JPS59160113A - Melt sticking and connecting method of optical fiber using image pickup device - Google Patents
Melt sticking and connecting method of optical fiber using image pickup deviceInfo
- Publication number
- JPS59160113A JPS59160113A JP3446583A JP3446583A JPS59160113A JP S59160113 A JPS59160113 A JP S59160113A JP 3446583 A JP3446583 A JP 3446583A JP 3446583 A JP3446583 A JP 3446583A JP S59160113 A JPS59160113 A JP S59160113A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- fibers
- optical fibers
- heating
- directions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 72
- 238000000034 method Methods 0.000 title claims description 25
- 238000010438 heat treatment Methods 0.000 claims abstract description 31
- 238000003384 imaging method Methods 0.000 claims description 10
- 230000004927 fusion Effects 0.000 claims description 7
- 238000007526 fusion splicing Methods 0.000 claims description 7
- 238000005253 cladding Methods 0.000 claims description 3
- 239000000835 fiber Substances 0.000 abstract description 11
- 230000007246 mechanism Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/255—Splicing of light guides, e.g. by fusion or bonding
- G02B6/2551—Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Coupling Of Light Guides (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は撮像装置を用いて光ファイバを効率よく、低損
失に接続する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of efficiently connecting optical fibers with low loss using an imaging device.
光ファイバの融着接続を行う場合には、光ファイバのコ
アを軸合せし、光ファイバの端面間隔を設定して、光フ
アイバ材料の軟化点温度で光フアイバ端面を加熱しなが
ら、光フアイバ同志を押し付ける操作が必要である。従
来のこの種の光ファイバのコア軸合せ方法には、次のよ
うなものがある。When performing fusion splicing of optical fibers, align the cores of the optical fibers, set the distance between the end faces of the optical fibers, and heat the end faces of the optical fibers at the softening point temperature of the optical fiber material. It is necessary to press the Conventional core alignment methods for this type of optical fiber include the following.
(1) 第1図はパワーモニタ法と呼ばれる光ファイ
バのコアの軸合せ方法である。この方法は被接続ファイ
バ1,1′に光源2および受光器3を配し、接続点の透
過パワーが最大になるように被接続ファイバ1,1′の
コアをX、y方向に軸合せする方法である。しかし、こ
の方法は接続するための作業箇所が光源、接続点、受光
点の3か所に分散するので、人員や機材が多く、作業能
率が悪い欠点があった。(1) Figure 1 shows a method for aligning the core of an optical fiber called the power monitoring method. In this method, a light source 2 and a receiver 3 are placed on the connected fibers 1 and 1', and the cores of the connected fibers 1 and 1' are aligned in the X and y directions so that the transmitted power at the connection point is maximized. It's a method. However, this method requires a large number of personnel and equipment, and has the drawback of poor work efficiency, since the work for connection is distributed over three locations: the light source, the connection point, and the light receiving point.
(2)文献昭和57年度電子通信学会総合全国大会qs
4J単−モード光ファイバのコア軸合せ方法IP、4−
181に見られるように、Geドープ光ファイバの紫外
線励起による蛍光現象を利用した方法がある。しかしこ
の方法は、ドーパントを含んだコアの場合に制限される
ことや、紫外領域のレーザ光源を要するため装fi’:
Cが大型化する欠点があった。(2) References 1981 General National Conference of the Institute of Electronics and Communication Engineers qs
4J single-mode optical fiber core alignment method IP, 4-
181, there is a method that utilizes the fluorescence phenomenon caused by ultraviolet excitation of a Ge-doped optical fiber. However, this method is limited to the case of a core containing a dopant and requires a laser light source in the ultraviolet region.
There was a drawback that C was large.
(8)文献電子通信学会論文誌“82 / 5 Vol
。(8) Literature Journal of the Institute of Electronics and Communication Engineers “82/5 Vol.
.
J65−B 、 j6.5 P、 662 「シング
ルモード光ファイバのモニター無し接続方法」などに見
られるように、光ファイバをそのクララ1と同じ屈折率
の液体で浸し、位相差顕微鏡でコアを検出しコアを軸合
せする方法がある。しかしこの方法は、空気中でコアを
検出できないことなとに欠点があった。J65-B, j6.5 P, 662 As seen in ``Single mode optical fiber connection method without monitor'', the optical fiber is soaked in a liquid with the same refractive index as Clara 1, and the core is detected with a phase contrast microscope. There is a method to align the cores. However, this method had the drawback of not being able to detect the core in air.
(4) 微分干渉顕微鏡を使用して空気中で光ファイバ
のコアを検出し、コアを軸合せする方法がある。しかし
この方法は微分干渉顕微鏡という特別な装置を必要とす
ることや、顕微鏡本体の大きさにより光フアイバ軸合せ
微動様C1の設計が制限される欠点がある。(4) There is a method of detecting the core of an optical fiber in the air using a differential interference microscope and aligning the core. However, this method has the disadvantage that it requires a special device called a differential interference microscope, and that the design of the optical fiber alignment fine movement C1 is limited by the size of the microscope body.
ところで、被接続光ファイバの端面間際・1は、作業者
か顕微鏡内に設けたマーカによって光フアイバ端面間隔
を目視観察しなから手作業で行う方法か、または対向し
た被接続光ファイバの端面をいったん接触させた位置か
らマイクロメータなとのような微動機構で一定距離だけ
引:”:(bずことにより、作業者が目視観察しなから
手作業で行う方法がある。しかしこの方法は、手作業で
行うので、作業能率゛が悪く、熟練度により作業品質が
悪化する欠点がある。By the way, the distance between the end faces of the optical fibers to be connected (1) can be carried out manually without visually observing the distance between the end faces of the optical fibers using a marker installed in a microscope or by the operator, or by manually connecting the end faces of the opposite optical fibers to be connected. Once the contact is made, it is pulled a certain distance using a micro-adjustment mechanism such as a micrometer. Since it is done manually, the work efficiency is low and the work quality deteriorates depending on the level of skill.
また第2図に示すように、被接続光ファイバlを一定の
厚みをもつ突当て板4に突当てることによ;〕、端面間
差を設定する方法かある。しかしこの方法(1才、突当
て板4を動かす特別な襲構を必要とすることや、突当て
板4の両面に付着した埃などが被接続光ファイバ1,1
′の接続端面に付着し、接続損失が大きくなるなどの欠
点があった。Alternatively, as shown in FIG. 2, there is a method of setting the difference between the end faces by abutting the optical fiber 1 to be connected against an abutment plate 4 having a constant thickness. However, this method (1 year old) requires a special attack to move the abutment plate 4, and dust attached to both sides of the abutment plate 4 may cause damage to the connected optical fibers 1, 1.
It has the disadvantage that it adheres to the connection end face of the 100mm, increasing the connection loss.
また端面間の距離は、被接続ファイバの押込み鼠などか
ら一定値に設定しているが、端面の粗さや融着加熱温度
によって端面間の距離が変化するので、実質的な押込み
量が変化し、接続失敗や接続品質の低下などの欠点があ
った。In addition, the distance between the end faces is set to a constant value to ensure that the fibers to be connected are pushed in, but the distance between the end faces changes depending on the roughness of the end face and the fusion heating temperature, so the actual amount of push-in changes. However, there were drawbacks such as connection failures and poor connection quality.
一方、被接続光フアイバ端面の加熱温度は、光フアイバ
材料の軟化点温度、端面間隔、接続損失の小さくなる湿
度などから一定値に設定しているが、気体放電の場合に
は、融着接続時の溶hJ(ファイバが放電電極に飛散し
、加熱温度が変化するので、加熱装f斤の設定変更が何
回か必要になる欠点があった。On the other hand, the heating temperature of the end face of the optical fiber to be spliced is set to a constant value based on the softening point temperature of the optical fiber material, end face spacing, humidity to reduce splice loss, etc.; however, in the case of gas discharge, fusion splicing When melting (hJ) (fiber scatters to the discharge electrode and the heating temperature changes, there was a drawback that the setting of the heating equipment had to be changed several times.
本発明はこれらの欠点を除去するため、気体放電装置゛
またはCO2レーザ装置により融倍加熱中、被接続光フ
ァイバが発光する像と光強度を撮像装置で検出し、コア
の軸合せ、押込み量の、1iid節および光フアイバ接
続部の融着加熱温度の請負jのうち一つまたは複数の調
節を行いながら、光ファイン<を融着接続するもので、
その目的は接続4°〔1失の低減、接続失敗の低減、接
続能率の向上にある。以下図面により本発明の詳細な説
明する。In order to eliminate these drawbacks, the present invention uses an imaging device to detect the image and light intensity emitted by the optical fiber to be connected during fusion heating using a gas discharge device or a CO2 laser device, and determines the core axis alignment and pushing amount. The optical fiber is fusion spliced while adjusting one or more of the clause 1iid and the fusion heating temperature of the optical fiber connection part,
The purpose is to reduce connection loss by 4 degrees, reduce connection failures, and improve connection efficiency. The present invention will be explained in detail below with reference to the drawings.
第3図は本発明の一実施例図であって、l、1′は岐接
続光ファイバ、5 、5’は電動モータ、6゜6′は微
動機構、7,7′は光ファイバ向定台、8は気体放電回
路、9,9′は放電電極、10は加熱部、11はフィル
タ、12は対物レンズ系、13はイメージセンサ、14
はイメージセンサ駆動装置、15は画像処理装置、16
は制御装置、17゜17′は電動モータ駆動部である。FIG. 3 is a diagram showing an embodiment of the present invention, in which 1 and 1' are optical fibers for branch connection, 5 and 5' are electric motors, 6° and 6' are fine movement mechanisms, and 7 and 7' are optical fiber orientation devices. 8 is a gas discharge circuit, 9 and 9' are discharge electrodes, 10 is a heating section, 11 is a filter, 12 is an objective lens system, 13 is an image sensor, 14
15 is an image sensor driving device, 15 is an image processing device, and 16 is an image sensor driving device.
is a control device, and 17° and 17' is an electric motor drive section.
これを動作するには、電動モータ5,5′で駆動される
微動機構6,6′により、x、y、Z方向に移動する光
フアイバ固定台7,7′上に被舒除去と切断の完了した
被接続光ファイバ1,1′を対向させて固定する。光フ
アイバ微動機構系5.5’、6゜6’ 、 7 、7’
により破接続光ファイバ1,1′をZ方向に送り、被接
続光ファイバ]の接続部が、気体放電回路8で1駆動さ
れ、放電電極9,9′間に発生する加熱部10に達する
と、被接続光ファイバ1.1′のクラッド部とコア部は
熱により軟化すると同時に、相異なる光強度で発光する
。このとき、フィルタ11を介して、対物レンズ系12
とイメージセンサ13とイメージセンサ駆動装置]4t
および画像処理装置15から成る撮像装置によって、直
交するX、X方向から被接続光ファイバ1,1′のコア
のX方向とX方向の位置、対向した被接続光ファイバl
、1′の端面間の距離および被接続光ファイバ1,1′
の接続部の発光強度、すなわち加熱温度を同時に検出す
る。この撮像装置を側面から見た図を第4図に示す。こ
の撮像装置からの信号により制御装置]6で電動モータ
駆動t’rls 17 。To operate this, a fine movement mechanism 6, 6' driven by an electric motor 5, 5' moves the optical fiber fixing table 7, 7' in the x, y, and Z directions to remove and cut the fiber. The completed optical fibers 1 and 1' to be connected are fixed facing each other. Optical fiber fine movement mechanism system 5.5', 6°6', 7, 7'
When the unconnected optical fibers 1 and 1' are sent in the Z direction, the spliced part of the spliced optical fiber is driven by the gas discharge circuit 8, and reaches the heating part 10 generated between the discharge electrodes 9 and 9'. The cladding portion and core portion of the connected optical fiber 1.1' are softened by heat and at the same time emit light with different light intensities. At this time, the objective lens system 12
and image sensor 13 and image sensor drive device] 4t
and the image processing device 15, the positions of the cores of the optical fibers 1 and 1' in the X direction and the
, 1' and the distance between the end faces of connected optical fibers 1, 1'
At the same time, the emission intensity of the connection part, that is, the heating temperature, is detected. FIG. 4 shows a side view of this imaging device. The electric motor is driven by the control device]6 based on the signal from this imaging device.
17′を制御し、電動モータ5,5′、微動機構6,6
′、光フアイバ固定台7,7′を介して、直角2方向σ
)撮像系で被接続光ファイバ1,1′のX、y方向の位
置を調節することにより、被接続光コアイノく1゜1′
のコアの軸合せを行い、また残さねたZ方向の移動量、
すなわち被接続光ファイ、り1 、1/の押込み量を調
節し、さらに気体放電回路8の電流を調節することによ
り、加熱温度を一定に保つことができる。このため、被
接続光ファイバlの開明については、照明装置は不要で
あり、また加熱温度が一定、すなわち光ファイバの発光
する光J6i度が一定であるので、光源の明るさを調節
する必要もない。さらに融着接続中、溶融ファイバが飛
散し、気体放電電極9,9′に付着しても直接、光の強
度を検賂しているので、加熱湿度を一定に調節する二と
ができる。なお気体放電自体から発生する光は、光ファ
イバを加熱して発生する光より光強度が小さいので、問
題にする必要はない。17', electric motors 5, 5', fine movement mechanisms 6, 6
', σ in two perpendicular directions via the optical fiber fixing bases 7 and 7'
) By adjusting the positions of the optical fibers 1 and 1' to be connected in the X and y directions using the imaging system, the optical fibers 1 and 1' can be
After aligning the cores, the remaining movement in the Z direction,
That is, the heating temperature can be kept constant by adjusting the pushing amount of the connected optical fibers 1 and 1 and further by adjusting the current of the gas discharge circuit 8. Therefore, for opening the connected optical fiber l, there is no need for a lighting device, and since the heating temperature is constant, that is, the light J6i degrees emitted by the optical fiber is constant, there is no need to adjust the brightness of the light source. do not have. Furthermore, even if the molten fiber is scattered and attached to the gas discharge electrodes 9, 9' during fusion splicing, the intensity of the light is directly measured, so that the heating humidity can be adjusted to a constant level. Note that the light generated from the gas discharge itself has a lower light intensity than the light generated by heating the optical fiber, so there is no need to pose a problem.
この実施例では、加熱装置として気体放電装置を用いた
が、CO2レーザ装ff(を用いてもよい。レーザ装置
を含む加熱装置系の特性が変化しても、直接光ファイバ
の湿度を検出しているので、修正可能であり、加熱条件
を一定に保つことかできる。In this example, a gas discharge device was used as the heating device, but a CO2 laser device (ff) may also be used. Even if the characteristics of the heating device system including the laser device change, the humidity of the optical fiber can be directly detected. Therefore, it can be modified and the heating conditions can be kept constant.
またレーザ光と光ファイバを加熱して発生する光とは、
光の波長によって区別できる。したがって検出する画像
は、気体放電と同様に考えることができる。Also, the laser light and the light generated by heating the optical fiber are
They can be distinguished by the wavelength of light. Therefore, the image to be detected can be considered similar to a gas discharge.
なおこの実施例では]P作系11 、 ]、 2 、1
3 。In this example, ]P production system 11, ], 2, 1
3.
14をそれぞれ二つ用いたが、第5図に示すように、2
枚のミラー18 、1.8’と1枚のハーフミラ−19
を用いた光学系などを導入す、ることにより、X、y〜
2方向のうち1方向については、撮像系11 、12
、13 、14を省略することができる。14 were used, but as shown in Figure 5, 2
Mirrors 18, 1.8' and 1 half mirror 19
By introducing an optical system using
For one of the two directions, the imaging systems 11 and 12
, 13 and 14 can be omitted.
またこの実施例では、被接続光ファイバのコアの軸合ぜ
、押込み伍、加熱湿度の8者を、同時に調節する場合に
ついて述べているが、シルクモード光ファイバのときは
コアの軸合せが必要であるが、マルチモード光ファイバ
の場合には、コアの軸合せは不要になることもある。し
かしマルチモード光ファイバの場合も、コアの位置検出
は作業品質のチェックに利用できる。In addition, this example describes a case in which eight factors, including core alignment, push-in position, and heating humidity, of the optical fiber to be connected are adjusted simultaneously; however, core alignment is required for silk mode optical fibers. However, in the case of multimode optical fibers, core alignment may not be necessary. However, even in the case of multimode optical fibers, core position detection can be used to check the quality of work.
この実施例において、被接続光ファイバ1,1′の微動
送り糸5 、5’ 、 6 、6’ 、 7 、7’の
動作速度が、融着接続速度に比較して遅いという問題が
ある場合は、加熱時間、加熱断続時間、加熱温度など加
熱条件の設定などによって解決できる。In this embodiment, if there is a problem that the operating speed of the finely moving feed threads 5, 5', 6, 6', 7, 7' of the optical fibers 1, 1' to be spliced is slow compared to the fusion splicing speed. This can be solved by setting heating conditions such as heating time, heating intermittent time, and heating temperature.
以上説明したように本発明の光フアイバ融着接続方法は
、光ファイバの加熱による発光を利用しているので、光
ファイバの照明装置が不要になるなど接続装置の構成が
簡単になる利点のほか、透過光や反射光による照明方法
と比較し、被接続光ファイバのレンズ効果による解像度
低下などの悪影響が少ない利点がある。As explained above, the optical fiber fusion splicing method of the present invention utilizes the light emitted by heating the optical fiber, so it has the advantage of simplifying the configuration of the splicing device, such as eliminating the need for an optical fiber illumination device. Compared to illumination methods using transmitted light or reflected light, this method has the advantage that there are fewer negative effects such as reduced resolution due to the lens effect of connected optical fibers.
また被接続光ファイバのコアの軸合せ、押込み量、接続
部の加熱温度という基本的に重要な接続条件を調節して
いるので、低損失で、接続失敗が少なく、作業能率のよ
い光ファイバの接続を実現できる利点がある。In addition, the fundamentally important connection conditions such as the alignment of the core of the optical fiber to be connected, the amount of push-in, and the heating temperature of the connection part are adjusted, so optical fibers with low loss, few connection failures, and high work efficiency can be created. It has the advantage of being able to connect.
したがって光フアイバケーブルを用いた通信システムの
実用化に大きく寄与するものである。Therefore, it will greatly contribute to the practical application of communication systems using optical fiber cables.
第1図は従来のパワーモニタによる被接続光ファイバの
コアの軸合せ方法の・説明図、第2図は突当て板を用い
た被接続光ファイバの端面間隔設定方法の説明図、
第1図は本発明の一実施例図、
第・1図は第3図における被接続光ファイバのコア検出
のための撮像装置を側面から見た図、第5図は第4図の
撮像系の1系統を光学系で代用した具体例図である。
1・・・被接続光ファイバ、2・・・光源、3・・・受
光器、4・・・突当て板、5,5′・・・電動モータ、
6,6′・・・微動機構、7,7′・・・光フアイバ固
定台、8・・・気体放電回路、9,9′・・・放電電極
、10・・・加熱部、11・・・フィルタ、12・・・
対物レンズ系、13・・・イメージセンサ、]4・・・
イメージセンザ喫動装置、15・・・画像処理装置、1
6.16’・・・制彷1装置1′?、l 7 、17’
・・・電動モーフ駆動部、18.18’・・・ミラー、
19・・・ハーフミラ−0
特許出願人 日本電信電話公社
第2図
第3図
第4図
第5■i
LチFigure 1 is an explanatory diagram of a method for aligning the cores of optical fibers to be connected using a conventional power monitor. Figure 2 is an explanatory diagram of a method for setting the distance between the end faces of optical fibers using an abutment plate. 1 is a side view of the imaging device for detecting the core of the optical fiber to be connected in FIG. 3, and FIG. 5 is one system of the imaging system shown in FIG. 4. FIG. 3 is a diagram showing a specific example in which an optical system is used instead of the optical system. DESCRIPTION OF SYMBOLS 1... Optical fiber to be connected, 2... Light source, 3... Light receiver, 4... Abutment plate, 5, 5'... Electric motor,
6, 6'... Fine movement mechanism, 7, 7'... Optical fiber fixing base, 8... Gas discharge circuit, 9, 9'... Discharge electrode, 10... Heating section, 11...・Filter, 12...
Objective lens system, 13... Image sensor, ]4...
Image sensor driving device, 15... Image processing device, 1
6.16'...Restriction 1 device 1'? , l 7 , 17'
...Electric morph drive unit, 18.18'...Mirror,
19...Half mirror-0 Patent applicant Nippon Telegraph and Telephone Public Corporation Figure 2 Figure 3 Figure 4 Figure 5 ■i L-ch
Claims (1)
互に突き合わせることにより光ファイバを融着接続する
方法において、気体放電装置またはCO2レーザ装置に
より、融着加熱接続中に光ファイバのクラッドとコアが
互いに異なった光強度で発光する現象を利用して、撮像
装置を用いて被接続光ファイバのコア位置・端面間の距
離または加熱温度を検出することにより、対向した被接
続光ファイバのコアの軸合せ、押込み元、の調節および
光ファイ、バ接続部の融着加熱温度の調節のうち、一つ
または複数の調節を行いながら光ファイバを融着接続す
ることを特徴とする撮像装置を用いた光フアイバ融着接
続方法。1. In a method of fusion splicing optical fibers by applying rlb and abutting the end faces of opposing optical fibers to be connected, a gas discharge device or a CO2 laser device is used to connect the cladding of the optical fiber to the cladding of the optical fiber during fusion heating splicing. Utilizing the phenomenon that the cores emit light with different light intensities, an imaging device is used to detect the core position of the optical fibers to be connected, the distance between the end faces, or the heating temperature. An imaging device characterized in that optical fibers are fusion spliced while adjusting one or more of the following: adjustment of the axis alignment of the optical fiber, adjustment of the pushing source, and adjustment of the fusion heating temperature of the optical fiber and bar connection portion. Optical fiber fusion splicing method used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3446583A JPS59160113A (en) | 1983-03-04 | 1983-03-04 | Melt sticking and connecting method of optical fiber using image pickup device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3446583A JPS59160113A (en) | 1983-03-04 | 1983-03-04 | Melt sticking and connecting method of optical fiber using image pickup device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59160113A true JPS59160113A (en) | 1984-09-10 |
JPS6215843B2 JPS6215843B2 (en) | 1987-04-09 |
Family
ID=12414995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3446583A Granted JPS59160113A (en) | 1983-03-04 | 1983-03-04 | Melt sticking and connecting method of optical fiber using image pickup device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59160113A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62208008A (en) * | 1986-03-10 | 1987-09-12 | Nippon Telegr & Teleph Corp <Ntt> | Deciding method for optical fusion splicing condition |
US4721354A (en) * | 1985-01-08 | 1988-01-26 | U.S. Philips Corporation | Device for positioning an optical fibre |
JPS63150603A (en) * | 1986-12-16 | 1988-06-23 | Nippon Telegr & Teleph Corp <Ntt> | Connecting device for optical fiber core |
JPS63187206A (en) * | 1987-01-30 | 1988-08-02 | Nippon Telegr & Teleph Corp <Ntt> | Method and device for welding multicore optical fiber tape core |
JPH01118808A (en) * | 1987-10-31 | 1989-05-11 | Fujikura Ltd | Welding and connecting device for optical fibers |
US5009513A (en) * | 1987-12-16 | 1991-04-23 | Fujikura Ltd. | Method of measuring quantity of heat applied to optical fiber |
WO1991012546A1 (en) * | 1990-02-16 | 1991-08-22 | Ant Nachrichtentechnik Gmbh | Splicing process and device |
WO2006050974A1 (en) * | 2004-11-12 | 2006-05-18 | Ccs Technology, Inc. | Method for determining the eccentricity of an optical fiber core, and method and device for connecting optical fibers |
JP2006184467A (en) * | 2004-12-27 | 2006-07-13 | Sumitomo Electric Ind Ltd | Optical fiber heating strength detection method, fusion splicing method, and fusion splicing device |
JP2007185723A (en) * | 2006-01-11 | 2007-07-26 | Fujifilm Corp | Automatic alignment device and method |
CN106248349A (en) * | 2016-10-10 | 2016-12-21 | 长飞光纤光缆股份有限公司 | A kind of test optical fiber automatic coupler |
JP2022099584A (en) * | 2020-12-23 | 2022-07-05 | 古河電気工業株式会社 | Fusion machine |
-
1983
- 1983-03-04 JP JP3446583A patent/JPS59160113A/en active Granted
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4721354A (en) * | 1985-01-08 | 1988-01-26 | U.S. Philips Corporation | Device for positioning an optical fibre |
JPS62208008A (en) * | 1986-03-10 | 1987-09-12 | Nippon Telegr & Teleph Corp <Ntt> | Deciding method for optical fusion splicing condition |
JPS63150603A (en) * | 1986-12-16 | 1988-06-23 | Nippon Telegr & Teleph Corp <Ntt> | Connecting device for optical fiber core |
JPS63187206A (en) * | 1987-01-30 | 1988-08-02 | Nippon Telegr & Teleph Corp <Ntt> | Method and device for welding multicore optical fiber tape core |
JPH01118808A (en) * | 1987-10-31 | 1989-05-11 | Fujikura Ltd | Welding and connecting device for optical fibers |
US5009513A (en) * | 1987-12-16 | 1991-04-23 | Fujikura Ltd. | Method of measuring quantity of heat applied to optical fiber |
WO1991012546A1 (en) * | 1990-02-16 | 1991-08-22 | Ant Nachrichtentechnik Gmbh | Splicing process and device |
WO2006050974A1 (en) * | 2004-11-12 | 2006-05-18 | Ccs Technology, Inc. | Method for determining the eccentricity of an optical fiber core, and method and device for connecting optical fibers |
JP2008519970A (en) * | 2004-11-12 | 2008-06-12 | シーシーエス テクノロジー インコーポレイテッド | Method for determining eccentricity of core of optical waveguide and method and apparatus for coupling optical waveguide |
JP4778520B2 (en) * | 2004-11-12 | 2011-09-21 | シーシーエス テクノロジー インコーポレイテッド | Method for determining eccentricity of core of optical waveguide and method and apparatus for coupling optical waveguide |
JP2006184467A (en) * | 2004-12-27 | 2006-07-13 | Sumitomo Electric Ind Ltd | Optical fiber heating strength detection method, fusion splicing method, and fusion splicing device |
US7900480B2 (en) | 2004-12-27 | 2011-03-08 | Sumitomo Electric Industries, Ltd. | Method of determining heating amount, method of fusion splicing, and fusion splicer |
JP2007185723A (en) * | 2006-01-11 | 2007-07-26 | Fujifilm Corp | Automatic alignment device and method |
CN106248349A (en) * | 2016-10-10 | 2016-12-21 | 长飞光纤光缆股份有限公司 | A kind of test optical fiber automatic coupler |
JP2022099584A (en) * | 2020-12-23 | 2022-07-05 | 古河電気工業株式会社 | Fusion machine |
Also Published As
Publication number | Publication date |
---|---|
JPS6215843B2 (en) | 1987-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100477803B1 (en) | Optical alignment apparatus and method by using visual optical source and image | |
US7699541B2 (en) | Optical fiber fusion splicer and method for estimating a shape of beam discharged by the optical fiber fusion splicer | |
US6034718A (en) | Method and apparatus for observing tip portion of optical fibers butting each other | |
JPS59160113A (en) | Melt sticking and connecting method of optical fiber using image pickup device | |
CA1309773C (en) | Method for measuring splice loss of an optical fiber | |
JPS6153683B2 (en) | ||
JP2004318171A (en) | Controlled permanent splice of optical fiber | |
EP0094125B1 (en) | Method and device for positioning light-conducting fibres | |
US4911522A (en) | Core alignment system for optical fibers | |
JP3654904B2 (en) | Connecting optical fiber with twin core and fiber with single core | |
KR910008442A (en) | Fiber Optic Connection System and Method | |
US5158591A (en) | Optical fiber ribbon fusion-splicing device | |
JP2000111756A (en) | Apparatus for aligning optical fiber block and planar optical waveguide element and control method therefor | |
JPS6049307A (en) | Fiber connecting device | |
JP3206607B2 (en) | Optical fiber fusion splicer | |
JP3142751B2 (en) | Optical fiber fusion splicer | |
JPH0352604B2 (en) | ||
JPH0228605A (en) | Fusion splicing method for optical fibers | |
JPH0526167B2 (en) | ||
JP2005173210A (en) | Method for determining rotational reference position of plane of polarization keeping optical fiber and optical fiber fusion-splicing machine | |
JPS59228221A (en) | hybrid lens | |
JP2859680B2 (en) | Manufacturing method of polarization maintaining optical fiber coupler | |
JP2624774B2 (en) | Optical fiber fusion splicer | |
SU1394191A1 (en) | Method of centering endoscope | |
JPH08313775A (en) | Optical axis alignment detector |