[go: up one dir, main page]

JPS59158516A - Manufacture of electrode and wiring - Google Patents

Manufacture of electrode and wiring

Info

Publication number
JPS59158516A
JPS59158516A JP3071883A JP3071883A JPS59158516A JP S59158516 A JPS59158516 A JP S59158516A JP 3071883 A JP3071883 A JP 3071883A JP 3071883 A JP3071883 A JP 3071883A JP S59158516 A JPS59158516 A JP S59158516A
Authority
JP
Japan
Prior art keywords
metal
deposited
tungsten
wiring
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3071883A
Other languages
Japanese (ja)
Inventor
Naoki Yamamoto
直樹 山本
Nobuo Hara
信夫 原
Hiroji Saida
斉田 広二
Seiichi Iwata
誠一 岩田
Kuniyuki Sakumichi
訓之 作道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3071883A priority Critical patent/JPS59158516A/en
Publication of JPS59158516A publication Critical patent/JPS59158516A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To realize fine electrodes and wirings which have the width of less than approximately 1mum by a method wherein a prescribed metal pattern is adhered to a substrate and a metal layer is deposited on the formed domain by chemical vapor deposition under a prescribed condition and the electrodes and wirings are formed. CONSTITUTION:Metal is stuck to the prescribed position on a substrate by ion implantation method, deposition method or sputtering method and metal is deposited on that domain by chemical vapor deposition method. For instance, a negative-type electron beam resist 3 is formed on an oxide film 2 formed on a silicon substrate 1 and a stripe pattern is formed by exposure to an electron beam and ion implantation of tungsten 4 into the specimen is performed. After the resist is removed, tungsten is deposited 5 by a hot-wall type depressurized chemical vapor deposition equipment.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は絶縁膜上の選択的に所定の位置に金属を堆積す
る化学気相成長法に係シ、特に1ミクロメートルあるい
はそれ以下の微細配線幅全必要とする高集積シリコン半
導体装置に好適な電極、配線の製造方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a chemical vapor deposition method for selectively depositing metal at predetermined positions on an insulating film, and particularly relates to a fine interconnection of 1 micrometer or less. The present invention relates to a method for manufacturing electrodes and wiring suitable for highly integrated silicon semiconductor devices that require full width.

〔従来技術〕[Prior art]

金属−酸化物一半礫体(MOS)型シリコン半導体装置
の高集積、高速化に伴い、従来用いられてきた多結晶シ
リコンゲート電極、配線はタングステンやモリブデン等
の高融点金属電極、配線に置きかわりつつある。しかし
ながら、これらの金属をハロゲン化物ガス中でのグラズ
マあるいは反応性スパックエツチングを行なうとサイド
エッチングのため、エツチングマスク用のレジスト線幅
より0.3〜04ミクロンメートル上記金頃配線が細り
、1ミクロンメートルあるいはそれ以下の電極配線が形
成が難かしいという欠点があった。
With the increasing integration and speed of metal-oxide monolithic (MOS) type silicon semiconductor devices, the conventionally used polycrystalline silicon gate electrodes and wiring are being replaced with high-melting point metal electrodes and wiring such as tungsten and molybdenum. It's coming. However, when these metals are subjected to glazma or reactive spack etching in a halide gas, side etching occurs, and the metal wiring becomes thinner by 0.3 to 04 micrometers than the resist line width for the etching mask, resulting in a width of 1 micrometer. There was a drawback that it was difficult to form electrode wiring of meters or less.

また、微細配線形成技術にはリフトオフ法がある。周知
のようにこの方法にはりスト1フ月の耐熱性が悪いため
、高温で金属を形成、できず、良質な金属膜が得られな
い。また約1ミクロン以下の線幅の配線を形成する場合
、リフトオフ材の間隙への金属の堆積が難かしい等の欠
点があった。
Further, there is a lift-off method as a technique for forming fine wiring. As is well known, this method has poor heat resistance during the first month of the process, so metal cannot be formed at high temperatures and a high quality metal film cannot be obtained. Furthermore, when forming interconnections with a line width of about 1 micron or less, there are drawbacks such as difficulty in depositing metal in gaps in the lift-off material.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、ドライエツチング法やリフトオフ法で
難かしかった約1ミクロン以下の幅を有する微細電極、
配線を可能にする製造方法を提供することにある。
The purpose of the present invention is to create a fine electrode with a width of about 1 micron or less, which has been difficult with dry etching methods and lift-off methods.
The object of the present invention is to provide a manufacturing method that enables wiring.

〔発明の概要〕[Summary of the invention]

上記目的全達成するための本発明の構成は、基板に所定
のパターンで金属の被着を行なう工程と、上記形成され
た領域上に所定の条件で化学気相成長を行なって上記パ
ターンの金属層全堆積して電極配線を形成することにあ
る。
The structure of the present invention for achieving all of the above objects includes a step of depositing metal on a substrate in a predetermined pattern, and performing chemical vapor deposition on the formed region under predetermined conditions to form a metal layer in the pattern. The purpose is to deposit all layers to form electrode wiring.

上記金属の破着形成工程としては、イオン打込み法、蒸
着法、スパッタ法が適用される。中でも、イオン打込み
が(傘めて良好であった。上記金属の被着(で便わfる
金属としてはA7.W、’MO。
An ion implantation method, a vapor deposition method, and a sputtering method are applied to the metal fracture formation process. Among them, the ion implantation was generally good.The metals that were useful for the above metal deposition were A7.W and 'MO.

Ta、 T;、及びSlとすることが肝要である。It is important to set Ta, T; and Sl.

捷だ、化学気相に使われる金属としてばW又はへ40と
することが肝要である。
It is important that the metal used in the chemical vapor phase be W or H40.

本発明は、上述の様に化学気相成長法によりタングステ
ンあるいはモリブデンをシリコン酸化膜上に堆積させず
、シリコン基板上にだけ選択的に堆積できる条件を見つ
けたことに基ずくものである。またシリコン基板のかわ
りにア刀・ミニラム。
The present invention is based on the discovery of conditions that allow tungsten or molybdenum to be deposited selectively only on a silicon substrate without depositing tungsten or molybdenum on a silicon oxide film by chemical vapor deposition as described above. Also, instead of a silicon substrate, a sword/miniram is used.

タングステン、モリブデン、メンタルあるいはチタン上
Vこも選択的にタングステンまたはモリブデンを堆積で
さることが明らかとなった。次にシリコン酸化膜ニシリ
コン、ア兎ミニウムおよびタングステン全イオン打込し
た後、化学気相成長法によりモリブデンあるいはタング
ステンを被着させた結果、イオン打込領域だけにこれら
の金属が堆積できることがわかった。以下、実施例を用
いて訂玉述する。
It has become clear that tungsten or molybdenum can be selectively deposited on tungsten, molybdenum, metal or titanium. Next, after implanting all ions of silicon oxide film, silicon, aluminum, and tungsten, molybdenum or tungsten was deposited by chemical vapor deposition, and it was found that these metals could be deposited only in the ion implanted region. . Hereinafter, a detailed explanation will be given using examples.

〔発明の実施例〕[Embodiments of the invention]

実施例1; 以下、本発明の一実施例を第1図により説明する。 Example 1; An embodiment of the present invention will be described below with reference to FIG.

シリコン基板1上に形成した酸化膜2上に坏ガ型の電子
線レジストである例えば6M −CM S(クロロメチ
ル化ポリスチレン)3を用い電子ビームvcx p露光
し、レジスト線幅0.3ミ外ロンメータ、レジスト線間
隔0.3ミクロンメートルのストライブ状パターンを形
成した。続いて遠紫外線を全面に照射した後、上記レジ
スタバター/をマスクとし、タングステン4を試料にイ
オン打込した。イオン打込に際し、打込による試料の外
温を防ぐため、試料台を水冷しかつ回転させながら打込
んだ。打込エネルギは50から150KeVで打込量は
I X 10” cm−”からI X 10” cm−
”とした。
An oxide film 2 formed on a silicon substrate 1 is exposed to electron beam VCXP using a molded electron beam resist such as 6M-CMS (chloromethylated polystyrene) 3, and the resist line width is 0.3 mm. A striped pattern with a resist line spacing of 0.3 micrometers was formed using a ronmeter. Subsequently, after irradiating the entire surface with deep ultraviolet rays, tungsten 4 was ion-implanted into the sample using the resistor butter as a mask. During ion implantation, the sample stage was cooled with water and was rotated to prevent the sample from being exposed to external temperatures due to implantation. The implant energy is 50 to 150 KeV and the implant amount is I X 10"cm-" to I X 10" cm-
”.

次に打込マスク用レジストを除去後、ホット・ウオール
型の減圧の化学気相成長装置でタングステンを堆積5さ
せた。
Next, after removing the implant mask resist, tungsten was deposited 5 using a hot wall type reduced pressure chemical vapor deposition apparatus.

その条件は試料温度450CでW F a とJ−I 
2の全圧1.3 X IQ2p aとし、その時の82
分圧は1.3Paとし、/で二。
The conditions are sample temperature 450C, W Fa and J-I
The total pressure of 2 is 1.3 x IQ2p a, and then 82
Partial pressure is 1.3 Pa, / is 2.

この条件でタングステン全0.2ミクロンメートル堆積
した結果を走査型電子顕微鏡で観察した結果、線1!8
0.4ミクロンメートルのタングステン配線が形成でき
ていることが確認できた。また、タングステンのイオン
打込のかわりに、シリコン。
As a result of observing the result of depositing a total of 0.2 micrometers of tungsten under these conditions with a scanning electron microscope, the line 1!8
It was confirmed that 0.4 micrometer tungsten wiring was formed. Also, instead of tungsten ion implantation, silicon.

アルミニウム、モリブデン、メンタルおよびチタンの打
込みも同様に適用できた。これらのイオン打込みののち
、タングステンを選択的に堆積した結果、03〜065
ミクロンの配線が形成できンヒ。
Aluminum, molybdenum, mental and titanium implants were equally applicable. After these ion implantations, tungsten was selectively deposited, resulting in 03-065
Micron wiring can be formed.

これらの打込猷属のうち、チタンの場合は他の金属より
化学気相成長法によるタングステンの選択成長に時間が
掛ったが、同様に良質な金属配線が1hられた。
Among these implantable metals, in the case of titanium, it took longer to selectively grow tungsten by chemical vapor deposition than other metals, but similarly high-quality metal wiring was produced for 1 hour.

実施例2; 本発明の他の実X例として、M、、08トランジスタ全
図2にシj(す。
Embodiment 2: As another practical example of the present invention, an M, 08 transistor is shown in FIG.

10Ω・確のP型(100)基板1に熱酸化法により素
子間分離用の500nmの厚い酸化膜6と、膜厚2Q 
nmの薄いゲート酸化膜7を形成した。続いてトランジ
スタのしさい電圧制御のため、イオン打込法によりボロ
ンをI X 10” /cm2打込んだ。次にスパッタ
法によシ膜厚lQnmのシリコン8を堆積し、前述の実
施例1と同様の方法でレジスIfゲート電極形状に形成
し、続いてCF4+4%02ガスを用いたプラズマエツ
チング装置゛でレジスト全マスクとして先に堆積した薄
いシリコン8をエツチングした。この後レジスト全除去
し、実施例1と同一の条件でタングステン5を薄いシリ
コン上Qて選択的に0.3ミクロンメータの厚さに堆積
した。次にソース、ドレイン9形成のためのひ素を60
KeVで5. X 15 ” /cm2イオン打込みし
た。その後、通常の方法で層間絶縁膜用りん硅酸ガラス
10、アルミニウム電極配線11゜素子保護用絶縁膜1
2を形成し、MOS)シ/ジスタff:r「成した。こ
のMOSトランジスタの設計チャンイ、ル長は0.5ミ
クロンメータであるが形成できたタングステンのゲート
電極幅は0.65ミクロンメークであった。MOSトラ
ンジスタは正常動作を示し、そのしきい電圧は0.2 
Vであった。
A thick oxide film 6 of 500 nm for isolation between elements and a film thickness of 2Q are formed on a P-type (100) substrate 1 of 10 Ω by thermal oxidation.
A gate oxide film 7 as thin as 7 nm was formed. Next, in order to control the voltage of the transistor, boron was implanted at I x 10"/cm2 by an ion implantation method. Next, silicon 8 was deposited to a thickness of 1Q nm by a sputtering method. A resist If gate electrode shape was formed in the same manner as above, and then the thin silicon 8 deposited earlier was etched as a mask for the entire resist using a plasma etching device using CF4+4%02 gas.After that, the entire resist was removed. Tungsten 5 was selectively deposited on thin silicon to a thickness of 0.3 μm under the same conditions as in Example 1. Next, 60 μm of arsenic was deposited to form the source and drain 9.
5 at KeV. X 15"/cm2 ions were implanted. After that, phosphosilicate glass 10 for interlayer insulating film, aluminum electrode wiring 11° and insulating film 1 for device protection were formed using the usual method.
The design length of this MOS transistor was 0.5 micrometers, but the width of the tungsten gate electrode was 0.65 micrometers. The MOS transistor showed normal operation, and its threshold voltage was 0.2.
It was V.

〔発明の効果〕〔Effect of the invention〕

以上詳述した様に、本発明によれば、1ミクロンメート
ル以下の微細配線を精度良く形成できるので、超高集積
半導体装置の高密度化を容易にする効果がある。これは
本発明の金属をイオン打込する方法では電極、配線用金
属の加工工程が省略でき、また、薄い金属をタングステ
ンやモリブデンの選択成長の核として敷く方法では下地
金属が極めて薄いためこれらの金属のドライエツチング
時のナイドエツチングをほとんど無くすることができる
ためである。
As described in detail above, according to the present invention, fine interconnections of 1 micrometer or less can be formed with high accuracy, which has the effect of facilitating high-density ultra-highly integrated semiconductor devices. This is because the method of ion-implanting metal according to the present invention can omit the process of processing metal for electrodes and wiring, and the method of laying thin metal as a nucleus for selective growth of tungsten or molybdenum requires extremely thin base metal. This is because it is possible to almost eliminate nide etching during dry etching of metal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例としての微細配線形成工程図
、第2図は本発明の他の実施例としてのMosトランジ
スタ形成工程図である。 1・・・シリコン基板、2・・・酸化膜、3・・・レジ
スト、4・・・イオン打込された金属、5・・・選択成
長した金属、6・・・素子間分離用酸化膜、7・・・ゲ
ート酸化膜、8・・・薄い金属膜、9・・・ソース、ド
レイン、1o・・・層間絶縁膜、11.12・・・電極
、配線、12・・・素子保護用絶縁膜。 F 第 1  図 雨 2 図 ;5
FIG. 1 is a process diagram for forming fine wiring as one embodiment of the present invention, and FIG. 2 is a process diagram for forming a Mos transistor as another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Silicon substrate, 2... Oxide film, 3... Resist, 4... Ion-implanted metal, 5... Selectively grown metal, 6... Oxide film for isolation between elements , 7... Gate oxide film, 8... Thin metal film, 9... Source, drain, 1o... Interlayer insulating film, 11.12... Electrode, wiring, 12... Element protection Insulating film. F Figure 1 Rain 2 Figure; 5

Claims (1)

【特許請求の範囲】 1、基板上の所定位置に金属をイオン打込性蒸着法、お
よびスパッタ法の金属被着方法群からなる少く共1種を
用いて金属を被着する工程、その後、化学気相成長法に
より、上記基板上のうち金属全被着せしめた領域のみに
金属を堆積し電極配線を形成することを%徴とする電極
配線の製造方法。 2、特許請求の範囲第1項において、上記基板として、
シリコン酸化物あるいはりんおよび沓ロンを含有するシ
リコン酸化物もしくはシリコン輩化物とし、打込金属を
アルミニウム、タングステン、モリブデン、メンタルお
よびチタンなどの金属あるいはシリコンとし、堆積金属
をモリブデンあるいはタングステンとすることを特徴と
する電極・配線の製造方法。 3、特許請求の範囲第1項において、上記金属被着法に
!る金属薄膜の厚さを2〜5Qnmの厚さに堆積し、続
いて所定の形状に加工後、化学気相成長法により、これ
らの金属上にのみ選択的にモリブデンあるいはタングス
テンを堆積し、電極配線を形成することf:%徴とする
電極配線の製造方法。
[Scope of Claims] 1. A step of depositing metal on a predetermined position on a substrate using at least one of the metal deposition methods group consisting of ion implantation vapor deposition method and sputtering method, and then, A method for producing electrode wiring, the method comprising depositing metal only on the area on which metal is completely deposited on the substrate by chemical vapor deposition to form electrode wiring. 2. In claim 1, as the substrate,
The method is to use silicon oxide or a silicon oxide or silicon compound containing phosphorus and phosphorus, to use metals such as aluminum, tungsten, molybdenum, mental and titanium, or silicon as the implanted metal, and to use molybdenum or tungsten as the deposited metal. Characteristic electrode/wiring manufacturing method. 3. In claim 1, the above-mentioned metal deposition method! A thin metal film is deposited to a thickness of 2 to 5 Qnm, and after processing into a predetermined shape, molybdenum or tungsten is selectively deposited only on these metals by chemical vapor deposition to form an electrode. A method for manufacturing an electrode wiring in which the wiring is formed with f:% characteristic.
JP3071883A 1983-02-28 1983-02-28 Manufacture of electrode and wiring Pending JPS59158516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3071883A JPS59158516A (en) 1983-02-28 1983-02-28 Manufacture of electrode and wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3071883A JPS59158516A (en) 1983-02-28 1983-02-28 Manufacture of electrode and wiring

Publications (1)

Publication Number Publication Date
JPS59158516A true JPS59158516A (en) 1984-09-08

Family

ID=12311423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3071883A Pending JPS59158516A (en) 1983-02-28 1983-02-28 Manufacture of electrode and wiring

Country Status (1)

Country Link
JP (1) JPS59158516A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089442A (en) * 1990-09-20 1992-02-18 At&T Bell Laboratories Silicon dioxide deposition method using a magnetic field and both sputter deposition and plasma-enhanced cvd
KR100253561B1 (en) * 1992-08-28 2000-05-01 김영환 Method of depositing w on oxide of semiconductor device without adhesion layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089442A (en) * 1990-09-20 1992-02-18 At&T Bell Laboratories Silicon dioxide deposition method using a magnetic field and both sputter deposition and plasma-enhanced cvd
KR100253561B1 (en) * 1992-08-28 2000-05-01 김영환 Method of depositing w on oxide of semiconductor device without adhesion layer

Similar Documents

Publication Publication Date Title
EP0075085B1 (en) Method of fabricating a conductive metal silicide structure
DE102006056598B4 (en) A method of manufacturing a transistor device for an integrated circuit
JPS6057952A (en) Manufacture of semiconductor device
JP2007502541A (en) Internal gettering in SIMOX SOI silicon substrate
JPS59158516A (en) Manufacture of electrode and wiring
US6780698B2 (en) Semiconductor device and its production method
JPS6032361A (en) Method for manufacturing electrode wiring for semiconductor devices
JPS6187322A (en) Manufacturing method of semiconductor device
JPS59161857A (en) Wiring and resistors for semiconductor devices
JPH06267959A (en) Method for manufacturing semiconductor device
KR940001894B1 (en) Manufacturing Method of Semiconductor Device
JPH0391245A (en) Thin-film semiconductor device and manufacture thereof
JPS583221A (en) Ion beam deposition method
JPH04119633A (en) Manufacture of thin film semiconductor device
JPH10223559A (en) Method for manufacturing semiconductor device
JPS639661B2 (en)
JPS59111367A (en) Manufacture of semiconductor device
JPS61284919A (en) Ion implantation method
JP3052489B2 (en) Method for manufacturing thin film transistor
DE102018122979A1 (en) METHOD FOR FORMING A SILICON ISOLATOR LAYER AND SEMICONDUCTOR DEVICE WITH THE SAME
JPS5890776A (en) Semiconductor device and its manufacturing method
JPS636837A (en) Manufscture of ohmic electrode
JPH0461324A (en) Method of selective vapor phase growth
JPS61198763A (en) Manufacture of semiconductor device
JPS60182170A (en) Manufacturing method of semiconductor device