[go: up one dir, main page]

JPS59163335A - Gas phase oxidation method for olefins - Google Patents

Gas phase oxidation method for olefins

Info

Publication number
JPS59163335A
JPS59163335A JP58037243A JP3724383A JPS59163335A JP S59163335 A JPS59163335 A JP S59163335A JP 58037243 A JP58037243 A JP 58037243A JP 3724383 A JP3724383 A JP 3724383A JP S59163335 A JPS59163335 A JP S59163335A
Authority
JP
Japan
Prior art keywords
catalyst
olefins
palladium
vanadyl
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58037243A
Other languages
Japanese (ja)
Inventor
Yusuke Izumi
泉 有亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP58037243A priority Critical patent/JPS59163335A/en
Publication of JPS59163335A publication Critical patent/JPS59163335A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、オレフィン類の新規な気相酸化方法に関する
。詳しくは、オレフィン類を水蒸気の存在下に酸素また
は酸素含有気体によって気相酸化し、アセトアルデヒド
またはケトン類を製造するに際し、触媒としてパラジウ
ム塩およびバナジル塩を活性炭に担持させた担体付触媒
を使用するオレフィン類の気相酸化方法である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for gas phase oxidation of olefins. Specifically, when olefins are gas-phase oxidized with oxygen or oxygen-containing gas in the presence of water vapor to produce acetaldehyde or ketones, a supported catalyst in which palladium salts and vanadyl salts are supported on activated carbon is used as a catalyst. This is a gas phase oxidation method for olefins.

従来、パラジウム塩を触媒としオレフィン類を水の存在
下に酸素または酸素含有気体で酸化してアセトアルデヒ
ドまたはケトン類を製造する方法はワラカー法として公
知である。例えば、塩化パラジウムおよび塩化銅を含む
塩酸水溶液中でオレフィンを酸素または酸素含有気体で
酸化すると、アセトアルデヒドまたはケトン類が得られ
る。しかしながら、この液相酸化方法は反応器の腐食や
含塩素化合物の副生という点で問題があり工業的実施に
は種々の対策が必要であった。特に塩化パラジウム−塩
化銅系の触媒を用いて炭素数4以上のオレフィンを酸化
すると、対応するケトン以外に塩素化されたケトンなど
の化合物を大量に副生ずるために、ワラカー法の工業的
実施はエチレンとプロピレンの酸化に限定されている。
Conventionally, a method for producing acetaldehyde or ketones by oxidizing olefins with oxygen or an oxygen-containing gas in the presence of water using a palladium salt as a catalyst is known as the Varaker method. For example, when an olefin is oxidized with oxygen or an oxygen-containing gas in an aqueous hydrochloric acid solution containing palladium chloride and copper chloride, acetaldehyde or ketones are obtained. However, this liquid phase oxidation method has problems in terms of corrosion of the reactor and by-product of chlorine-containing compounds, and various countermeasures are required for industrial implementation. In particular, when an olefin with a carbon number of 4 or more is oxidized using a palladium chloride-copper chloride catalyst, a large amount of compounds such as chlorinated ketones are produced as by-products in addition to the corresponding ketone, so industrial implementation of the Varaka method is difficult. Limited to oxidation of ethylene and propylene.

したがって、装置の腐食が無く副生物が少なく生成物の
分離精製が容易で、しかも広範囲のオレフィンに適用で
きる固体触媒の開発が望まれてきた。
Therefore, it has been desired to develop a solid catalyst that does not cause equipment corrosion, has few by-products, is easy to separate and purify products, and can be applied to a wide range of olefins.

例えば、工業化学雑誌73巻2165頁(1970年)
では、活性炭担持パラジウム触媒が提案されているが、
この触媒は炭素数4以上のオレフィン類の酸化恍対して
活性が低(工業的実施には問題がある。また、ジャーナ
ル オブギャタリシス 30巻109頁(1973年)
では、α−アルミナにパラジウムと五酸化バナジウムを
担持させた触媒が提案されているが、この触媒は炭素数
4以上のオレフィンの酸化にはけとんと不活性である。
For example, Industrial Chemistry Magazine Vol. 73, p. 2165 (1970)
, an activated carbon-supported palladium catalyst has been proposed;
This catalyst has low activity for the oxidation of olefins having 4 or more carbon atoms (problems in industrial implementation).
has proposed a catalyst in which palladium and vanadium pentoxide are supported on α-alumina, but this catalyst is extremely inactive for the oxidation of olefins having 4 or more carbon atoms.

本発明者は、炭素数4以上のオレフィンに対しても高い
活性を示し、副生物の生成が少ない気相ワラカー触媒の
設計を目標にして担体と助触媒成分の研究を重ねてきた
。その結果、活性炭な担体とし、これにパラジウム塩と
バナジル塩を担持させた触媒が上記の目標を達成できる
高性能触媒となることを確認し1本発明を完成させるに
至った。
The present inventor has conducted extensive research on carriers and co-catalyst components with the aim of designing a gas-phase Waraker catalyst that exhibits high activity even against olefins having 4 or more carbon atoms and produces fewer by-products. As a result, it was confirmed that a catalyst prepared by supporting a palladium salt and a vanadyl salt on an activated carbon carrier was a high-performance catalyst capable of achieving the above goals, and the present invention was completed.

本発明の最大の特徴は、担体として活性炭を使用するこ
とおよびパラジウムの再酸化を促進する助触媒成分とし
てバナジル塩を使用する点である。活性炭以外の担体お
よびバナジル塩以外のバナジウム化合物を助触媒成分と
して使用しても本発明のような効果は全く得られない。
The most important feature of the present invention is the use of activated carbon as a carrier and the use of vanadyl salt as a cocatalyst component that promotes the reoxidation of palladium. Even if a carrier other than activated carbon and a vanadium compound other than vanadyl salt are used as promoter components, the effects of the present invention cannot be obtained at all.

本発明の触媒担体として使用する活性炭は特に限定され
ず、公知のもの、市販のものをそのまま、好ましくは硝
酸処理あるいは他の賦活処理を行って使用すればよい。
The activated carbon used as a catalyst carrier in the present invention is not particularly limited, and any known or commercially available carbon may be used as is, preferably after treatment with nitric acid or other activation treatment.

また本発明の触媒成分として使用するパラジウム塩およ
びバナジル塩は特に限定されるものではなく、それぞれ
公知のものを使用できる。好適に使用される代表的なパ
ラジウム塩は、塩化パラジウム、硫酸パラジウム、硝酸
パラジウム、酢酸パラジウム等である。炭素数6以上の
オレフィンの酸化には一般に硫酸パラジウムを使用する
ことが好ましい。また好適に使用される代表的なバナジ
ル塩は硫酸バナジル、硝酸バナジル、シーウ酸バナジル
等である。
Further, the palladium salt and vanadyl salt used as catalyst components in the present invention are not particularly limited, and known ones can be used. Representative palladium salts suitably used include palladium chloride, palladium sulfate, palladium nitrate, palladium acetate, and the like. It is generally preferable to use palladium sulfate for the oxidation of olefins having 6 or more carbon atoms. Further, representative vanadyl salts suitably used include vanadyl sulfate, vanadyl nitrate, vanadyl sioate, and the like.

本発明の触媒成分を担体に担持させる方法は特に限定さ
れず公知の方法を採用することができる。一般に使用さ
れる方法は希硫酸または希塩酸などの酸性水溶液中に所
定量のパラジウム塩およびバナジル塩を溶解させ、該水
溶液中に所定量の活性炭を加え、常温または10[]’
C以下で必要時間、例えば代ω〜欽時間十分に攪拌しな
がら常圧または減圧下で水を蒸発させ、空気中または不
活性気体中で乾燥すると本発明の触媒となる。
The method for supporting the catalyst component of the present invention on a carrier is not particularly limited, and any known method can be employed. A commonly used method is to dissolve a predetermined amount of palladium salt and vanadyl salt in an acidic aqueous solution such as dilute sulfuric acid or dilute hydrochloric acid, add a predetermined amount of activated carbon to the aqueous solution, and then add the predetermined amount of activated carbon to the aqueous solution.
The catalyst of the present invention is obtained by evaporating the water under normal pressure or reduced pressure while sufficiently stirring the mixture at a temperature below C for a necessary period of time, for example, about ω to 100 m, and drying in air or an inert gas.

本発明の触媒において、活性炭に担持されるパラジウム
塩およびバナジル塩の担持量は一概に限定できるもので
はないが、一般にはパラジウム塩の担持量はパラジウム
会名に換算して活性炭の0,1〜5重量%とするのが好
適であり、バナジル塩はパラジウムに対する原子比(V
/pd)で表示すると2〜20が好適である。
In the catalyst of the present invention, the amount of palladium salt and vanadyl salt supported on activated carbon cannot be absolutely limited, but in general, the amount of palladium salt supported is 0.1 to 1 on activated carbon in terms of the palladium association name. 5% by weight is suitable, and the vanadyl salt has an atomic ratio (V
/pd) is preferably 2 to 20.

本発明の方法が対象とする反応は水蒸気の存在下にオレ
フィン類を酸素または酸素含有気体で気相酸化しアセト
アルデヒドまたはケトン類を合成する反応であれば特に
限定されない。最も一般的に応用される酸化反応は、エ
チレンからアセトアルデヒドの製造、プロピレンからア
セトンの製造、1−ブテンまたは2−ブテンがらメチル
エチルケトンの製造、シクロヘキセンからシクロヘキサ
ノンの製造等である。本発明の方法は酸化されるオレフ
ィンの物性によって低温から高温までの広い温度範囲の
気相反応条件下で適用されるが、一般には100〜20
.0℃、1〜20気圧で行う。オレフィン、酸素または
酸素含有気体、および水蒸気からなる反応原料の組成も
特に限定されないが、一般には酸素分圧を小さくシ、爆
発限界の上限を保って反応を行う。
The reaction targeted by the method of the present invention is not particularly limited as long as it is a reaction in which olefins are oxidized in the gas phase with oxygen or an oxygen-containing gas in the presence of water vapor to synthesize acetaldehyde or ketones. The most commonly applied oxidation reactions are the production of acetaldehyde from ethylene, the production of acetone from propylene, the production of methyl ethyl ketone from 1-butene or 2-butene, and the production of cyclohexanone from cyclohexene. The method of the present invention can be applied under gas phase reaction conditions in a wide temperature range from low to high temperatures depending on the physical properties of the olefin to be oxidized, but generally 100 to 20
.. It is carried out at 0°C and 1 to 20 atm. The composition of the reaction raw materials consisting of olefin, oxygen or oxygen-containing gas, and water vapor is not particularly limited, but the reaction is generally carried out at a low oxygen partial pressure to maintain the upper explosive limit.

本発明を更に具体的に説明するために以下実施例および
比較例をあげて説明するが、本発明はこれらの実施例に
限定されるものではない。
EXAMPLES In order to explain the present invention more specifically, Examples and Comparative Examples will be described below, but the present invention is not limited to these Examples.

実施例 1 市販活性炭(クラレケミカル社製、GC)を20〜40
メツシーに粉砕し1その10.0gを1N硝酸100d
に加え3時間還流下で加熱したのち、洗浄液がPH5,
0になるまでイオン交換水で十分に洗浄し、60℃で1
5時間空気乾燥し触媒用担体とした。0.5N塩酸10
dに9゜4×10−5モルの塩化パラジウムを室温で溶
解したのち、この溶液に上記乾燥活性炭2.0gを加え
室温で5時間おだやかに攪拌して塩化パラジウムを完全
に活性炭に吸着させ、ついで洗浄液がPH5,0になる
までイオン交換水で十分に洗浄した。イオン交換水10
1に9.6 X 10−’モルの硫酸バナジルを溶解さ
せた水溶液に、上記の塩化パラジウム担持活性炭を加え
おだやかに攪拌しながら20 mmHgの減圧下35℃
で水分を蒸発除去し、60°Cで15時間空気乾燥して
担体付触媒を得た。このようにして得られた触媒2.0
gを、内径1.5cm、長さ50鍋のパイレックス製ガ
ラス管の中央部に充填し、115℃で水蒸気、エチレン
および酸素をそれぞれ毎分41m/、1011j、およ
び7rn1.で通じた。その結果は第1表に示す通りで
あった。副生成物はメチルエチルケトンであった。
Example 1 Commercially available activated carbon (manufactured by Kuraray Chemical Co., Ltd., GC) at 20 to 40
Grind it into pieces and add 10.0g of it to 100d of 1N nitric acid.
After heating under reflux for 3 hours, the cleaning solution reached a pH of 5,
Wash thoroughly with ion-exchanged water until it becomes 0.
It was air-dried for 5 hours and used as a catalyst carrier. 0.5N hydrochloric acid 10
After dissolving 9°4 x 10-5 moles of palladium chloride in d at room temperature, 2.0 g of the above dry activated carbon was added to this solution and stirred gently at room temperature for 5 hours to completely adsorb palladium chloride on the activated carbon. Then, the sample was thoroughly washed with ion-exchanged water until the pH of the washing solution reached 5.0. Ion exchange water 10
The above palladium chloride-supported activated carbon was added to an aqueous solution in which 9.6 x 10-' mol of vanadyl sulfate was dissolved in 1 and heated at 35°C under a reduced pressure of 20 mmHg with gentle stirring.
The water was removed by evaporation and air-dried at 60°C for 15 hours to obtain a supported catalyst. Catalyst 2.0 thus obtained
g was filled in the center of a Pyrex glass tube with an inner diameter of 1.5 cm and a length of 50 pots, and water vapor, ethylene, and oxygen were heated at 115°C at a rate of 41 m/min, 1011j, and 7rn1.g/min, respectively. I understood. The results were as shown in Table 1. The by-product was methyl ethyl ketone.

さらに比較のため、塩化パラジウムのみを含有し硫酸バ
ナジルを含まない触媒を前記と同様の操作で調製し、同
様にエチレンの酸化反応を行ったところ、その結果は第
2表に示す通りであった。副生成物はメチルエチルケト
ンであった。
Furthermore, for comparison, a catalyst containing only palladium chloride and no vanadyl sulfate was prepared in the same manner as above, and the ethylene oxidation reaction was carried out in the same manner, and the results were as shown in Table 2. . The by-product was methyl ethyl ketone.

第  1  表 第2表 *エチレン基糸 実施例 2 7 mlのイオン交換水に1N代酸5.ON、硫酸パラ
ジウム9.4 X 10=モル、およ、び硫酸バナジル
9.6X 1 [1−’モルを加えて室温で完全に溶解
させたのち、この溶液に実施例1と同様の操作で得た乾
燥活性炭担体2.Ogを加えおだやかに攪拌しながら2
0 m7nHgの減圧下35℃で水分を蒸発除去し、6
0℃で15時間空気乾燥して担体付触媒を得た。このよ
うにして得られた触媒2、DIを実施例1と同様の反応
器に充填し1,115℃で水蒸気、プロピレンおよび酸
素をそれぞれ毎分41mJjQm7および7 m1通じ
た。反応が定常になる5時間後のプロピレンの転化率は
15%で、グロピレン基準のアセトンの選択率は97モ
ル係であった。
Table 1 Table 2 *Ethylene base yarn Example 2 Add 5.5% of 1N substitute acid to 7ml of ion exchange water. ON, 9.4 x 10 mol of palladium sulfate, and 9.6 x 1 [1-' mol] of vanadyl sulfate were added and completely dissolved at room temperature, and then added to this solution in the same manner as in Example 1. Obtained dry activated carbon carrier2. Add Og and stir gently 2.
Water was removed by evaporation at 35°C under a reduced pressure of 0 m7nHg, and
A supported catalyst was obtained by air drying at 0° C. for 15 hours. Catalyst 2 and DI thus obtained were packed into a reactor similar to that in Example 1, and water vapor, propylene and oxygen were passed through at 1,115° C. at a rate of 41 mJjQm7 and 7 ml per minute, respectively. Five hours after the reaction became steady, the conversion of propylene was 15%, and the selectivity of acetone based on glopylene was 97 molar.

さらに比較のため、硫酸バナジルを用いず前記と同様に
操作して得られた触媒を使用して同様にプロピレンの酸
化反応を行−だところ、反応が定常になる5時間後のプ
ロピレンの転化率は6.0%でアセトンの選択率は97
モル饅であつたO 実施例 3 実施例2と同様に操作して得られた硫酸パラジウムおよ
び硫酸バナジルを含有する触媒2.0gを実施例1と同
様の反応器に充填し、115℃で水蒸気、1−ブテンお
よび酸素をそれぞれ毎分41m1/、10#I/および
7 m1通じた。反応が定常忙なる3時間後の1−ブテ
ンの転化率は14%で、1−ブテン基準のメチルエチル
ケトンの選択率は96モルチであった。副生成物は第ニ
ブチルアルコール、ビアセチル、酢酸およびアセトアル
デヒドであった。
Furthermore, for comparison, a propylene oxidation reaction was carried out in the same manner using a catalyst obtained in the same manner as above without using vanadyl sulfate, and the conversion rate of propylene after 5 hours when the reaction became steady. is 6.0% and the selectivity of acetone is 97
Example 3 2.0 g of a catalyst containing palladium sulfate and vanadyl sulfate obtained in the same manner as in Example 2 was charged into the same reactor as in Example 1, and steam was heated at 115°C. , 1-butene and oxygen were passed through at 41 ml/min, 10 #I/min and 7 ml/min, respectively. The conversion rate of 1-butene after 3 hours when the reaction was steady and busy was 14%, and the selectivity of methyl ethyl ketone based on 1-butene was 96 mole. By-products were nibutyl alcohol, biacetyl, acetic acid and acetaldehyde.

さらに比較のため、硫酸バナジルを用いずに実施例2と
同様に操作して得られた触媒を使用して同様に1−ブテ
ンの酸化反応を行。たところ、反応が定常になる3時間
後の1−ブテンの転化率は4.7%で、1−ブテン基準
のメチルエチルケトンの選択率は94チであった。副生
成物はほとんど第ニブチルアルコールであった。
Furthermore, for comparison, a 1-butene oxidation reaction was performed in the same manner using a catalyst obtained by operating in the same manner as in Example 2 without using vanadyl sulfate. As a result, the conversion rate of 1-butene after 3 hours when the reaction became steady was 4.7%, and the selectivity of methyl ethyl ketone based on 1-butene was 94%. The by-product was mostly nibutyl alcohol.

実施例 4 実施例2と同様に操作して得られた硫酸パラジウムおよ
び硫酸バナジルを含有する触媒2.0gを用い、オレフ
ィンとしてシス−2−ブテンな用いて実施例3と同様の
操作で酸化反応を行ったところ、反応が定常になる5時
間後のシス−2−ブテンの転化率は12%で、シス−2
−ブテン基準のメチルエチルケトンの選択率は96モル
チであった。
Example 4 An oxidation reaction was carried out in the same manner as in Example 3 using 2.0 g of a catalyst containing palladium sulfate and vanadyl sulfate obtained in the same manner as in Example 2 and using cis-2-butene as the olefin. The conversion rate of cis-2-butene was 12% after 5 hours when the reaction became steady;
- The selectivity of methyl ethyl ketone based on butene was 96 mol.

実施例 5 実施例2と同様に操作して得られた硫酸パラジウムおよ
び硫酸バナジルを含有する触媒2.09を実施例1と同
様の反応器に充填し、120℃で水蒸気、シクロ−ヘキ
センガスおよび酸素をそれぞれ毎分411、j5yne
および7 m1通じた。反応が定常になる6時間後のシ
クロヘキ七/(n転化率は11チで、シクロヘキセン基
準のシフ四ヘキサノンの選択率は95モルチであった。
Example 5 A catalyst 2.09 containing palladium sulfate and vanadyl sulfate obtained by operating in the same manner as in Example 2 was charged into a reactor similar to that in Example 1, and steam, cyclo-hexene gas and oxygen were heated at 120°C. 411 and j5yne per minute respectively
and 7 m1 passed. Six hours after the reaction became steady, the conversion rate of cyclohexane7/(n was 11 moles, and the selectivity of Schifte hexanone based on cyclohexene was 95 moles.

実施例 6 実施例3において硫酸バナジルの代りにシーウ酸バナジ
ルを用いた以外は、実施例3と同様に操作して所定の触
媒を得たのち、1−ブテンの反応に供した。
Example 6 A predetermined catalyst was obtained in the same manner as in Example 3, except that vanadyl oxalate was used instead of vanadyl sulfate, and then subjected to the reaction of 1-butene.

その結果、反応が定常になる3時間後の1−ブテンの転
化率は13%で、メチルエチルケトンの選択率は96モ
ルチであった。
As a result, after 3 hours when the reaction became steady, the conversion rate of 1-butene was 13%, and the selectivity of methyl ethyl ketone was 96 mol.

Claims (1)

【特許請求の範囲】[Claims] オレフィン類を水蒸気の存在下に酸素または酸素含有気
体によって気相酸化しアセトアルデヒドまたはケトン類
を製造するに際し、触媒としてパラジウム塩およびバナ
ジル塩を活性炭に担持させた担体付触媒を使用すること
を特徴とするオレフィン類の気相酸化方法。
A supported catalyst in which palladium salts and vanadyl salts are supported on activated carbon is used as a catalyst when olefins are gas-phase oxidized with oxygen or oxygen-containing gas in the presence of water vapor to produce acetaldehyde or ketones. A method for gas phase oxidation of olefins.
JP58037243A 1983-03-09 1983-03-09 Gas phase oxidation method for olefins Pending JPS59163335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58037243A JPS59163335A (en) 1983-03-09 1983-03-09 Gas phase oxidation method for olefins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58037243A JPS59163335A (en) 1983-03-09 1983-03-09 Gas phase oxidation method for olefins

Publications (1)

Publication Number Publication Date
JPS59163335A true JPS59163335A (en) 1984-09-14

Family

ID=12492176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58037243A Pending JPS59163335A (en) 1983-03-09 1983-03-09 Gas phase oxidation method for olefins

Country Status (1)

Country Link
JP (1) JPS59163335A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005075391A1 (en) 2004-02-10 2005-08-18 Maruzen Petrochemical Co., Ltd. Method for producing alcohol and/or ketone
US7291755B2 (en) 2003-01-06 2007-11-06 Asahi Kasei Chemicals Corporation Process for producing alcohol and/or ketone
WO2008110020A1 (en) * 2007-03-15 2008-09-18 Perlen Converting Ag Catalytically active foils for the absorption of ethene
EP2266942A4 (en) * 2008-03-19 2011-05-18 Sumitomo Chemical Co PROCESS FOR THE PRODUCTION OF CARBONYL COMPOUND

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7291755B2 (en) 2003-01-06 2007-11-06 Asahi Kasei Chemicals Corporation Process for producing alcohol and/or ketone
WO2005075391A1 (en) 2004-02-10 2005-08-18 Maruzen Petrochemical Co., Ltd. Method for producing alcohol and/or ketone
WO2008110020A1 (en) * 2007-03-15 2008-09-18 Perlen Converting Ag Catalytically active foils for the absorption of ethene
EP2266942A4 (en) * 2008-03-19 2011-05-18 Sumitomo Chemical Co PROCESS FOR THE PRODUCTION OF CARBONYL COMPOUND
US8258348B2 (en) 2008-03-19 2012-09-04 Sumitomo Chemical Company, Limited Process for production of carbonyl compound

Similar Documents

Publication Publication Date Title
RU2131409C1 (en) Method of preparing acetic acid (variants)
JPS6155416B2 (en)
JPS5911342B2 (en) Manufacturing method of palladium catalyst
EP0166438A2 (en) Process for oxydehydrogenation of ethane to ethylene
EP0167109A2 (en) Process for oxydehydrogenation of ethane to ethylene
JPS5929293B2 (en) Method for producing silver-supported catalyst for producing ethylene oxide
JP2001520976A5 (en)
JPS6127097B2 (en)
JPH04501564A (en) Selective monoepoxidation of styrene, styrene analogs and styrene derivatives to the corresponding oxides with molecular oxygen
US4786743A (en) Silver catalyst and a process for preparing same
TW201217349A (en) Direct epoxidation process
JPS59163335A (en) Gas phase oxidation method for olefins
JP2016525577A (en) Preparation of methyl methacrylate via oxidative esterification method
JPS6244536B2 (en)
US3850843A (en) Process for preparing carbonyl catalyst
CA1186699A (en) Process for producing carbonyl compound
JPS6039653B2 (en) Method for producing oxygen-containing hydrocarbon compound
US3456002A (en) Oxidation of acrolein and methacrolein with oxygen and a vanadium oxide-antimony oxide catalyst
JPS6160820B2 (en)
JPS5867636A (en) Production of plyhydric phenol
JPS58140036A (en) Production method of carbonyl compound
JPS5872531A (en) Preparation of carbonyl compound
JPS5978130A (en) Preparation of hydrocarbon compound containing oxygen
JPS5919735B2 (en) Catalyst for producing carboxylic acid esters
JPS6129332B2 (en)