[go: up one dir, main page]

JPS59159105A - optical waveguide - Google Patents

optical waveguide

Info

Publication number
JPS59159105A
JPS59159105A JP3275483A JP3275483A JPS59159105A JP S59159105 A JPS59159105 A JP S59159105A JP 3275483 A JP3275483 A JP 3275483A JP 3275483 A JP3275483 A JP 3275483A JP S59159105 A JPS59159105 A JP S59159105A
Authority
JP
Japan
Prior art keywords
optical waveguide
optical
etching
substrate
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3275483A
Other languages
Japanese (ja)
Inventor
Koji Ishida
宏司 石田
Hiroyoshi Matsumura
宏善 松村
Shinji Sakano
伸治 坂野
Takeyuki Hiruma
健之 比留間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3275483A priority Critical patent/JPS59159105A/en
Publication of JPS59159105A publication Critical patent/JPS59159105A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/131Integrated optical circuits characterised by the manufacturing method by using epitaxial growth

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、光通信、光情報処理分野で用いられる光集積
1!?]路に必要な光導波路もしくはその作製方法に関
する。特に単結晶で出来た、光の伝送損失の低い光導波
路もしくはその作製方法に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is directed to optical integration 1! used in the fields of optical communication and optical information processing. ? ] The present invention relates to optical waveguides necessary for optical waveguides and methods for producing the same. In particular, the present invention relates to an optical waveguide made of single crystal with low optical transmission loss, and a method for manufacturing the same.

〔従来技術〕[Prior art]

近年、光通信の実用化が急速に進展しており、光部品の
小型化、高信頼化に対する研究開発が盛んに行われてい
る。光集積回路の主要構成要素である光導波路は従来、
基板となる光学劇料にイオン打込み、拡散などによって
屈折率を高める物質を注入する方法、あるいは第1図に
示すように、気相成七味、液相成長法によって基板1よ
りも屈折率の高い単結晶薄膜2を所望の厚さだけエピタ
キシャル成長させ、その後にエツチングによって光導波
路となる部分以外をとり去って光導波路4を形成する方
法などによって作製されている。しかしながら前者の方
法では光導波路の断面形状を制御することが難かしい。
2. Description of the Related Art In recent years, the practical application of optical communications has progressed rapidly, and research and development is actively being carried out to make optical components smaller and more reliable. Optical waveguides, which are the main components of optical integrated circuits, have traditionally been
A method of injecting a substance that increases the refractive index into the optical material serving as the substrate by ion implantation or diffusion, or as shown in Fig. 1, a material with a higher refractive index than that of the substrate 1 by using vapor phase growth or liquid phase growth method. The optical waveguide 4 is manufactured by epitaxially growing the single crystal thin film 2 to a desired thickness, and then etching away the portion other than the portion that will become the optical waveguide. However, in the former method, it is difficult to control the cross-sectional shape of the optical waveguide.

また後者のエツチングを用いる方法にはウェットエッチ
とドライエッチの2手法があるが、ウェットエッチは深
さ方向と同時に横力向にも同じ速度でエツチングが行わ
れるために微細なパターン形成が困難であり、かつ結晶
の方位によってエツチング速度が異なるため、光導波路
の形状制御が難かしいという欠点を持っている。またド
ライエッチはウェットエッチにくらべ、横方向にエツチ
ングされることが少い、あるいは結晶の異方性に依存し
ないなど、光導波路の形状制御において優れた点を有し
ているが、エッチすべき単結晶膜2と、マスク3とすべ
き材料との組み合わせが難かしいという欠点がある。た
とえばYIG (イツトリウム・鉄−ガーネット)系磁
性ガ、−ネットm膜はドライエッチ速度が非常に遅いた
め、適当なドライエッチ用マスク材刺が見当らない。
There are two methods for using the latter type of etching: wet etching and dry etching, but wet etching is difficult to form fine patterns because etching is performed at the same speed in both the depth direction and the lateral force direction. However, since the etching rate differs depending on the orientation of the crystal, it has the disadvantage that it is difficult to control the shape of the optical waveguide. Dry etching also has advantages over wet etching in controlling the shape of optical waveguides, such as less lateral etching and not depending on the anisotropy of the crystal. There is a drawback that it is difficult to combine the single crystal film 2 and the material for the mask 3. For example, since the dry etching speed of YIG (yttrium iron garnet) based magnetic film is very slow, no suitable dry etching mask material can be found.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、これらの問題を解決するためになされ
たもので、光集積回路に必要な低損失単結晶光導波路を
提供すること、もしくはこれを容易にかつ高精度で形成
する方法を提供することにある。
The purpose of the present invention was to solve these problems, and is to provide a low-loss single-crystal optical waveguide necessary for optical integrated circuits, or a method for forming the same easily and with high precision. It's about doing.

〔発明の概要〕[Summary of the invention]

すなわち本発明の光導波路は、単結晶基板上に屈折率が
これと同等か、あるいはこれよりも低い光学材料、たと
えばSi3N、、3iQ、などの膜を形成した後、反応
性スパッタなどで単一モード伝送をpJ能とする深さ2
幅?有する溝を形成し、その溝中に基板よりも1箭い屈
折率金石する物質をエピタキシャル成長によって形成し
、光導波路全構成することを特徴とするものである。1
″い換えると、従来のエツチングによる光導波路の形成
方法が、導波路となる薄膜単結晶を形成したのちエツチ
ングして導波路を形成するのVこ対し、本発明はS I
O2、813N4などのクラッドとなる光学材料をエツ
チングして溝を形成し、その後、導波路となる薄膜単結
晶を形成する点に特徴がある。
In other words, the optical waveguide of the present invention is produced by forming a film of an optical material with a refractive index equal to or lower than this on a single crystal substrate, such as Si3N, 3iQ, etc., and then forming a single film by reactive sputtering or the like. Depth 2 for mode transmission to pJ function
width? The optical waveguide is characterized in that a groove is formed therein, and a material having a refractive index of 100% higher than that of the substrate is formed in the groove by epitaxial growth, thereby forming the entire optical waveguide. 1
``In other words, whereas the conventional method for forming an optical waveguide by etching involves forming a thin film single crystal that will become the waveguide and then etching it to form the waveguide, the present invention
The method is characterized in that a groove is formed by etching an optical material such as O2 or 813N4 that will become the cladding, and then a thin film single crystal that will become the waveguide is formed.

S+C)=あるいはSi、N4などの光学材料は反応性
スパッタエッチによって容易に微細パターンに容易に形
成できるの午、単結晶材料の種類にかがわらず、精度の
艮い光導波路を形成することが可能である。
S+C) = Alternatively, optical materials such as Si and N4 can be easily formed into fine patterns by reactive sputter etching, and optical waveguides with excellent precision can be formed regardless of the type of single crystal material. It is possible.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例により本発明の詳細な説明す心。 Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 (100)面を持つQaAs基板11(キャリヤー濃度
I X 10” tyn−”  )上にモノシランとア
ンモニアガスを流し、プラズマCVDによって厚さ1μ
mのSi、N4膜12を第2図のように形成した。この
si、N4膜上にフレオンガスを用いた反応性スパッタ
エッチによって巾4μm、長さ2門の溝14をもうける
。こめ溝14は後に光導波路の外郭となるものである。
Example 1 Monosilane and ammonia gas were flowed onto a QaAs substrate 11 (carrier concentration I x 10"tyn-") having a (100) plane, and a thickness of 1 μm was formed by plasma CVD.
A Si, N4 film 12 having a thickness of 100 m was formed as shown in FIG. Grooves 14 having a width of 4 μm and a length of two gates are formed on the Si and N4 films by reactive sputter etching using Freon gas. The groove 14 will later become the outline of the optical waveguide.

ついで気相成長法fNOCVD法)によって溝14中に
キャリヤー濃度2X10’慢f3の高抵抗()aAsA
lB12ピタキシャル成長させて第2図の(C)に示す
ととく光導波路13を形成した。光導波路の両端面をへ
き開し、長さ1.8咽の光導波路に、波長1.3μmの
直線偏光波を入射した。直線偏光の振動方向は第2図に
おけるX軸方向である。出射端面におけるニアフィール
ドバタンより、との光導波路は単一モード伝送路である
ことを確認した。この光導波路の断面形状の精度は、走
査型電子顕微鏡の測定結果によれば、±5%以下であっ
た。またこの光導波路Q伝送損失は1.5dB/Cm以
下であった。
Then, high resistance ()aAsA with a carrier concentration of 2×10'f3 is formed in the groove 14 by vapor phase growth (NOCVD method).
1B12 was grown pitaxially to form an optical waveguide 13 as shown in FIG. 2(C). Both end faces of the optical waveguide were cleaved, and a linearly polarized light wave with a wavelength of 1.3 μm was introduced into the optical waveguide having a length of 1.8 μm. The vibration direction of the linearly polarized light is the X-axis direction in FIG. From the near-field batten at the output end face, we confirmed that the optical waveguide with and is a single mode transmission line. The accuracy of the cross-sectional shape of this optical waveguide was ±5% or less, according to the results of measurement using a scanning electron microscope. Further, the optical waveguide Q transmission loss was 1.5 dB/Cm or less.

実施例2 Gd3GasO+z基板上に実施例]と同様な方法で0
、8 a mのSi、N4膜を形成し、このSi、N、
膜に巾0.8μm、長さ1−の溝を反応性スパッタエッ
チ法で作製した。この基板を約600Cに加熱し、その
上にYIG (イツトリウム・鉄・ガーネット)mkQ
周波スパッタリングで形成し、SI3N4膜上に堆積し
たYIGk取9去り、光導波路13とsi、N、膜面と
をほぼ同−而にした。
Example 2 0 on Gd3GasO+z substrate in the same manner as [Example]
, 8 am Si, N4 film is formed, and this Si, N,
A groove with a width of 0.8 μm and a length of 1−1 was formed in the film by reactive sputter etching. Heat this substrate to about 600C, and add YIG (yttrium, iron, garnet) mkQ on top of it.
The YIGk layer 9 formed by frequency sputtering and deposited on the SI3N4 film was removed to make the optical waveguide 13 and the Si, N, and film surfaces almost the same.

光導波路の両端面を研磨し、長さ800μmの光導波路
に、波長13μ■ηの直線偏光波を入射した。
Both end surfaces of the optical waveguide were polished, and a linearly polarized light wave with a wavelength of 13 μιη was input into the optical waveguide having a length of 800 μm.

直線偏光の振動方向は、実施例1と同様X軸方向である
。ニアフィールドパターンの観測から単一モード伝送1
−でを行っていることが確められた。
The vibration direction of the linearly polarized light is the X-axis direction as in the first embodiment. Single mode transmission from near field pattern observation 1
- It was confirmed that this was done.

光の伝送損失はldB/m以下であった。導波路断面形
状の精度も、実施例1の場合と同程度であった。
The optical transmission loss was less than 1 dB/m. The accuracy of the waveguide cross-sectional shape was also comparable to that of Example 1.

〔発明の効果〕〔Effect of the invention〕

以上の実施例で示したように、本発明によれば単結晶基
板上に、結晶性光導波路が高精度で作製可Heとなり、
基板材料が異っても同様の手法で低損失の光導波路を形
成できる。
As shown in the above embodiments, according to the present invention, a crystalline optical waveguide can be fabricated with high precision on a single crystal substrate, and
Even if the substrate material is different, a low-loss optical waveguide can be formed using the same method.

【図面の簡単な説明】[Brief explanation of the drawing]

第z1gl(a)〜(C)は従来のエツチングによる光
導波路作製工程を示す断面概略図、第2図(a)〜(C
)は本発明による導波路の作製工程を示す断面概略図で
ある。 1】・・・基板結晶、12・・・クラッド層、13・・
・光導兜 1 口 )12 (2)
No. z1gl(a) to (C) are schematic cross-sectional views showing the optical waveguide manufacturing process by conventional etching, and FIGS. 2(a) to (C)
) is a schematic cross-sectional view showing the manufacturing process of a waveguide according to the present invention. 1]...Substrate crystal, 12...Clad layer, 13...
・Light guiding helmet 1 mouth) 12 (2)

Claims (1)

【特許請求の範囲】[Claims] 1、結晶基板)、K 、基板と同程度か、あるいはこれ
よりも低い屈折率を持つ光学材料を形成し、この光学材
料1軸中に単一モード伝送を可能とする深さ2幅を有す
る1本あるいは複数本の溝を形成し、その溝中に基板よ
りも高い屈折率を有する物質をエピタキシャル成長によ
って形成して光導波路を構成してなることを特徴とする
光導波路。
1. Crystal substrate), K, forms an optical material with a refractive index comparable to or lower than that of the substrate, and has a depth of 2 widths that enables single mode transmission in one axis of this optical material. 1. An optical waveguide characterized in that the optical waveguide is constructed by forming one or more grooves, and forming a substance having a higher refractive index than a substrate in the grooves by epitaxial growth.
JP3275483A 1983-03-02 1983-03-02 optical waveguide Pending JPS59159105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3275483A JPS59159105A (en) 1983-03-02 1983-03-02 optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3275483A JPS59159105A (en) 1983-03-02 1983-03-02 optical waveguide

Publications (1)

Publication Number Publication Date
JPS59159105A true JPS59159105A (en) 1984-09-08

Family

ID=12367627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3275483A Pending JPS59159105A (en) 1983-03-02 1983-03-02 optical waveguide

Country Status (1)

Country Link
JP (1) JPS59159105A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4762382A (en) * 1987-06-29 1988-08-09 Honeywell Inc. Optical interconnect circuit for GaAs optoelectronics and Si VLSI/VHSIC
JPH0264605A (en) * 1988-08-31 1990-03-05 Seiko Epson Corp Method of manufacturing optical waveguide
US5163118A (en) * 1986-11-10 1992-11-10 The United States Of America As Represented By The Secretary Of The Air Force Lattice mismatched hetrostructure optical waveguide
US7184630B2 (en) 2001-09-14 2007-02-27 Korea Advanced Institute Of Science And Technology Optical coupling module with self-aligned etched grooves and method for fabricating the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5163118A (en) * 1986-11-10 1992-11-10 The United States Of America As Represented By The Secretary Of The Air Force Lattice mismatched hetrostructure optical waveguide
US5354709A (en) * 1986-11-10 1994-10-11 The United States Of America As Represented By The Secretary Of The Air Force Method of making a lattice mismatched heterostructure optical waveguide
US4762382A (en) * 1987-06-29 1988-08-09 Honeywell Inc. Optical interconnect circuit for GaAs optoelectronics and Si VLSI/VHSIC
JPH0264605A (en) * 1988-08-31 1990-03-05 Seiko Epson Corp Method of manufacturing optical waveguide
US7184630B2 (en) 2001-09-14 2007-02-27 Korea Advanced Institute Of Science And Technology Optical coupling module with self-aligned etched grooves and method for fabricating the same

Similar Documents

Publication Publication Date Title
US4400052A (en) Method for manufacturing birefringent integrated optics devices
US7362504B2 (en) Miniature circulator devices and methods for making the same
US9829728B2 (en) Method for forming magneto-optical films for integrated photonic devices
JPWO2009016972A1 (en) Optical device, optical integrated device, and manufacturing method thereof
JPS59159105A (en) optical waveguide
US4849080A (en) Method of manufacturing an optical stripline waveguide for non-reciprocal optical components
US6785431B2 (en) Miniature circulator array devices and methods for making the same
JPS5937504A (en) Optical waveguide
CN109491110A (en) High damage threshold Waveguide Phase Modulator
JPH0212110A (en) Production of optical integrated circuit
JPS60156014A (en) Production of flush type optical waveguide device
JP2008139478A (en) Optical waveguide circuit board loaded with waveguide type optical isolator
Wolfe Thin films for non-reciprocal magneto-optic devices
JP2982836B2 (en) Manufacturing method of waveguide type isolator
JPH02232606A (en) Production of thin film waveguide type optical isolator
CN109613648B (en) Preparation method of full-crystal waveguide coupler
JPS58169106A (en) Optical isolator
JPH04191711A (en) Optical wave guide passage
JPH0359603A (en) Ti-diffused LiNbO↓3 optical waveguide and its manufacturing method
JPS5957990A (en) Method for growing liquid phase epitaxial thick film of garnet
JPH11142663A (en) Magneto-optical waveguide and its production
JPH0415199B2 (en)
JPS616606A (en) Production of light guide
JPS60156012A (en) Flush type optical waveguide
JP2903474B2 (en) How to make a channel type optical waveguide