[go: up one dir, main page]

JPS59161668A - Method of liquefying and separating air - Google Patents

Method of liquefying and separating air

Info

Publication number
JPS59161668A
JPS59161668A JP58034802A JP3480283A JPS59161668A JP S59161668 A JPS59161668 A JP S59161668A JP 58034802 A JP58034802 A JP 58034802A JP 3480283 A JP3480283 A JP 3480283A JP S59161668 A JPS59161668 A JP S59161668A
Authority
JP
Japan
Prior art keywords
argon
cylinder
nitrogen
air
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58034802A
Other languages
Japanese (ja)
Inventor
昭二 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP58034802A priority Critical patent/JPS59161668A/en
Publication of JPS59161668A publication Critical patent/JPS59161668A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04709Producing crude argon in a crude argon column as an auxiliary column system in at least a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04793Rectification, e.g. columns; Reboiler-condenser
    • F25J3/048Argon recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/58One fluid being argon or crude argon

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は酸素・窒素と共にアルゴンの採取を行う空気液
化分離方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air liquefaction separation method for collecting argon along with oxygen and nitrogen.

一般にアルゴンは、4B溜分離により粗アルゴンを得、
こ扛を化学的処理により含有酸素を除去した後、更に稍
溜分離により高純アルゴンを得ている。これを、従来の
粗アルゴンを採取する空気分離方法を示す第1図により
説明すると、空気圧縮機(図示せず)で約5 Kg/ 
caに圧縮された原料空気は管1からリパーシング熱交
換器2に導入され、ここで帰還する酸素・窒素と熱交換
して降温し、含有する水分および成畝ガスを析出・除去
されほぼ5 Kf/ cntの空気の飽lfO温度とな
って菅3を経て複式精溜尚の下部筒4の下部に供給され
る。該下部塔4に於て予備′+N溜が行なわれ、頂部に
は窒素が分離されるが、該頂部に分離された液体窒素は
営5より抜き出されて下部筒6の頂部に導入され、該上
部筒6内を還流液として流下するっまた一ド部筒4底部
の液体空気は管7より抜き出されて上部1弯6の中段に
導入され同様に還流液として上部筒6内を流−ドする。
Generally, crude argon is obtained by 4B distillation separation,
After removing the oxygen contained in this argon by chemical treatment, highly pure argon is obtained by distillation separation. To explain this with reference to Figure 1, which shows a conventional air separation method for collecting crude argon, an air compressor (not shown) produces approximately 5 kg/
The raw air compressed to ca. / cnt, and is supplied to the lower part of the lower cylinder 4 of the double rectifier through the tube 3. In the lower column 4, preliminary +N storage is performed, and nitrogen is separated at the top, and the liquid nitrogen separated at the top is extracted from the tank 5 and introduced into the top of the lower column 6. The liquid air at the bottom of the upper tube 4 is extracted from the tube 7 and introduced into the middle of the upper curve 6, and flows down the upper tube 6 as a reflux liquid. -Do it.

流下する還流液は各精謂棚で上昇する気体と気液接触を
行ない精溜が行なわれ、凝縮器8には液体酸素が、その
直上にはL成木ガスが分離される。分離された酸素ガス
は管9より導出されて前記リバーシング熱父挨器2に入
り原料空気に寒冷を与え常温となって製品酸素ガスとし
て送出さおる。−万上部筒6内を上昇した気化ガスはd
!上部商6頂部より窒素ガスとなって菅10に導出され
前肥りパージング熱交換器2に於て原料空気と熱交侠し
常温となり製品窒素ガスとして送出される。
The flowing reflux liquid comes into gas-liquid contact with the rising gas in each so-called shelf, and rectification is performed, and liquid oxygen is separated in the condenser 8, and L mature tree gas is separated directly above it. The separated oxygen gas is led out through the pipe 9 and enters the reversing heat exchanger 2, where the raw air is cooled to room temperature and sent out as product oxygen gas. -The vaporized gas rising inside the upper cylinder 6 is d
! From the top of the upper quotient 6, the nitrogen gas is led out to the pipe 10, where it exchanges heat with the raw material air in the prefertilization purging heat exchanger 2, and becomes room temperature and is sent out as a product nitrogen gas.

更に祖アルゴン筒11には前、氾上部′面6の中間段か
らアルゴン8〜12%、微量の窒紫、残部酸J    
索よりなるアルゴン)i、科ガスが管12によりB ’
MT11下部へ導入される。徂アルゴン簡11の凝縮器
13には下部筒4底部より看7により抜き出された液体
空気の一部が分岐され−g14を経て導入され、祖アル
ゴン向11内全上昇して米た前記アルゴン原料ガスと熱
交換し、該アルゴン原料ガスの大部分″f:凝縮し、自
球は気化して1715より前1己上部筒6の中間段に導
入される。柑アルゴン筒11頂部(凝縮器13凝縮側)
に於て凝縮した1記アルゴン原料ガスは還流液として粗
アルゴン筒11内全流下し、上記上昇ガスとの間に/l
N 鎧が行なわれ、粗アルゴン藺11頂部よりアルゴン
95〜98係、酸素1〜3楚、室累1〜3≠程度の組成
より成る粗アルゴンが官16に導出され、公知のアルゴ
ン精製工程(図示せず)に送りn高純アルゴンとして製
出される。また粗アルゴン筒11底部にて留った大部分
が液体酸素よりなる筒底液は菅17を経て、上部筒6の
前ロ己アルゴン原料ガスr扱き出した位置とほぼ同じ段
へ戻さ肚る。
Further, in the argon cylinder 11, 8 to 12% argon, a trace amount of nitrogen, and the remainder acid
The argon (argon) i from the pipe 12, the family gas B'
Introduced to the lower part of MT11. A part of the liquid air extracted from the bottom of the lower cylinder 4 is branched into the condenser 13 of the argon tank 11 and introduced through the argon tank 14, and the argon gas rises completely inside the argon tank 11 to form the argon gas. Most of the argon source gas is condensed through heat exchange with the raw material gas, and the self-sphere is vaporized and introduced into the intermediate stage of the upper cylinder 6 before 1715. 13 condensing side)
The argon raw material gas condensed in step 1 flows down completely in the crude argon cylinder 11 as a reflux liquid, and the gap between it and the rising gas is 1/l.
The crude argon having a composition of 95 to 98 parts argon, 1 to 3 parts oxygen, and about 1 to 3 parts is led out from the top of the crude argon straw 11 to the tank 16, and is subjected to a known argon refining process ( (not shown) and produced as high purity argon. In addition, the bottom liquid remaining at the bottom of the crude argon cylinder 11, which is mostly liquid oxygen, passes through the tube 17 and is returned to the upper cylinder 6 at almost the same position as the position from which the argon raw material gas r was discharged. .

そして、これら装置の運転に必要な寒冷を補償するため
に、弓ゴロ己晋3かし圧縮片n−裂1氏温空気の一部が
g18に分岐され前記リバーシング熱交換器2の再熱流
路に入って再熱後、さらに膨張タービン19で断熱膨張
し寒冷を発生したのち、管20より上部筒6の中間段に
吹き込まれる。
In order to compensate for the cold required for the operation of these devices, a part of the compressed air is branched to g18 to reheat the reheat flow of the reversing heat exchanger 2. After entering the pipe and being reheated, the air is further adiabatically expanded in the expansion turbine 19 to generate cold air, and then blown into the middle stage of the upper cylinder 6 through the pipe 20.

従来の望気液化分離方法によるアルゴン採取は通常上記
の如く行われているがイ3々不イ、6合があった。例え
ば一般に++? ?*r r71に於ては碌稲部(上部
)では5>1゛ト下還流液と上昇気化との比L/V が
犬なる方が錆面効率が良く、回収部(−上部)(〆こ於
てはL/Vが小なる方が1n溜効率が艮いことが知られ
ている。しかし上記従来の空気分離方法に於ける上部筒
6の1./Vについて考察すると、丘ず回j戊t!、′
6に於ては粗アルゴン節11底部より帰還−rる部系が
液体であるため、前記百17の上rats t;Ij6
への拗+’、ri部より下の部分に於てはこの分L/V
が大きくなっている。−1:た儂縮部に於ては丁部筒4
底部より上tfij筒6への液体空気の一部が徂アルゴ
ン簡11凝縮器13により気化した後、1管15より上
部筒6へ吹き込丑れるために還流液が不足すること、ま
た原料空気が膨張タービン19により降圧膨張後’i7
.20より1仄さ込まれるため、この部分の上昇ガス1
.:、が多くな91亥笥二の1)/V1直を小さくして
いる13従ってこ几り上部:謂6への液の導入ガスの吹
き1人みは該上部筒6に於ける精溜効率を悪くして2す
、竹にアルゴン採取を行なう場合は厳しい、゛!腎条件
が”堤求されるため非常に好捷しくない。
Argon extraction by the conventional vapor liquefaction separation method is usually carried out as described above, but there are 3 cases, 6 cases. For example, in general ++? ? *r In r71, the rust surface efficiency is better when the ratio L/V of lower reflux liquid and upward vaporization is 5>1゛ in the rice section (upper part); It is known that the smaller the L/V, the higher the 1N storage efficiency.However, when considering the 1./V of the upper cylinder 6 in the above conventional air separation method,戊t!,'
In 6, since the system that returns from the bottom of the crude argon node 11 is a liquid, the upper rats t;Ij6
to +', the part below the ri part is L/V by this amount
is getting bigger. -1: In the folded part, the tube part 4
Part of the liquid air flowing from the bottom to the upper TFIJ cylinder 6 is vaporized by the argon tank 11 condenser 13, and then blown into the upper cylinder 6 from the first pipe 15, resulting in a shortage of reflux liquid, and the raw air 'i7 after being depressurized and expanded by the expansion turbine 19
.. 20, so the rising gas in this part is 1
.. :, 91 Pump 2 1)/V1 direct is made small 13 Therefore, the small upper part: Introducing the liquid into the so-called 6 Blowing of gas It is difficult to harvest argon from bamboo because it reduces efficiency! It is very unfavorable because the renal condition is "demanded".

更に2111図の従来法によれば、下部伝)4仄部のP
L体、空気が′ジf7金経て上i4簡6へ供給さ汎ると
同duに一部分岐して粗アルゴン筒11頂部の凝縮器J
3に供給さ凡気化後、上部間6へ吹き込徒れるため、主
謂順商と粗アルゴン筒夫々の運転条件の変化が、A1j
互に彩り9を受は安定した運転が出来ない不都合があっ
たっ 匿に一部た粗アルゴン筒凝縮器の冷却源が液体空気であ
るため一アルゴン原料ガス中に蟹素分が増加すると充分
な冷却が行なわれない等の不イ・3合もあった。
Furthermore, according to the conventional method shown in Figure 2111, P in the 4th part of the lower part)
When the L body and air are supplied to the upper I4 and K6 through the diode F7, a portion of the air is branched to the same du, and is sent to the condenser J at the top of the coarse argon cylinder 11.
After being evaporated, the argon gas is blown into the upper space 6, so changes in the operating conditions of the main argon cylinder and coarse argon cylinder are caused by A1j.
However, because the cooling source of the crude argon cylinder condenser is liquid air, the increase in crab element content in the argon raw material gas is sufficient. There were also 3 failures such as not being cooled.

本発明は上d已に錯みなされたもので、上部筒頂部より
々導出される窒素を加圧し、熱交換により液化して租ア
ルゴン同頂部凝縮器の冷却源にすると共に、粗アルゴン
諮底部より導出する液体酸素を上記窒素と熱交換して気
化して上部筒へ戻し、更に上記加圧窒素をノ形張タービ
ンで膨張させて寒冷を発生させ、リバーシング熱父換器
にに)大して寒°冷を回収する様にしたことにより、上
部筒の精溜効率を大巾に上昇せしめ酸素・窒素の純度・
収率の低下を伴わずにアルゴンの収率大向上全可能とし
た空気液化分離方法である。
The present invention has been developed from the above. Nitrogen discharged from the top of the upper cylinder is pressurized, liquefied by heat exchange, and used as a cooling source for the coarse argon condenser at the top. The liquid oxygen derived from the above is exchanged with the nitrogen, vaporized and returned to the upper cylinder, and the pressurized nitrogen is further expanded in a no-forming turbine to generate refrigeration, which is then used in a reversing heat exchanger). By recovering cold water, the rectification efficiency of the upper cylinder is greatly increased, and the purity and purity of oxygen and nitrogen are improved.
This is an air liquefaction separation method that makes it possible to greatly improve the argon yield without reducing the yield.

以F本発明を図に従って詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第2図は本発明の一実施例を示す系統図であり、第1図
と共辿部分は同符号ケ用い説明を省略するつ上部′l’
i+j 6頂部より導出した窒素は、その一部が分岐し
て管22.廿23を経て循環窒素熱交換器24に導入し
、向流する加圧窒素と悲交換して常温吐で昇温し管25
より導出して循環窒素圧縮機26に尋人して約5 K4
/ C++!に圧縮する。循環窒素圧縮機26を導出し
た加圧9素は管27より上記循環熱交換624に入り、
前韻管23よりの低温室≦ζガスと熱交換し飽和温度迄
冷却され管28へ導出した後、2分しその一方は管29
を経て熱交換器30に入り、粗アルゴン筒11底部より
管17を経て流下し導入された液体酸素と向流熱交換す
 −ることによって液化し、管31上り導出して上記粗
アルゴン筒11頂部の凝縮器13に導入される。
FIG. 2 is a system diagram showing one embodiment of the present invention, and the same reference numerals and explanations are used for co-traced parts as in FIG. 1.
A part of the nitrogen drawn out from the top of i+j 6 branches into pipe 22. The nitrogen is introduced into the circulating nitrogen heat exchanger 24 through the pipe 23, where it is exchanged with pressurized nitrogen flowing countercurrently and heated at room temperature.
Derived from the circulating nitrogen compressor 26 and put about 5 K4
/ C++! Compress it into The pressurized 9 elements led out of the circulating nitrogen compressor 26 enter the circulating heat exchanger 624 through the pipe 27,
After exchanging heat with the low temperature chamber ≦ζ gas from the front tube 23 and cooling it to the saturation temperature and leading out to the tube 28, it is divided into two parts, one of which is passed through the tube 29.
The crude argon enters the heat exchanger 30 through the bottom of the crude argon cylinder 11 through the pipe 17 and is liquefied by countercurrent heat exchange with the liquid oxygen introduced. It is introduced into the top condenser 13.

該租アルゴン@凝縮器13内では粗アルゴン筒l1内を
上昇して米だガスと熱交換してこれを液化させて還流液
を生成させ、自身は気化して管32より導出し、前記管
22の窒素と合流し管23より熱交換器24.循環窒素
圧m機26へ循環する。
In the coarse argon condenser 13, the crude argon rises in the cylinder l1 and exchanges heat with the rice gas to liquefy it to produce a reflux liquid, which is vaporized and led out through the pipe 32, and then 22 and a confluent pipe 23 into a heat exchanger 24. It is circulated to the circulating nitrogen pressure machine 26.

一方粗アルゴン筒1工底部より抜き出され熱交換器30
に入った液体酸素は該熱交換器3o内で気化し管33よ
り上部筒6のアルゴン原料ガスを抜き出した段より僅か
に低い段に吹き込まれる。これによって租アルゴン筒1
1底部より上部筒6へ通常液体で帰還する酸素は気体で
戻きれるため、上部筒下部(回収部)のL/V値が小さ
くなり硝溜効率が上昇する。また徂アルゴン筒ll!A
部の凝縮器13の冷却は循環液体窒素により行なうため
に、主相溜筒4,6の運転と租アルゴン箇11の運転が
相互に影90されることが無い。
On the other hand, the crude argon cylinder 1 is extracted from the bottom of the heat exchanger 30.
The liquid oxygen that has entered is vaporized in the heat exchanger 3o, and is blown into a stage slightly lower than the stage from which the argon raw material gas in the upper cylinder 6 was extracted through the pipe 33. With this, the argon cylinder 1
Oxygen that normally returns in liquid form to the upper cylinder 6 from the bottom part of the cylinder 6 can be returned in gaseous form, so the L/V value at the lower part of the upper cylinder (recovery part) becomes smaller and the nitrification efficiency increases. Another argon cylinder! A
Since the cooling of the condenser 13 in the section is performed by circulating liquid nitrogen, the operation of the main phase reservoirs 4 and 6 and the operation of the argon section 11 are not affected by each other.

次に前6己循fi窒素熱交換器24を得出し管28で一
部の屋索ガスを分岐した他方の望素流れは管34を経て
リバーシング熱交換器2の再熱流路35に入って昇温後
、膨張タービン19で膨張降温し、はぼ大気圧−180
°C程度となって管36へ2!イー出し、FliT凸已
上81S1司6頂郡よp縛・出し2分した屋素流れの一
方と合流し管37よりリバーシング熱父換器2 (/こ
入って原料空気に外片を与えた後装置グYへみ出される
Next, the pre-6 recirculation nitrogen heat exchanger 24 is obtained, and part of the gas is branched off in the pipe 28, and the other nitrogen flow passes through the pipe 34 and enters the reheat flow path 35 of the reversing heat exchanger 2. After the temperature is raised by the expansion turbine 19, the temperature is lowered to approximately atmospheric pressure -180
It becomes about °C and goes to tube 36 2! Air output, FliT convex top 81S1 Tsuji 6 top group, connects with one side of the air flow which is divided into two, connects to the reversing heat exchanger 2 through pipe 37, and gives the raw air an outer layer. After that, it is sent to the device group Y.

本発明は以上の如〈実施されるが、これによる特徴、効
果は次の通りである。第1に粗アルゴン簡凝縮器の冷却
液体を循環窒素とし、粗アルゴン筒底MSより抜き出す
液体酸素と該循環窒素を熱交換せしめ上部筒へ酸素を気
体にして戻す様にしたことによって生絹溜筒上部筒6の
回収部(下半分)のL / V値が小さくなり錆面状態
が良くなって鍍累・室系の分離効率の同上およびアルゴ
ンの収率が向上し増産が0T北となった。また粗アルゴ
ンgj凝縮器を冷却し気化した窒素は主棺溜1z」へ戻
さずに循環する様にしたので、従来のアルゴン採取に伴
なう上部筒上部へのガスの吹き込みが無くなりその分上
部筒誤縮部に於けるL / V額に好影響をもたらし精
溜条件が良くなり、アルゴンの収率が向上する。更に粗
アルゴン招:改縮器で液体空気が消費されないのでその
分上部筒中部へ導入する】JJ流液の減少が無く、従っ
てアルゴン採以運耘を行なわない場合の鞘部条件を悪化
させることなく運転を行なうことが出来酸素収率及び純
度を低下させることなくアルゴンの収率全向上させ得る
。第2に一■ニム己循環屋素方式にし粗アルゴン簡凝縮
器の冷却源に液体W Aを使用したので、液体空気を使
用する装置1主のようにアルゴン原料ガス中に堡累分が
増加しても・イ1↓アルゴン筒が不安定になることが無
く主イn溜筒の°アルゴンピーク点よりアルゴン原料ガ
スを、ijl出することが出来るようになった。また生
絹油筒の運転条件又は租アルゴン筒の運転条件を変更し
ても相互に影%9Jを与えることが無くなし、運転操作
が非常に容易になった。第;3に循環窒素の一部ヲリバ
ーシング熱交換器の再熱回路を、性た後、膨張クービ°
ンによって寒冷を発生はせ、丹びリパーシング熱交換器
にηi人して原料空気を冷却する椋にしたことにより、
膨張ガスの上部筒への吹込みを;発止し、アルゴン収率
の向上を困難にする原因を解消した。第4に粗アルゴン
筒底部より導出する液体酸素を熱交換して気化して上部
筒中部に戻すので租゛アルゴン筒の据付位置を低く出来
その分装置建設費を低減出来る。
The present invention is carried out as described above, and its features and effects are as follows. First, the cooling liquid of the crude argon simple condenser is made into circulating nitrogen, and the liquid oxygen extracted from the bottom MS of the crude argon cylinder is heat exchanged with the circulating nitrogen, so that the oxygen is returned to the upper cylinder as a gas. The L/V value of the recovery section (lower half) of the upper cylinder 6 became smaller, the rust surface condition improved, the separation efficiency of the plating/chamber system improved as well as the argon yield, and the production increased to 0T. . In addition, since the crude argon gj condenser is cooled and the vaporized nitrogen is circulated without being returned to the main tank 1z, there is no need to blow gas into the upper part of the upper cylinder that accompanies conventional argon sampling. This has a positive effect on the L/V value at the cylinder misconstriction, improving the rectification conditions and improving the argon yield. Furthermore, coarse argon is introduced: liquid air is not consumed in the reformer, so that amount is introduced into the middle of the upper cylinder] There is no decrease in the JJ flow liquid, and therefore the conditions in the sheath part will deteriorate when argon extraction and transport are not carried out. The argon yield can be totally improved without reducing the oxygen yield and purity. Second, since we adopted the one-nim self-circulation system and used liquid WA as the cooling source for the crude argon condenser, the amount of water accumulated in the argon raw material gas increased, as in equipment 1 that uses liquid air. However, the argon source gas can now be discharged from the argon peak point of the main reservoir without the argon cylinder becoming unstable. Furthermore, even if the operating conditions of the raw silk oil cylinder or the operating conditions of the argon cylinder are changed, there is no shadow of %9J between them, and operation has become very easy. Thirdly, after a part of the circulating nitrogen is removed from the reheat circuit of the reversing heat exchanger, the expansion chamber is
By generating cold air by cooling the air and passing it through the reparsing heat exchanger to cool the raw air,
The blowing of expanded gas into the upper cylinder was stopped, eliminating the cause of difficulty in improving the argon yield. Fourthly, since the liquid oxygen led out from the bottom of the crude argon cylinder is heat-exchanged, vaporized, and returned to the middle of the upper cylinder, the installation position of the coarse argon cylinder can be lowered, and the equipment construction cost can be reduced accordingly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の*jl ’J’ルゴンを採取する空気分
離方法の一′ρIJを示す系統図、第2図は本発明の一
実施例を示す系統図である。 4はF部面、6は上部直、11は粗゛アルゴン前、19
は膨張タービン、24は循壊熱父換−,<H:、26は
循環窒素圧縮機、30は熱交換器でるる。
FIG. 1 is a system diagram showing 1'ρIJ of a conventional air separation method for collecting *jl 'J' rugone, and FIG. 2 is a system diagram showing an embodiment of the present invention. 4 is the F section, 6 is directly above, 11 is the rough argon front, 19
24 is a circulating heat exchanger, 26 is a circulating nitrogen compressor, and 30 is a heat exchanger.

Claims (1)

【特許請求の範囲】 i、 空気を液化精溜して酸素・窒素を分離すると共に
複式棺溜筒の上部筒中部よりアルゴン原料ガスを抜き出
して徂アルゴン塔に導入して徂アルゴンを製造する空気
液化分離方法に於て、前記上部筒上部より導出する窒素
ガスの一部を分岐し、該分岐窒素ガスを昇圧した後その
一部を粗アルゴン筒底部よシ抜き出した液体酸素と熱交
換してこれを気化せしめて上部筒へ導入し、自身は液化
後徂アルゴン筒凝縮器に導入してこれを冷却し自身は気
化して導出後前記分岐窒素ガスに合流せしめることを特
徴とする空気液化分離方法。 2、 空気を液化精溜してLツ素・窒素を分離すると共
に複式イ青溜簡の上部筒中部よりアルゴン原料ガスを抜
き出し徂アルゴン筒に4人して粗アルゴンを製造する空
気分離方法に於て、前記上部筒上■1(よシ導出する窒
素ガスの一部を後記する相アルゴンのと、稲器より導出
される窒素ガスと合流し、窒素圧縮イ幾によって外圧後
2分してその一方を粗アルゴン1ン1)底部より抜き出
しだ液体酸素と熱交換してこれを気化せしめて上部筒へ
尋人し、自身は液化後租アルゴン筒凝縮器に導入してこ
れを冷却し、気化して導出後循環し、前it 2分した
他方の窒素ガスはりパージング熱交換器の再熱流路で昇
温後、膨張タービンによって膨張し、降温後上記上部尚
頂部より導出し分岐した他部の窒素と合流し、前記リパ
ーシング熱交換器によって堅冷回収後放出すること′f
:%徴とする空気液化分離方法。
[Claims] i. Air that is liquefied and rectified to separate oxygen and nitrogen, and at the same time extracts argon raw material gas from the middle of the upper cylinder of a double coffin cylinder and introduces it into the argon column to produce argon. In the liquefaction separation method, a part of the nitrogen gas discharged from the upper part of the upper cylinder is branched, and after pressurizing the branched nitrogen gas, a part of it is heat-exchanged with liquid oxygen extracted from the bottom of the crude argon cylinder. Air liquefaction separation characterized in that the gas is vaporized and introduced into the upper cylinder, and after being liquefied, it is introduced into an argon cylinder condenser to cool it, and after being vaporized and led out, it is combined with the branched nitrogen gas. Method. 2. An air separation method in which air is liquefied and rectified to separate L and nitrogen, and argon raw material gas is extracted from the middle of the upper cylinder of a double-type blue distillation cylinder and placed in the outer argon cylinder by four people to produce crude argon. At the top of the upper cylinder (1), a part of the nitrogen gas that is extracted is combined with the phase argon (described later) and the nitrogen gas that is extracted from the rice cooker, and the nitrogen gas is divided into two parts after the external pressure by nitrogen compression. One side of the crude argon was extracted from the bottom and exchanged heat with liquid oxygen to vaporize it and put it into the upper cylinder, and after liquefying it, it was introduced into the argon cylinder condenser to cool it. After being vaporized and discharged, it is circulated, and the other nitrogen gas beam, which has been divided into two parts, is heated in the reheat flow path of the purging heat exchanger, and then expanded by an expansion turbine. of nitrogen, and discharged after hard cooling recovery by the reparsing heat exchanger.
: Air liquefaction separation method with percentage characteristics.
JP58034802A 1983-03-03 1983-03-03 Method of liquefying and separating air Pending JPS59161668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58034802A JPS59161668A (en) 1983-03-03 1983-03-03 Method of liquefying and separating air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58034802A JPS59161668A (en) 1983-03-03 1983-03-03 Method of liquefying and separating air

Publications (1)

Publication Number Publication Date
JPS59161668A true JPS59161668A (en) 1984-09-12

Family

ID=12424363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58034802A Pending JPS59161668A (en) 1983-03-03 1983-03-03 Method of liquefying and separating air

Country Status (1)

Country Link
JP (1) JPS59161668A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162876A (en) * 1985-10-04 1987-07-18 ザ・ビ−オ−シ−・グル−プ・ピ−エルシ− Gas-liquid catalytic method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162876A (en) * 1985-10-04 1987-07-18 ザ・ビ−オ−シ−・グル−プ・ピ−エルシ− Gas-liquid catalytic method and device

Similar Documents

Publication Publication Date Title
JP7355978B2 (en) Cryogenic air separation equipment
US4615716A (en) Process for producing ultra high purity oxygen
JPH0412392B2 (en)
JPH0447234B2 (en)
JPH087019B2 (en) High-pressure low-temperature distillation method for air
JP2000055542A (en) Production of argon by low temperature air separation
JPH06257939A (en) Distilling method at low temperature of air
JPH03500924A (en) Improving air fractionation for nitrogen production
US3807185A (en) Helium-enriched helium-hydrogen mixture from ammonia synthesis vent gas using regenerators to congeal residual nitrogen
JPH10132458A (en) Method and equipment for producing oxygen gas
JPH1163810A (en) Method and device for manufacturing low purity oxygen
JPS59161668A (en) Method of liquefying and separating air
US1607322A (en) Liquefaction of gases
JP2004205076A (en) Air liquefying and separating device and its method
JPH11173753A (en) Method and device for manufacturing nitrogen and argon from air
JPH07127971A (en) Argon separator
US3327490A (en) Recombining separated gaseous nitrogen and vaporized liquid nitrogen with air to produce a constant gaseous feed rate
CN112066643A (en) Air separation process with reduced energy consumption
JPS59215577A (en) Method of recovering co gas from converter gas
JPH1163812A (en) Manufacture and device for low-purity oxygen
JP2000258054A (en) Method and apparatus for manufacturing low purity oxygen
JPS61276680A (en) Method of liquefying and separating air
JPS58190680A (en) Method of liquefying and separating air
JPS63118587A (en) Method of recovering argon from ammonia synthesis purge gas
KR880000075B1 (en) Air separation method