dose rate of recirculation lines of some boiling water reactors (BWRs) in the United States exceeds the effective operating period of one year (IFPY: I Full).
Power Year) Yu F) 10100-l
It shows an increase of 50/hr.

この放射能蓄積を招く放射性核種の大部分は半減期の長
い” Co l 8Coであることが知られておシ、こ
れら放射性核種は軽水炉の構造材からの腐食生成物に起
因することが明らかとなっている。
It is known that most of the radionuclides that cause this accumulation of radioactivity are "Col 8Co", which has a long half-life, and it is clear that these radionuclides originate from corrosion products from the structural materials of light water reactors. It has become.

すなわち、軽水炉の構造材の腐食によって水中に放出さ
れる腐食生成物は、水に可溶な各種のイオンと水中に分
散する各種の金属酸化物とから構成されている。ここで
、放射能蓄積の主因をなす” Co + ” Coは、
次のような経緯で生成する。すなわち、まず、構造材の
構成元素であるCoが該構造材の腐食によって冷却水系
に溶出してイオン化する。該イオン化したCoが金属酸
化物に吸着したり又はイオン交換反応を起して該金属酸
化物に取り込まれる。そして該金属酸化物が炉心に運び
込まれることによって取シ込まれているCOが放射化さ
れるものである。
That is, corrosion products released into water due to corrosion of structural materials of a light water reactor are composed of various water-soluble ions and various metal oxides dispersed in water. Here, "Co +" Co, which is the main cause of radioactivity accumulation, is
It is generated as follows. That is, first, Co, which is a constituent element of the structural material, is eluted into the cooling water system due to corrosion of the structural material and is ionized. The ionized Co is adsorbed to the metal oxide or is incorporated into the metal oxide through an ion exchange reaction. When the metal oxide is carried into the reactor core, the CO taken in is activated.

少せしめれば、炉心に運び込まれて放射化されるcoの
相対量を減少させることができ、ひいては放射能蓄積を
抑制することが可能となる。
If the amount is reduced, the relative amount of co carried into the reactor core and activated can be reduced, and radioactivity accumulation can be suppressed.

このような観点に立って、従来から、炉水中のコバルト
濃kを低減する方法がいくつか試みられているが、いず
れも室温、大気圧下でイオン交換樹脂を用いるイオン交
換法の延長線上にあるものであって、炉水環境のような
高温(270〜290℃)、高圧(56〜76 atm
 )のような条件下でのコバルト除去法として直接適用
するには有効なものではなく実用化までには到っていな
い。また、最近では、耐熱度の高い無機質イオン交換体
が注目を集めている。これは例えば、酸化アルミニウム
、二酸化ジルコニウムなどのコバルトイオン交換能を有
する金属酸化物の粉末又は焼結体を炉水の流通路に通水
可能な状態で充填して用いられる・ものである。
From this point of view, several methods have been attempted to reduce the cobalt concentration in reactor water, but all of them are extensions of ion exchange methods that use ion exchange resins at room temperature and atmospheric pressure. High temperature (270-290℃) and high pressure (56-76 atm) such as reactor water environment
) It is not effective for direct application as a cobalt removal method under such conditions, and it has not yet been put into practical use. Furthermore, recently, inorganic ion exchangers with high heat resistance have been attracting attention. This is used, for example, by filling powder or sintered compacts of metal oxides having cobalt ion exchange ability, such as aluminum oxide and zirconium dioxide, in a state in which water can flow through the flow path of the reactor water.

しかしながら、粉末を用いた場合には、その比表面積が
大きいのでコバルト吸着除去能力は向上するが、一方で
は、炉水の流速が規定値以上に増大したり又は脈流等の
流速変動が生じると該粉末の流出する虞れが生ずる。そ
のため、炉の運転において、炉水の流速を指標とする処
理能力(単位時間幽りの通水可能量)を制限する仁とが
必要となり、また、流速変動を防止するための厳重な運
転管理が必要となって操作が煩雑となってしまう。
However, when powder is used, its large specific surface area improves cobalt adsorption and removal ability, but on the other hand, if the flow rate of reactor water increases beyond the specified value or flow rate fluctuations such as pulsation occur, There is a risk that the powder will flow out. Therefore, in the operation of the reactor, it is necessary to limit the processing capacity (the amount of water that can pass per unit time) using the flow rate of the reactor water as an index, and strict operational management is also required to prevent flow rate fluctuations. This makes the operation complicated.

すなわち、該粉末を実機に組込むことは炉運転上からし
て好ましいことではない。
That is, it is not preferable to incorporate the powder into an actual machine from the viewpoint of furnace operation.

一方、焼結体に関していえば、それ自体が所定の機械的
強度を有する多孔構造体であるので、粉末の場合に比べ
れば比表面積が減少して炉水接触面積は低下するが、実
機にはいわゆるブロックフィルタとして組込むことは容
易である。
On the other hand, as for the sintered body, it is a porous structure that has a certain mechanical strength, so compared to the case of powder, the specific surface area is reduced and the contact area with reactor water is reduced. It is easy to incorporate it as a so-called block filter.

しかしながら、焼結体の場合には、上記した理由により
コバルト除去能力が小さいという欠点があるため、未だ
実機に組込んだ事例は見当らない。
However, in the case of a sintered body, there is a drawback that the ability to remove cobalt is low for the reason mentioned above, and so no case has been found where it has been incorporated into an actual machine.

〔発明の目的〕[Purpose of the invention]

本発明は軽水炉の炉水中に含まれるコバルトに対する吸
着除去能力が大きく、しかも炉水の流速変動があっても
流出の虞れが全くない焼結体タイプの高温フィルタを炉
水循環系に備えた軽水炉用コバルト除去装置の提供を目
的とする。
The present invention provides a light water reactor equipped with a sintered body type high temperature filter in the reactor water circulation system, which has a large ability to adsorb and remove cobalt contained in the reactor water of a light water reactor, and which has no risk of leakage even when the reactor water flow rate fluctuates. The purpose is to provide a cobalt removal device for

〔発明の概要〕[Summary of the invention]

本発明者らは、各種の無機イオン交換体の焼結体のコバ
ルト吸着除去能力に関し比較検討したところ、酸化第二
スズ(snow)を粉末冶金法で焼結した焼結体は、そ
のコバルト吸着除去能力が数段と優れているという事実
を見出し、該焼結体をフィルタとする本発明のコバルト
除去装置を開発するに到った。
The present inventors conducted a comparative study on the ability of sintered bodies of various inorganic ion exchangers to adsorb and remove cobalt. We discovered that the removal ability is much superior, and developed the cobalt removal device of the present invention using the sintered body as a filter.

すなわち、本発明の軽水炉用コバルト除去装置は、Sn
αの焼結体のフィルタを、炉水循環系内に配設した構造
であることを特徴とする。
That is, the cobalt removal device for light water reactors of the present invention
It is characterized by a structure in which a filter made of the sintered body α is disposed within the reactor water circulation system.

本発明にかかるフィルタは、Snowを粉末冶金法で焼
結して成る多孔質構造体である。この場合、5nQtは
それ自体でも焼結するが、機械強度に劣るのでバインダ
ーとして他の金属又は合金を所定量添加することが必要
である。
The filter according to the present invention is a porous structure formed by sintering Snow using a powder metallurgy method. In this case, 5nQt can be sintered by itself, but it has poor mechanical strength, so it is necessary to add a predetermined amount of another metal or alloy as a binder.

用いるバインダーとしては、Cr15重量−以下。The binder used is Cr15 weight or less.

Fe 8重量%以下、 Mn 0.6重量%以下、Cu
O−05重量−以下、 A/1.0.15重量−以下、
 ’l’i 0.3重量−以上0.5重量−以下、Co
0−(j1重量%以下、残部がNiである組成の合金が
好ましく、その添加量は全体の重量に対し50〜70重
量%程度であることが好ましい。
Fe 8% by weight or less, Mn 0.6% by weight or less, Cu
O-05 weight or less, A/1.0.15 weight or less,
'l'i 0.3 weight - or more 0.5 weight - less, Co
An alloy having a composition of 0-(j1% by weight or less and the balance being Ni is preferable, and the amount added is preferably about 50 to 70% by weight based on the total weight.

本発明にかかるフィルタは例えば次のようKして調製さ
れる。すなわち、まず、5n011の粉末とバインダー
粉末とを所定の配合比で混合し、得られた混合粉末を所
定形状の型の中に充填した後加圧成形してペレット、ブ
ロックなどの圧粉体とする。
The filter according to the present invention is prepared, for example, as follows. That is, first, 5n011 powder and binder powder are mixed at a predetermined blending ratio, and the resulting mixed powder is filled into a mold with a predetermined shape and then pressure-molded to form a green compact such as a pellet or block. do.

このときの成形圧はフィルタの多孔度に影響を与えるが
、通常、4〜8 ton/eflの範囲内で適宜に選定
される。
The molding pressure at this time affects the porosity of the filter, but is usually appropriately selected within the range of 4 to 8 tons/efl.

ついで、この圧粉体を大気中又は不活性雰囲気中で加熱
処理して焼結する。このときの焼結温度も、上記成形圧
と同様にフィルタの多孔度に影響を与えるが、通常、9
00〜1iso℃の範囲内で適宜に選定される。
Next, this green compact is heat-treated and sintered in air or an inert atmosphere. The sintering temperature at this time also affects the porosity of the filter in the same way as the molding pressure, but usually 9
It is appropriately selected within the range of 00 to 1 isoC.

得られた焼結体は通常30〜50−の気孔率を有する多
孔質構造体でその機械的強度も高く、実炉運転時に作用
する振動等の外力に対し充分耐性を有するものである。
The obtained sintered body is usually a porous structure having a porosity of 30 to 50, has high mechanical strength, and has sufficient resistance to external forces such as vibrations that act during actual furnace operation.

本発明にかかるフィルタは、上記焼結体をそのまま適用
してもよいが、更に炉水との接触面積を増大させてコバ
ルト除去能力を向上させるために、例えば該焼結体に次
のような機械加工を施すことが好ましい。
Although the above sintered body may be applied as is to the filter according to the present invention, in order to further increase the contact area with the reactor water and improve the cobalt removal ability, the sintered body may be provided with, for example, the following. It is preferable to perform machining.

その代表的々例を第1〜第3図に示す。Typical examples thereof are shown in FIGS. 1 to 3.

第1図は焼結体の円柱ペレットの周縁部にスリット加工
を施したものであシ、第2図は練炭状にペレットに穴あ
け加工を施したものである 第3図は、焼結体を圧延し
て板状にしこれを波目板に加工したものである。また、
他の態様としては、焼結体を単に小塊状に切断加工した
もの、コイル状に加工したものなどもあげるこ七ができ
、る。贅は、炉水との接触面積を増大させるために外部
表面積を大たらしめるような形状に機械加工されていれ
ばよい。
Figure 1 shows a sintered body with slits formed on the peripheral edge of the cylindrical pellet, Figure 2 shows a sintered body with holes drilled in the pellet shape, and Figure 3 shows a sintered body with holes drilled in the pellet. It is rolled into a plate shape and processed into a corrugated plate. Also,
Other embodiments include those in which the sintered body is simply cut into small pieces or in the form of coils. The warts may be machined into a shape that increases the external surface area to increase the contact area with the reactor water.

さて、本発明のコバルト除去装置は、上記した焼結体の
フィルタを所定の容器内に充填しで炉水循環系内に配設
して構成される。
Now, the cobalt removal device of the present invention is constructed by filling a predetermined container with the above-described filter of the sintered body and disposing it in the reactor water circulation system.

第4図に示した1例に則して本発明装置を更に詳しく説
明する。図は再循環系に本発明装置を配設した場合を示
す。第4図において、lは軽水炉の圧力容器でその右方
が復水系、左下方が本発明コバ、z)除去装置の一例を
組込んで成る再循環系である。
The apparatus of the present invention will be explained in more detail with reference to an example shown in FIG. The figure shows a case where the device of the present invention is installed in a recirculation system. In FIG. 4, 1 is a pressure vessel of a light water reactor, the right side is a condensate system, the lower left side is a recirculation system incorporating an example of the present invention, and z) a removal device.

復水系において、2は主蒸気管、3は蒸気で仕事をする
タービン、4は該タービン3の排気を復水する復水器、
5は得られた復水を圧力容器1内に給水する給水ポンプ
、6は復水管である。
In the condensing system, 2 is a main steam pipe, 3 is a turbine that performs work with steam, 4 is a condenser that condenses the exhaust gas of the turbine 3,
5 is a water supply pump that supplies the obtained condensate into the pressure vessel 1, and 6 is a condensate pipe.

本発明のコバルト除去装置は、軽水炉の一次冷却材導入
口7と一次冷却材導出口8との間に形成されるループの
配管9の途中に、フィルタlO1その前後に設置される
コバルト濃度検出器11゜11’として配設される。1
2は、−次冷却材を配管10内に搬送するための再循環
yte:/fである。
The cobalt removal device of the present invention includes a cobalt concentration detector installed before and after the filter lO1 in the middle of the loop piping 9 formed between the primary coolant inlet 7 and the primary coolant outlet 8 of the light water reactor. It is arranged as 11°11'. 1
2 is the recirculation yte:/f for conveying the secondary coolant into the pipe 10.

このような構成においてコバルト除去操作は次のように
して行なわれる。
In such a configuration, the cobalt removal operation is performed as follows.

すなわち軽水炉の運転中に、再循環ポングエ2を稼動す
ることによりコバルトを含む一次冷却材は、配管9内を
矢印の向きに循環せしめられる。
That is, by operating the recirculation pump 2 during operation of the light water reactor, the primary coolant containing cobalt is circulated within the pipe 9 in the direction of the arrow.

その際、−次冷却材はフィルタ10を通過し、−次冷却
材中のコバルトは該フィルタlOによって捕捉される。
The secondary coolant then passes through the filter 10, and the cobalt in the secondary coolant is captured by the filter 10.

除染された冷却材は再循環ポンプ12により配管9内を
通り、再び圧力容器IK戻る。
The decontaminated coolant passes through the pipe 9 by the recirculation pump 12 and returns to the pressure vessel IK again.

この操作を一定時助行い、コバルト濃度検出器11によ
シ炉水中のコバルト濃度が目標値まで低下したことを確
認した後、再循環ポンプ12を停止する。
This operation is assisted for a certain period of time, and after it is confirmed by the cobalt concentration detector 11 that the cobalt concentration in the reactor water has decreased to the target value, the recirculation pump 12 is stopped.

またコバルト濃度検出器11 、11’の測定値の差を
読むことによシ、フィルタlOのコバルト除去能力の低
下が認められた場合には、該フィルタを新しいフィルタ
と交換して除去能力を再び高めることが可能である。
Furthermore, by reading the difference between the measured values of the cobalt concentration detectors 11 and 11', if a decrease in the cobalt removal ability of the filter 10 is recognized, the filter is replaced with a new filter to restore the removal ability. It is possible to increase

以上の説明は、本発明装置を既設の再循環系の中に組込
んだ例であるが、本発明装置の配設場所はこれに限らず
、既設の復水系の中に組込んだ形式であってもなんら不
都合はない。
The above explanation is an example in which the device of the present invention is incorporated into an existing recirculation system, but the location of the device of the present invention is not limited to this. There is no problem in having one.

なお、本発明装置は、既設の炉水循環系に配設されるだ
けではなく、該既設炉水循環系の外に併列して新設した
炉水循環系に配設することもできる。
The device of the present invention can be installed not only in an existing reactor water circulation system, but also in a newly installed reactor water circulation system in parallel with the existing reactor water circulation system.

また、前述の例では1系列のフィルタを一つの炉水循環
系(再循環系)に組込んだ構゛成であったが、常時、本
発明装置のコバルト除去能力を定常状態に保持するため
には、一つの炉水循環系を複数系列併動に分岐させ、そ
の各々の系列に該フィルタを設置することが有効である
。第5図にその例を示す。
In addition, in the above-mentioned example, one series of filters was incorporated into one reactor water circulation system (recirculation system), but in order to maintain the cobalt removal ability of the device of the present invention in a steady state at all times, In this case, it is effective to branch one reactor water circulation system into multiple systems and install the filter in each of the systems. An example is shown in FIG.

第5図において、炉水循環系はA、Bの2系列に分岐さ
せである。それぞれの系列に、フィルタ10 、10’
を組み込んである。まず、B側のパルプ20’、21’
を閉じ、A側のパルプ20.21を開いてフィルタ10
に炉水を流して除染各行なう。
In FIG. 5, the reactor water circulation system is branched into two lines, A and B. Filters 10 and 10' are applied to each series.
It has been incorporated. First, the pulp 20', 21' on the B side
Close the A side pulp 20.21 and remove the filter 10.
Decontamination was carried out by pouring reactor water into the reactor.

コバルト濃度検出器22.23の測定値を追跡しA側フ
ィルタ10の除去能力が低下したら、A側のパルプ20
.21を閉じ、B側のパルプ20′。
Tracking the measured values of the cobalt concentration detectors 22 and 23, if the removal ability of the A-side filter 10 decreases, the A-side pulp 20
.. 21 and pulp 20' on the B side.

21′を開いてB側で除染を続ける。この間に、A側の
除去能力の低下したフィルタ10を新しいものと交換す
る。このようにし1、本発明の装置にあっては常時、コ
バルト除去能力を定常状態に確保することが可能となる
21' and continue decontamination on the B side. During this time, the filter 10 whose removal ability on the A side has decreased is replaced with a new one. In this way, 1, the apparatus of the present invention can always maintain cobalt removal ability in a steady state.

常時、コバルト除去能力を定常状態に確保するためには
、上記方法以外にも、複数の炉水循環系に同時にフィル
タを配設することも有効である。
In addition to the above method, it is also effective to simultaneously install filters in a plurality of reactor water circulation systems in order to ensure cobalt removal capacity in a steady state at all times.

この場合の操作も上記例と基本的には同様である。The operations in this case are basically the same as in the above example.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明装置はフィルタの
炉水中への流出現象を防止でき、炉水中のコバルトを選
択的に捕捉して除去して炉水中のコバルト蓄積量の制御
が可能となるのでその工業的価値は大である。
As is clear from the above explanation, the device of the present invention can prevent the filter from leaking into the reactor water, selectively capture and remove cobalt in the reactor water, and control the amount of cobalt accumulated in the reactor water. Therefore, its industrial value is great.

的形状を例示する図、第4図は本発明装置を再循゛環系
に配:設した例、第5図は本発明装置の他の適用例を示
す図である。
FIG. 4 is a diagram showing an example in which the device of the present invention is installed in a recirculation system, and FIG. 5 is a diagram showing another example of application of the device of the present invention.

1・−・圧力容器、2・・・主蒸気管、3・・・タービ
ン、4・・・復水器、5・・・給水ポンプ、6・・・復
水管、7・・・−次冷却水導入口、8・・・−次冷却水
導出口、9・・・ループ配管、10.10”−フィルタ
、11.11’。
1...Pressure vessel, 2...Main steam pipe, 3...Turbine, 4...Condenser, 5...Water pump, 6...Condensate pipe, 7...-Secondary cooling Water inlet, 8... - secondary cooling water outlet, 9... loop piping, 10.10''-filter, 11.11'.

22 、22’、 23 、23’・・・コバルト濃度
検出器、12°°°再循環ポンプ、20.20’、21
.21’・・・パルプ。
22, 22', 23, 23'... Cobalt concentration detector, 12°°° recirculation pump, 20.20', 21
.. 21'...Pulp.

Claims (1)

【特許請求の範囲】 (1)酸化第二スズの焼結体のフィルタを、炉水循環系
内に配設した構造の軽水炉用コバルト除去装置。 l、2)該炉水循環系が、再循環系、復水系のいずれか
又は両者である特許請求の範囲第1項記載の軽水炉用コ
バルト除去装置。 (3)該炉水循環系が、既設の炉水循環系に別途新設さ
れた炉水循環系である特許請求の範囲第1項又は第2項
記載の軽水炉用コバルト除去装置。 (4)該新設炉水循環系が、該既設炉水循環系に複数系
列付列して配設されかつそれぞれには該フィルタが配設
されている特許請求の範囲第3項記載の軽水炉用コバル
ト除去装置。 (5ン  該フィルタが、その外表面に機械加工を施し
て表面積を大たらしめたものである特許請求の範囲第1
項記載の軽水炉用コバルト除去装置。
[Scope of Claims] (1) A cobalt removal device for a light water reactor having a structure in which a filter made of sintered tin oxide is disposed within a reactor water circulation system. 1, 2) The cobalt removal device for a light water reactor according to claim 1, wherein the reactor water circulation system is a recirculation system, a condensate system, or both. (3) The cobalt removal device for a light water reactor according to claim 1 or 2, wherein the reactor water circulation system is a reactor water circulation system newly installed separately from an existing reactor water circulation system. (4) Cobalt removal for a light water reactor according to claim 3, wherein the new reactor water circulation system is arranged in a plurality of series in series with the existing reactor water circulation system, and each of them is provided with the filter. Device. (5) Claim 1 in which the filter has its outer surface machined to increase its surface area.
Cobalt removal equipment for light water reactors as described in .
JP58039105A 1983-03-11 1983-03-11 Cobalt removable device for light water reactor Pending JPS59164994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58039105A JPS59164994A (en) 1983-03-11 1983-03-11 Cobalt removable device for light water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58039105A JPS59164994A (en) 1983-03-11 1983-03-11 Cobalt removable device for light water reactor

Publications (1)

Publication Number Publication Date
JPS59164994A true JPS59164994A (en) 1984-09-18

Family

ID=12543786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58039105A Pending JPS59164994A (en) 1983-03-11 1983-03-11 Cobalt removable device for light water reactor

Country Status (1)

Country Link
JP (1) JPS59164994A (en)

Similar Documents

Publication Publication Date Title
EP0281672B1 (en) Minimization of radioactive material deposition in water-cooled nuclear reactors
Powell Preliminary reference design of a fusion reactor blanket exhibiting very low residual radioactivity
JPS59164994A (en) Cobalt removable device for light water reactor
EP0105498B1 (en) Inorganic adsorbent, production thereof and use thereof
US3993542A (en) Process and apparatus for extraction of gases produced during operation of a fused-salt nuclear reactor
US3278386A (en) Delay bed system for purification of nuclear fuel element purge stream
JPS60158392A (en) High-temperature filter element for light-water reactor
JPS59180397A (en) High temperature filter element for light water reactor
JPH0324995B2 (en)
JPH037916B2 (en)
JPS60128393A (en) Nuclear reactor water purification system
Yamazaki et al. Analysis on the primary system radiation control at Tsuruga boiling water reactor plant
JPS59166213A (en) High-temperature filter element for light-water reactor
JPS59166212A (en) High-temperature filter element for light-water reactor
JPS60128394A (en) Nuclear reactor water purification system
JPS59166214A (en) High-temperature filter for light-water reactor and its manufacture
Mathur et al. Water chemistry studies VII-a general review of water conditions and water treatment in nuclear reactors
Lane et al. A Study of Problems Associated with Release of Fission Products from Ceramic Fuels in Gas-Cooled Reactors
JPS6193996A (en) Method of reducing radioactivity of nuclear power plant
Stamm et al. Corrosion product behaviour in the primary circuit of the KNK nuclear reactor facility
Heyck et al. Lessons Learned from the First 500 mAh of Beam on SINQ
Wong et al. A Li-particulate blanket concept for ITER
JPS5912390A (en) Oxide film formation method
Petersen et al. The Fission Product Retention of Pebble-Bed Reactors in Ultimate Accidents
Bilsborough et al. Improvements in and relating to gas cooled nuclear reactors