[go: up one dir, main page]

JPS59152936A - Hybrid resin composition with excellent electromagnetic resistance and rigidity - Google Patents

Hybrid resin composition with excellent electromagnetic resistance and rigidity

Info

Publication number
JPS59152936A
JPS59152936A JP2834683A JP2834683A JPS59152936A JP S59152936 A JPS59152936 A JP S59152936A JP 2834683 A JP2834683 A JP 2834683A JP 2834683 A JP2834683 A JP 2834683A JP S59152936 A JPS59152936 A JP S59152936A
Authority
JP
Japan
Prior art keywords
conductive
resin composition
resin
metal
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2834683A
Other languages
Japanese (ja)
Other versions
JPH038389B2 (en
Inventor
Hiroshi Ubukawa
生川 洋
Hayami Yoshimochi
吉持 駛視
Koichi Saito
晃一 斉藤
Osamu Ohara
大原 治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2834683A priority Critical patent/JPS59152936A/en
Priority to EP84301088A priority patent/EP0117700A1/en
Publication of JPS59152936A publication Critical patent/JPS59152936A/en
Publication of JPH038389B2 publication Critical patent/JPH038389B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To provide the titled composition having excellent electromagnetic shielding effect, rigidity, formability and heat resistance, useful as the housing of electronic appliances, etc., and composed of specific amounts of specific scaly non-metallic inorganic particles, specific electrically conductive fibrous material, electrically conductive fine particles, and a resin. CONSTITUTION:The objective composition is prepared by mixing (A) 10- 50pts.wt. of scaly non-metallic inorganic particles 1 coated with an electrically conductive substance having a volume resistivity of <=1OMEGA.cm (preferably silver, graphite, etc.) (preferably a mica-group mineral etc. having an average aspect ratio of >=10 and coated with 1/5-1 times weight of an electrically conductive substance), (B) 1-20pts.wt. of electrically conductive fibrous material 2 (preferably metallic fibers, or organic fibers coated with metal or mixed with fine metal powder) and/or electrically conductive fine particles 3 (preferably silver, graphite, etc.) having volume resistivity of <=1OMEGA.cm, and (C) 30-80pts.wt. of a resin 4 (e.g. polyvinyl chloride, etc.).

Description

【発明の詳細な説明】 本発明は゛電磁しやへい性および剛性に優れたハイブリ
ット系樹脂組成物に関する。さらに詳しくは、^鱗片片
状非金属無機粉粒体の表面が体積固有抵抗1Ω・m以下
の導電性物質で被覆されてなる導電性無機粉粒体10〜
50!量部と、■体積固有抵抗が10・m以下の導電性
繊維状物および/または導電性微粒子1〜20重量部と
、0樹脂30〜80重量部とからなる電磁じゃへい性お
よび剛性に優れたハイブリット系樹脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hybrid resin composition having excellent electromagnetic resistance and rigidity. More specifically, the conductive inorganic powder 10 is a scale-like nonmetallic inorganic powder whose surface is coated with a conductive substance having a volume resistivity of 1 Ω·m or less.
50! (1) 1 to 20 parts by weight of conductive fibrous material and/or conductive fine particles having a volume resistivity of 10 m or less, and 30 to 80 parts by weight of zero resin. Excellent electromagnetic resistance and rigidity. The present invention relates to a hybrid resin composition.

近年、電子機器の発達と共に電磁障害という新しい社会
問題が生じてきた。これは諸環境下での3− 各種ノイズによってコンピューターが誤動作する等のト
ラブルでめ9、最近では各種装置がコンピューターによ
って制御されているので大きな事故になりかねない。特
に機器の軽量化、コンパクト化の要求によって、そのハ
ウジングが殆んどプラスチックでできていることも問題
点の一つであり、米国ではFCC等の規制値も制定され
ている。その対策として、現在では1)金属溶射、2)
導電性塗料、3)導電性フィラー混入プラスチックスの
3つの方法もしくは素材が使われているが、1)%2.
)の方法は高価でかつ寿命が短かく、最近では3)の技
術分野が注目されている。しかしかかる導電性フィラ〜
としてはもっばら金属繊維や金属フレーク、金属または
黒鉛微粒子が検討されているが、金属繊維や金属フレー
クを多量に樹脂に混入して成形物を 得ることは容易で
はなく、射出成形や押出成形時の溶融混練の際に、これ
らのフィラーは軟質であるがためにその形状が変化し、
かつ成形物中で偏在して、予期した性能を得ることは難
しい。
In recent years, with the development of electronic devices, a new social problem called electromagnetic interference has arisen. This is caused by problems such as computers malfunctioning due to various noises in various environments.9 Recently, various devices are controlled by computers, which can lead to major accidents. In particular, due to demands for lighter and more compact equipment, one of the problems is that most of the housings are made of plastic, and in the United States, regulatory values such as the FCC have been established. As a countermeasure, currently 1) metal spraying, 2)
Three methods or materials are used: 1) conductive paint, and 3) plastics mixed with conductive filler.
Method 3) is expensive and has a short lifespan, and recently the technical field 3) has been attracting attention. However, such a conductive filler~
Metal fibers, metal flakes, and metal or graphite fine particles are being considered for this purpose, but it is not easy to mix large amounts of metal fibers or metal flakes into resin to obtain molded products, and it is difficult to obtain molded products during injection molding or extrusion molding. Because these fillers are soft, their shape changes during melt-kneading.
Moreover, it is unevenly distributed in the molded product, making it difficult to obtain the expected performance.

一方、該金属繊維や金蝿フレークの添加量が少4− ないとその電磁じゃへい効果は見出せない。また電子機
器のハウジングを導電性にすることは漏電がおる場合に
は非常に危険であシ、絶縁性も必要でるる。このように
一方では導電性他方では絶縁性という一見矛盾した性能
が要求されている。さらに、電子機器や通信機器のハウ
ジングには剛性や耐熱性も要求されてお9、このような
条件をすべて満足しうる素材はいまだ開発されておらず
、電磁じゃへい作用についても本格的に究明されていな
いのが現状である。
On the other hand, the electromagnetic blocking effect cannot be observed unless the amount of the metal fibers or the metal fly flakes added is small. Furthermore, making the housing of an electronic device electrically conductive is extremely dangerous in the event of a leakage, and insulation is also required. In this way, seemingly contradictory properties are required: conductivity on the one hand and insulation on the other. Furthermore, rigidity and heat resistance are also required for the housings of electronic and communication equipment9, and a material that satisfies all of these requirements has not yet been developed, and electromagnetic interference has not yet been fully investigated. The current situation is that this has not been done.

以上のような現状に鑑み、本発明者らは上記条件を満足
しうる素材を開発すべく鋭意研究を重ねた結果、導電性
フィラーとして鱗片状非金属無機粉粒体の光面を導電性
物質で被覆した導電性無機粉粒体と樹脂とを成る一定割
合いで混合した樹脂組成物は電磁じゃへい性および剛性
に優れていることを見出し、先に特願昭57−1972
29号として特許出願した。該導電性無機粉粒体は金属
繊維や金属フレークに比べて少量の添加で優れた電磁じ
ゃへい効果を示し、かつ樹脂との混練時に破損5− することは少なく、剛性を向上させる特徴を有している
。しかし、かかる導電性処理はコストアップにつながシ
、また混練後押出成形してシート状に成形した後さらに
真空成形等の二次加工を行う際に、剛性が向上するが故
に成形性が低下するという問題点も残している。本発明
者らはその後さらに研究を重ねた結果、上記2成分の他
に少量の導電性繊維状物および/または導電性微粒子を
併用することによp1該導電性無機粉粒体の添加量を減
少したにもかかわらず電磁じゃへい性が向上し、さらに
は成形性をも改良できることを見出し、本発明に到った
ものである。すなわち、本発明は、■鱗片片状非金属a
機粉粒体の表面が体積固有抵抗1Ω・m以下の導電性物
質で被覆されてなる導電性無機粉粒体10〜50重量部
と、■体積固有抵抗が10・m以下の導電性繊維状物お
よび/または導を性徴粒子1〜20重量部と、0樹脂3
0〜8ON量部とからなる電磁じゃへい性、剛性、およ
び成形性に優れたハイブリット系樹脂組成物である。
In view of the above-mentioned current situation, the present inventors have conducted intensive research to develop a material that satisfies the above conditions. As a result, the optical surface of the scale-like nonmetallic inorganic powder is replaced with a conductive material as a conductive filler. It was discovered that a resin composition prepared by mixing a resin and a conductive inorganic powder coated with a resin in a certain proportion has excellent electromagnetic resistance and rigidity, and the patent application No. 57-1972 was previously filed.
A patent application was filed as No. 29. Compared to metal fibers and metal flakes, the conductive inorganic powder exhibits an excellent electromagnetic barrier effect even when added in small amounts, is less likely to break when mixed with resin, and has the characteristics of improving rigidity. are doing. However, such conductive treatment increases costs, and when performing secondary processing such as vacuum forming after kneading, extrusion molding, and subsequent secondary processing such as vacuum forming, moldability decreases due to improved rigidity. There remains a problem. As a result of further research, the present inventors found that by using a small amount of conductive fibrous material and/or conductive fine particles in addition to the above two components, the amount of the conductive inorganic powder (p1) added could be reduced. The inventors have discovered that, despite the decrease, electromagnetic resistance can be improved and moldability can also be improved, leading to the present invention. That is, the present invention provides: (1) scaly nonmetal a
10 to 50 parts by weight of a conductive inorganic powder or granule whose surface is coated with a conductive substance having a volume resistivity of 1 Ω·m or less; 1 to 20 parts by weight of sexual characteristic particles and/or particles, and 3 parts of resin.
This is a hybrid resin composition with excellent electromagnetic resistance, rigidity, and moldability, comprising 0 to 8 parts of ON.

本発明のハイブリット系樹脂組成物は、コンピュ6一 −ター寺の電子機器や通信憬器のハウジング材料等に適
した素材であり、lOキロヘルツ〜1ギガヘルツの周波
数領域の電磁波に対して20〜60デシベルの後れた電
磁じゃへい効果を有し、かつ樹脂単独の場合にくらべて
曲げ弾性率が3〜8倍、熱変形温度が30〜150℃上
昇するという優れた剛性および耐熱法を宿している。
The hybrid resin composition of the present invention is a material suitable for housing materials for computer electronic equipment and communication equipment, and has a resistance of 20 to 60% against electromagnetic waves in the frequency range of 10 kilohertz to 1 gigahertz. It has an electromagnetic barrier effect with a decibel delay, and has excellent rigidity and heat resistance, with a bending modulus of elasticity 3 to 8 times higher than that of resin alone, and a heat distortion temperature of 30 to 150 degrees Celsius. ing.

本発明で用いられる鱗片状非金属無機粉粒体としては、
哀悼、メルク、セリサイト、ガラスフレーク、層状グラ
ファイト、バーミキュライト、ベントナイト、アタパル
ジャイト等が挙げられる。
The scaly nonmetallic inorganic powder used in the present invention includes:
Examples include mourning, merc, sericite, glass flakes, layered graphite, vermiculite, bentonite, attapulgite, etc.

該鱗片状非金属無機粉粒体は、成形性や成形物の諸物性
の点から平均直径5〜3,000μm1平均アスペクト
比は10以上であることが好ましい。とくに、雲母族、
脆冥母族または緑泥石族に属する天然または人工[の鉱
物は最も好ましく用いられる鱗片状無機化合物でをノリ
、具体的には天然の白雲母(マスコバイ))、金哀悼(
フロゴバイ))%M雲母(バイオタイト)、ヒル石(バ
ーミキュライト〕、フッ素會含有する合成裏母等を挙け
ること=7− ができる。
The scale-like nonmetallic inorganic powder preferably has an average diameter of 5 to 3,000 μm and an average aspect ratio of 10 or more from the viewpoint of moldability and various physical properties of the molded product. In particular, the mica family,
Natural or artificial minerals belonging to the brittle mineral group or the chlorite group are the most preferably used scaly inorganic compounds, specifically natural muscovite (muscovite), gold porphyry (muscovite), etc.
Mica (biotite), vermiculite (vermiculite), synthetic backstones containing fluorine, etc. can be mentioned.

該鱗片状非金属無機粉粒体の表面を被憶する導電性物質
としては体積固有抵抗が1Ω・cnl以下であれはいか
なる導電性物質でも使用できるか、導電性、伺滝−注、
1凹路等の点から銀、銅、鉄、ニック”ル、アルミニウ
ム、スズ、クロム、チタン、亜鉛、金、白金のいずれか
またはその合金または黒鉛が適しており、電磁しヤへい
注の点からは、樹脂との混合比にもよるが、該鱗片状無
機粉粒体の115〜1*X倍舗の前述の導電性物質でそ
の表面が被りされていることが好ましい。導電性l1i
i2I質の被覆蓋が該鱗片状無機粉粒体の115N量倍
量より少ない場合は電磁しゃへい効果が少なく、またI
N量倍量より多い場合は高温で混合される樹脂を分解劣
化させる作用を壱するものもあるので好ましくない。該
導電性物質による表面の被秒方法はいずれの方法によっ
てもよいが、例えば適当71:l#度の金属塩化合物溶
液中に該鱗片状無機粉粒体を分散させ、つさ′に浴液を
還元して鱗片状無機粉粒体表面に金践粒子を析出させる
方法等の無電解メッキ8− 法や真空蒸着法、スパッタリング法、イオンブレーティ
ング法等が使用できる。また適当なバインダーを該鱗片
状無機粉粒体の表面にコーティングした上に導電性物質
の微粒子を付着させる方法も使用できる。被&された導
電性物質の厚さは0.01μm〜1mx、好ましくは0
.05〜100μmが諸性能上望ましい。
Can any conductive substance with a volume resistivity of 1 Ω·cnl or less be used as the conductive substance covering the surface of the scaly nonmetallic inorganic powder?
1. Silver, copper, iron, nickel, aluminum, tin, chromium, titanium, zinc, gold, platinum or an alloy thereof, or graphite is suitable from the viewpoint of concave paths, etc.; Although it depends on the mixing ratio with the resin, it is preferable that the surface of the scaly inorganic powder is covered with 115 to 1*X times as much of the above-mentioned conductive material as the scale-like inorganic powder.
If the amount of the i2I coating lid is less than the amount of 115N of the scale-like inorganic powder, the electromagnetic shielding effect will be small;
If the amount of N is more than double the amount, it is not preferable because it may have the effect of decomposing and deteriorating the resin mixed at high temperatures. Any method may be used to cover the surface with the conductive substance, but for example, the scale-like inorganic powder is dispersed in a metal salt compound solution of an appropriate 71:1 # degree, and then the scaly inorganic powder is soaked in a bath solution. Electroless plating methods, vacuum evaporation methods, sputtering methods, ion blating methods, etc. can be used, such as a method in which metal particles are precipitated on the surface of a scale-like inorganic powder by reducing. It is also possible to use a method in which the surface of the scaly inorganic powder is coated with a suitable binder and then fine particles of a conductive substance are attached thereto. The thickness of the covered conductive material is 0.01 μm to 1 m×, preferably 0.01 μm to 1 m×
.. A thickness of 0.05 to 100 μm is desirable in terms of performance.

本発明で用いられる導電性繊維状物は、体積固有抵抗が
1Ω・m以下でめれはいかなる導電性繊維状物でも使用
できるが、通常、平均アスペクト比が10以上、平均直
径が0.1μm〜3間、平均繊維長が10μm〜50m
1+のものが好ましく用いられる。
The conductive fibrous material used in the present invention has a volume resistivity of 1 Ωm or less and any conductive fibrous material can be used, but usually has an average aspect ratio of 10 or more and an average diameter of 0.1 μm. ~3, average fiber length 10μm ~ 50m
Those with a value of 1+ are preferably used.

導電性、成形性、価格等の点からは、金属繊維、金属で
被覆された有機または無機繊維、炭素繊維、黒鉛繊維、
金属微粒子または炭素微粒子が混在する有機繊維のいず
れか、もしくはその21以上の混合物が適している。さ
らに具体的には、金属繊維としでは引抜き法、溶融紡糸
法、切削法、せん断法、晶出法等で得られる鉄、ステン
レス、アルミニウム、ニッケル、銅、黄銅、青銅、鉛、
タン9− ゲステン、モリブデン等の短繊維やウィスカーが使用で
き、金属で被覆された有機または無機繊維としてはその
表面にアルミニウムやニッケル等をメッキ、コーティン
グまたは焦眉させたガラス繊維や一般の帯電防止用有機
繊維等が使用でき、炭素繊維または黒鉛繊維としてはア
クリル繊維、レーヨン、石油ピッチ、石炭ピッチ等を出
発原料とするいずれの繊維も使用でき、金属微粒子また
は炭素微粒子が混在する有機繊維としてid銀、銅、黄
銅、ニッケル、アルミニウム、鉄等の金属微粒子やアセ
チレンブラック、ケッチェンブランク等の導電性黒鉛微
粒子をポリエステル等の比較的融点が高い有機繊維中に
分散させた導電性繊維等が使用できる。また本発明で用
いられる該導電性微粒子としては、通常、平均直径10
0μm以下の銀、銅、黄銅、ニッケル、アルミニウム、
鉄等の金属微粒子やアセチレンブラック、タッチエンブ
ラック等の導電性黒鉛微粒子を挙げることができる。
In terms of conductivity, formability, price, etc., metal fibers, metal-coated organic or inorganic fibers, carbon fibers, graphite fibers,
Either organic fibers mixed with metal fine particles or carbon fine particles, or a mixture of 21 or more thereof are suitable. More specifically, metal fibers include iron, stainless steel, aluminum, nickel, copper, brass, bronze, lead, etc. obtained by drawing methods, melt spinning methods, cutting methods, shearing methods, crystallization methods, etc.
Tan 9- Short fibers and whiskers such as gesten and molybdenum can be used, and examples of metal-coated organic or inorganic fibers include glass fibers whose surfaces are plated, coated, or burnished with aluminum or nickel, and general antistatic materials. Organic fibers, etc. can be used, and as carbon fibers or graphite fibers, any fibers made from acrylic fibers, rayon, petroleum pitch, coal pitch, etc. as starting materials can be used, and as organic fibers mixed with metal fine particles or carbon fine particles, ID silver can be used. Conductive fibers can be used in which fine metal particles such as copper, brass, nickel, aluminum, and iron, and conductive graphite fine particles such as acetylene black and Ketjen blank are dispersed in organic fibers with a relatively high melting point such as polyester. . Further, the conductive fine particles used in the present invention usually have an average diameter of 10
Silver, copper, brass, nickel, aluminum, 0 μm or less,
Examples include metal fine particles such as iron, and conductive graphite fine particles such as acetylene black and touch en black.

本発明における導電性繊維状物および導電性微粒子の役
割りは、主導電・姉フィラーである鱗片状の10− 該導を注無機粉粒体を連結させることで1ハ該導電性微
粒子は樹脂中に分散させた時には連鎖状の凝集構造を形
成し、事実上導電性繊維状物と同様の役目をする。
The role of the conductive fibrous material and the conductive fine particles in the present invention is that the conductive fine particles are formed by connecting the scaly 10-conductor inorganic powder, which is the main conductor and sister filler. When dispersed in the medium, it forms a chain-like aggregate structure, and in effect functions in the same way as a conductive fibrous material.

本発明で用いられる樹脂は成形可能ないかなる高分子材
料でも良く、例えばポリ塩化ビニル、ポリエチレン、ポ
リプロピレン、ポリスチレン、ポリメチルメタアクリレ
ート、hS@脂、ABS樹脂、ポリエチレンテレフタレ
ート、ポリブチレンテレフタレート、ポリカーボネート
、ポリウレタン樹脂、ポリアセタール樹脂、ポリイミド
樹脂、ナイロン樹脂前の熱可塑性樹脂およびその共重合
体、ポリ酢酸ビニル、酢酸ビニル−エチレン共重合体、
ポリ塩化ビニル、ポリアクリル酸エステル等のエマルジ
ョン状の樹脂、SBRや各褌天然および合成ゴムのラテ
ックス状樹脂もしくは塊状ゴム、不飽和ポリエステル(
立(月旨、エポキシ樹脂、フェノール樹脂、尿素樹脂、
メラミン樹脂等の熱可塑性樹脂金李けることができる。
The resin used in the present invention may be any moldable polymeric material, such as polyvinyl chloride, polyethylene, polypropylene, polystyrene, polymethyl methacrylate, hS@resin, ABS resin, polyethylene terephthalate, polybutylene terephthalate, polycarbonate, polyurethane. Resin, polyacetal resin, polyimide resin, thermoplastic resin before nylon resin and its copolymer, polyvinyl acetate, vinyl acetate-ethylene copolymer,
Emulsion-like resins such as polyvinyl chloride and polyacrylic acid esters, latex-like resins or lump rubbers of SBR and various loincloth natural and synthetic rubbers, unsaturated polyesters (
Standing (moon effect, epoxy resin, phenolic resin, urea resin,
Thermoplastic resins such as melamine resins can be melted.

その他本発明においては、目的に応じて炭ばカルシウム
、硫酸バリウム、クレイ等のフィラー、カーボンブラッ
ク、酸化チタン等の顔料や老化防止剤、紫外線吸収剤、
シランカップリング剤、内部離型剤等を適宜添加便用す
ることができる。
In addition, in the present invention, fillers such as calcium carbonate, barium sulfate, and clay, pigments such as carbon black and titanium oxide, anti-aging agents, ultraviolet absorbers,
A silane coupling agent, an internal mold release agent, etc. can be added as appropriate.

本発明の効果を充分に発揮させるには、樹脂30〜80
重賃部に対して該導電性無機粉粒体を10〜50][置
部と該導電性繊維状物および/貰たは該導電性微粒子′
5r、1〜20M量部厳加混合する必要か1ハ該導電性
無機粉粒体が100量部より少ない場合や該導電性繊維
状物および/捷たは該導電性微粒子が1皿量部より少な
い場合には、導電性が低くなって電磁しfへい効果に乏
しくなり、また該導を性無機粉粒体が50重量部より多
い場合や該導電性繊維状物および/または該導電性微粒
子が20重量部よp多い場合は、成形が困難となって美
麗な外観を有する成形物を得ることが難しい0 該導を性無機粉粒体と該導電性繊維状物および/または
該導電性微粒子(以下該導電性フィラー類と略す)を樹
脂に混合して目的とする成形物を得るための成形方法と
してはいかなる方法でも採用することができるが、例え
ば樹脂が前述の熱可塑性樹脂の場合には、予め該導電性
フィラー類と樹脂とを所足比で混合して押出機にて混練
しベレット状に成形した後、射出成形機にて所望の形状
の成形物を得ることが好ましい。また、混練押出板にて
シート状に押出し、しかる後に真空成形または圧空成形
にて所望の形状に成形することも可能である。プラスチ
ックスが前述のエマルジョンやラテックスの形状を有す
るものの場合には同様に混#i後シート状にし、さ、ら
に乾燥して熱プレス等で所望の形状にする方法等の他に
、大型のフレーム等の表面に直接スラリー状物を吹付は
成形し乾燥させるという方法も採用できる。樹脂が熱硬
化E41j脂の場合も極く一般に採用されている方法か
用いられるが、SMC−?BMCのようなコンパウンド
として該導電性フィラー類とガラス繊維のノAイブリッ
ド補強にすることによってより効果を高めることも可能
である。
In order to fully exhibit the effects of the present invention, resin 30 to 80%
10 to 50% of the conductive inorganic powder for the heavy part] [The placed part and the conductive fibrous material and/or the conductive fine particles'
Is it necessary to strictly mix 5r, 1 to 20M parts? 1C If the conductive inorganic powder is less than 100 parts, or if the conductive fibrous material and/or the conductive fine particles are 1 part by volume. If the amount is less than 50 parts by weight, the conductivity will be low and the electromagnetic shielding effect will be poor. If the amount of fine particles is more than 20 parts by weight, it becomes difficult to mold and it is difficult to obtain a molded product with a beautiful appearance. Any method can be used to obtain the desired molded product by mixing conductive particles (hereinafter referred to as conductive fillers) with a resin, but for example, if the resin is the aforementioned thermoplastic resin, In this case, it is preferable to mix the conductive fillers and the resin in the desired ratio in advance, knead them in an extruder, mold them into a pellet shape, and then obtain a molded product in the desired shape with an injection molding machine. . It is also possible to extrude it into a sheet using a kneading extrusion plate and then mold it into a desired shape by vacuum forming or pressure forming. If the plastic has the shape of an emulsion or latex as described above, there is a method in which it is mixed in the same way, made into a sheet, and further dried and shaped into the desired shape by heat pressing, etc. It is also possible to adopt a method of spraying a slurry directly onto the surface of a frame or the like, forming the slurry, and then drying it. When the resin is thermosetting E41J resin, a very commonly adopted method is used, but SMC-? It is also possible to further enhance the effect by using hybrid reinforcement of the conductive filler and glass fiber as a compound such as BMC.

このようにして得られた本発明による成形物は13− 電磁じゃへい性、および剛性等で優れた特性を有するも
のでるるか、その性能は次のようにして評価される。!
磁しゃへい効果の測定法は米国FCC(Feclera
l Communication Comm1ssio
n )の定めた方法に準することが望ましいが、簡便的
には、例えば「工業材料」第29巻12月号の31ペー
ジもしくは38ページに記載されている方法でも評価可
能である。この方法はノイズ発生源としてはモーターま
たはスパークを使用し、信号を夕′イボールアンテナで
受けてスペクトラムアナライザーもしくは電界強度計で
検出する方法であるが、検出には準尖頭検波方式を採用
すべきである。一方、成形物の曲げ弾性率、引張強度、
熱変形温度等の機緘%注は個々のプラスチックスに対応
するJIS規格もしくはASTM規格によって測定・評
価方法は定められている。
The thus obtained molded product according to the present invention has excellent properties such as 13-electromagnetic resistance and rigidity, and its performance is evaluated as follows. !
The method for measuring the magnetic shielding effect is based on the US FCC (Feclera).
lCommunicationComm1ssio
Although it is preferable to follow the method specified in item (n), it is also possible to carry out the evaluation simply by the method described, for example, on page 31 or page 38 of "Kogyo Zazai" Vol. 29, December issue. In this method, a motor or spark is used as the noise source, and the signal is received by an antenna and detected by a spectrum analyzer or field strength meter, but a quasi-peak detection method is used for detection. Should. On the other hand, the flexural modulus, tensile strength,
Measuring and evaluation methods for heat distortion temperature, etc., are determined by JIS standards or ASTM standards corresponding to individual plastics.

以上のように本発明による材脂組成物は′fM、磁しゃ
へい性および剛性、耐熱性等に優れるので、テレビゲー
ム、電子製版機、電子タイプライタ−1電子式タイムレ
コーダー、電子卓上計算機、電子14− ミシン、電子レジスター、電子レンジ、バーンナルコン
ピューター、ファクシミリ、複写機、プリンター、VT
R,プロッター、ワードプロセッサー、ナイスプレイ、
超音波診断装置j!!:告の電子機器、通信機器、医療
機器、耐測機器寺のハウジング材料として広く応用でき
るものでオシ、特にコンピューターを内蔵した装置、機
器に対しては有効でめるO 以下、実施例によシ本発明を具体的に脱明するが、これ
らの実施例によp本発明は例等眠定されるものではない
。実施例中、特に断わらない限p「部」は全てN置部を
意味する。
As described above, the resin composition according to the present invention is excellent in 'fM, magnetic shielding property, rigidity, heat resistance, etc., so it can be used in video games, electronic plate making machines, electronic typewriters, electronic time recorders, electronic desk calculators, electronic 14- Sewing machine, electronic register, microwave oven, burner computer, facsimile, copying machine, printer, VT
R, plotter, word processor, nice play,
Ultrasonic diagnostic equipment! ! : It can be widely applied as a housing material for electronic equipment, communication equipment, medical equipment, and measurement equipment. Although the present invention will be specifically explained, the present invention is not limited to these Examples. In the examples, unless otherwise specified, all p "parts" mean "N parts".

実施例1および比較例1.2.3 平均直径90μm1平均アスペクト比50の金雲母粉粒
体(カナダ涯、■クラレ製スゾライトマイカ)の表面に
、無電解メッキ法によってニッケルを析出させた。この
金属被&雲母を硝酸で洗った後の重量減少量より求めた
ニッケルの含有量は約30重意チであった。つき′にマ
) IJラックス脂として用いる市販のポリプロピレン
樹脂のベレットをヘンシェルミキサー中で攪拌しながら
、該雲母の車量の0.5!量チに和尚するα−アミノプ
ロピル) l)エトキシシランと所定量の該金属被覆雲
母粉粒体および金属繊維を絵加混合した。ここで用いた
金属繊維は平均直径60μm1平均繊維長3朋(平均ア
スペクト比50)の黄銅短繊維であり、混合比は樹脂7
0重量部に対して該金属被〜雲母粉粒体25][置部、
該金属繊維5重量部である。
Example 1 and Comparative Example 1.2.3 Nickel was deposited on the surface of phlogopite powder (Suzolite Mica manufactured by Kuraray, Canada) with an average diameter of 90 μm and an average aspect ratio of 50 by electroless plating. The nickel content determined from the amount of weight loss after washing the metal coating and mica with nitric acid was about 30%. 0.5 of the amount of mica while stirring a pellet of commercially available polypropylene resin used as IJ Lux fat in a Henschel mixer. l) Ethoxysilane and a predetermined amount of the metal-coated mica powder and metal fibers were mixed together. The metal fibers used here were short brass fibers with an average diameter of 60 μm and an average fiber length of 3 mm (average aspect ratio of 50), and the mixing ratio was resin 7 mm.
0 parts by weight of the metal coating to mica powder 25] [Okibe,
The amount of the metal fiber is 5 parts by weight.

続いて該混合物を1軸押出機に供給して250℃で溶融
混線を行ない、ベレットを得た。さらに得られたベレッ
トから射出成形によって試験片を、また押出成形によっ
て厚さ3ミリメートルのシート状物を得た。該樹脂組成
物のASTM 0648に準拠した方法(荷、&18.
6に9/d)にて測定した熱変形温度は124℃、また
ASTM D 790に準拠した方法にて測定した曲げ
弾性率は4.8 X 10’ kp/ caであった。
Subsequently, the mixture was fed to a single-screw extruder and melt mixed at 250°C to obtain pellets. Furthermore, a test piece was obtained from the obtained pellet by injection molding, and a sheet-like product having a thickness of 3 mm was obtained by extrusion molding. The method of preparing the resin composition according to ASTM 0648 (loading, &18.
The heat deformation temperature measured at 6 to 9/d) was 124° C., and the flexural modulus was 4.8×10′ kp/ca measured by a method based on ASTM D 790.

さらに得られたシート状物を「工業材料」第29巻12
月号38ページに記載の方法と同様の電磁じゃへい効果
測定装置を作製し、モーターをノイズ発生源とし、スペ
クトラムアナライザーにて解析した結果、10メガヘル
ツの周波数に対して30デシベル、100メガヘルツで
34デシベル、lギカヘルツで39デシベルのしゃへい
効果があった。
Furthermore, the obtained sheet-like material was
We created an electromagnetic interference effect measuring device similar to the method described on page 38 of the issue, used the motor as the noise source, and analyzed it with a spectrum analyzer.The results were 30 dB for a frequency of 10 MHz and 34 dB for a frequency of 100 MHz. It had a shielding effect of 39 decibels in decibels, 1 gigahertz.

実施例1と同様の金属被覆雲母粉粒体、黄銅繊維および
ポリグロン樹脂を用い、樹脂単独(比較例1)、該金属
被覆雲母のみが25重量饅添加された樹脂組成物(比較
例2)および該黄銅繊維のみが5重量%箔加された樹脂
組成物(比較例3)の成形物を同様に得て物性を測定し
た。その結果、樹脂単独、該金属被覆雲母粉粒体のみ2
5!量饅添加組成物および該黄銅繊維のみ5重i%添加
組成物の熱変形温度は各々58℃、119℃および65
℃でめ9、曲げ弾性率各々は1.2 X 10 ”f 
/ tri %4.0xlO’ly/−および4.8 
X 10’kf/c!Iであった。
Using the same metal-coated mica powder, brass fibers and polygron resin as in Example 1, a resin composition alone (Comparative Example 1), a resin composition in which only the metal-coated mica was added in an amount of 25% by weight (Comparative Example 2), and A molded article of a resin composition (Comparative Example 3) containing only the brass fibers in an amount of 5% by weight was similarly obtained and its physical properties were measured. As a result, only the resin, only the metal-coated mica powder 2
5! The heat deformation temperatures of the composition containing 5 weight i% of brass fibers and the composition containing only 5% of brass fibers were 58°C, 119°C and 65°C, respectively.
℃ and the bending modulus of elasticity is 1.2 x 10”f.
/tri %4.0xlO'ly/- and 4.8
X 10'kf/c! It was I.

また41L磁しゃへい効果は比較例2の場合、10メガ
ヘルツ、100メガヘルツおよび1ギガヘルツの周波数
に対して各々18デシベル、22デシベルおよび28デ
シベルであったが、比較例1および3の場合は全周波数
でいずれも2〜3デシベルでる17− )、はとんど効果は無かった。以上の結果から本発明に
よるハイブリット系樹脂組成物は樹脂単独および少量の
金t714繊維添加物に比べると優れた剛性、耐熱性お
よび電磁じゃへい性を有していることは明らかである。
In addition, in the case of Comparative Example 2, the 41L magnetic shielding effect was 18 dB, 22 dB, and 28 dB at frequencies of 10 MHz, 100 MHz, and 1 GHz, respectively, but in the case of Comparative Examples 1 and 3, it was at all frequencies. All of them had an output of 2 to 3 decibels (17-), but had little effect. From the above results, it is clear that the hybrid resin composition according to the present invention has superior rigidity, heat resistance, and electromagnetic resistance compared to the resin alone and a small amount of gold T714 fiber added.

また本発明のハイブリット系樹脂組成物は、金属被積雲
母単独添加物に比べて電磁じゃへい性を大幅に改良でき
ることは明らかである。
Further, it is clear that the hybrid resin composition of the present invention can significantly improve electromagnetic resistance compared to a single additive of metallized cumulus mica.

実施例2および比較例4.5.6 インド産白其母粉粒体(平均直径60μm1平均アスペ
クト比32)の表面に無電解メッキ法にて銅を析出させ
た。この場合は無1!解金属イオン液の濃度および析出
時間を変えることによって金属含有量が353[i%お
よび13M量饅0銅被覆雲母粉粒体を得た。また導電a
m維状物としては平均直径20μm1平均繊維長2.5
1111(平均アスペクト比125)のアルミニウム蒸
着ガラス繊維を用いた。
Example 2 and Comparative Example 4.5.6 Copper was deposited on the surface of Indian white mother powder granules (average diameter: 60 μm, average aspect ratio: 32) by electroless plating. In this case, no 1! By varying the concentration of the metallizing ion solution and the precipitation time, copper-coated mica powder particles having a metal content of 353 i% and an amount of 13M were obtained. Also conductive a
m fibrous material: average diameter 20 μm 1 average fiber length 2.5
1111 (average aspect ratio 125) aluminum-deposited glass fiber was used.

つぎに、マトリックス樹脂として市販のポリブチレンテ
レフタレート樹脂を用い、実施例1と同様の方法にて2
40℃の成形温贋で前記銅含有i3518− 重量%および13皇量饅の導電性製母粉粒体を各々40
M量%、7μm%含有し、かつ該アルミニウム蒸着ガラ
ス繊維をいずれも31量−含有するハイブリット系樹脂
組成物(実施例2および比較例4)、銅含有量35皇量
饅の導電性雲母粉粒体401蓋チと該アルミニウム蒸着
ガラス繊維を25重it%含有するハイブリット系樹脂
組成物(比較例5)および樹脂単独(比較例6)からな
る試験片とシート状物を得ようと試みたが、比較例5の
場合は混線が畔しく、試験片を得ることはで!!なかっ
た。これらの成形物の物性を実施例1と同様の方法で測
定した。その結果、実施例2、比較例4および6の熱変
形温度は各々173℃、69℃、60°Cであった。ま
た曲げ弾性率は谷々9.5X10kf/d、3.2X1
0’梅/I−#!、2’、5X10’梅/−であった。
Next, using a commercially available polybutylene terephthalate resin as a matrix resin, 2
By molding and heating at 40°C, 40% of the copper-containing i3518-wt% and 13% of copper-containing mother powder particles were each added.
Hybrid resin composition containing M amount%, 7 μm%, and 31 amounts of the aluminum-deposited glass fiber (Example 2 and Comparative Example 4), conductive mica powder with a copper content of 35% Attempts were made to obtain test pieces and sheet-like products consisting of a hybrid resin composition (Comparative Example 5) containing granular 401 cap and 25% by weight of the aluminum-deposited glass fiber (Comparative Example 5) and a resin alone (Comparative Example 6). However, in the case of Comparative Example 5, the crosstalk was so severe that it was impossible to obtain a test piece! ! There wasn't. The physical properties of these molded products were measured in the same manner as in Example 1. As a result, the heat distortion temperatures of Example 2 and Comparative Examples 4 and 6 were 173°C, 69°C, and 60°C, respectively. In addition, the bending elastic modulus is 9.5X10kf/d, 3.2X1
0'Plum/I-#! , 2', 5X10' plum/-.

さらに実施例2の電磁じゃへい効果は10メガヘルツで
31デシベル、100メガヘルツで42デシベル、1キ
ガヘルツで46デンベルであった。一方、比較例4の電
磁しやへい効果は全周波数域で2〜5デンベルでめp1
比較例6は2〜3デシベルでめった。以上の結果によシ
、24電性麟片状無機粉粒体の含有率が小さい場合は、
導電性が吐くなって電磁しゃへい効果に乏しく、葦だ、
導′vM、注繊維状物を本発明の組成割合よシ多童に添
加した場合には成形が困難になシ、不発明のハイブリッ
ト系樹脂組成物が優れた剛・姉、成形性および電磁しゃ
へい効果を有していることは明らかである。
Furthermore, the electromagnetic interference effect of Example 2 was 31 decibels at 10 MHz, 42 decibels at 100 MHz, and 46 denbels at 1 kilohertz. On the other hand, the electromagnetic shielding effect of Comparative Example 4 was 2 to 5 denbels in all frequency ranges.
Comparative Example 6 failed at 2 to 3 decibels. According to the above results, when the content of 24-electrode scale-like inorganic powder is small,
The conductivity is poor and the electromagnetic shielding effect is poor, so it is a reed.
However, when a fibrous material is added to a material with a composition ratio of the present invention, molding becomes difficult. It is clear that it has a shielding effect.

実施例3 平均粒径250μm、平均アスペクト比65あ金複母粉
粒体の表面に真空蒸着法にてアルミニウムを40重世襲
含有するLf)に被損した、該狼母粉粒体45]jol
t部と平均i11[0,1μmのケッチェンブランク(
黒鉛粒子)15M量部および市販不飽和ポリエステル樹
脂4ON量部とを混合攪拌し、8らにメチルエチルケト
ンパーオキサイドとナフテン酸コバルト系の組合せによ
る硬化剤を重加してペーストを調製した。次に該ペース
トをガラスマットに含浸させ、逐次積層した後室温硬化
させ、さらに100℃にて後硬化1せて厚さ5ミリメー
トルの1fXfiFRP板を作製した。該F RP板の
電磁しやへい効果は100メガヘルツで45デシベルで
あった。不笑施例によシ、本発明の樹脂組成物は優れた
電磁じゃへい効果を有することが明らかでるる。
Example 3 The aluminum composite powder granules with an average particle size of 250 μm and an average aspect ratio of 65 were damaged by Lf) containing 40 layers of aluminum by vacuum evaporation on the surface of the aluminum composite powder granules 45]jol
t part and average i11 [0.1 μm Ketjen blank (
A paste was prepared by mixing and stirring 15M parts of graphite particles) and 4ON parts of a commercially available unsaturated polyester resin, and adding a curing agent consisting of a combination of methyl ethyl ketone peroxide and cobalt naphthenate to the mixture. Next, the paste was impregnated into a glass mat, successively laminated and cured at room temperature, and further post-cured at 100° C. to produce a 5 mm thick 1fXfi FRP board. The electromagnetic shielding effect of the FRP board was 45 dB at 100 MHz. From the examples, it is clear that the resin composition of the present invention has an excellent electromagnetic shielding effect.

%許出願人 株式会社 り ラ し 代理人弁理士 本多 堅 =21− 特許庁長官  若杉和夫殿 ■、事件の表示 昭和58年特許願第28346号 2、発明の名称 電磁じゃへい性および剛性に優れた ハイブリット系樹脂組成物 3、補正をする者 事件との関係   特許出願人 倉敷市酒津1621番地 (108)株式会社 り ラ し 代表取敞上野他− 4、代 理 人 電話東京03 (277) 3182 5、補正の対象 明細書の「発明の詳細な説明」の欄および「図面の簡単
な説明」の欄ならびに図面6、補正の内容 (1)明細書第5頁下から第3行〜第6頁第12行の「
該導電性無機粉粒体・・・・・・本発明に到ったもので
ある。」を削除し、下記の文章を挿入する。
% Applicant: RiRa Co., Ltd. Representative Patent Attorney Ken Honda = 21- Mr. Kazuo Wakasugi, Commissioner of the Japan Patent Office Excellent Hybrid Resin Composition 3, Relationship with the Amendment Person Case Patent Applicant: 1621 Sakazu, Kurashiki City (108) Rira Co., Ltd. Representative Director Ueno et al.-4, Agent Telephone: Tokyo 03 (277) 3182 5, "Detailed Description of the Invention" column and "Brief Description of Drawings" column of the specification to be amended, and Drawing 6, Contents of the amendment (1) Lines 3 to 3 from the bottom of page 5 of the specification On page 6, line 12, “
The conductive inorganic powder material has led to the present invention. ” and insert the following text.

[すなわち、塑性変形しにくくかつ、曲げ弾性率が2×
1okg/clである雲母系無機粉粒体や7 X 10
5kQ/dのガラスフレークの表面が所定の導電性物質
で被覆されてなる導電性無機粉粒体を該樹脂組成物の一
成分として使用すると、樹脂複合時にほとんど変形や損
傷がなく、又、剛性を向上させることができ、さらに成
形物中での偏在も生じず、金属繊維や金属フレークに比
べて少量の添加で優れた電磁じゃへい効果を示すことを
見出したのである。その優れた効果は、基材となる鱗片
状非金属無機粉粒体の高剛性に起因すると考えられる。
[In other words, it is difficult to deform plastically and has a bending elastic modulus of 2×
Mica-based inorganic powder or 7 x 10
When conductive inorganic powder particles made of 5kQ/d glass flakes whose surfaces are coated with a predetermined conductive substance are used as a component of the resin composition, there will be almost no deformation or damage during resin composition, and the rigidity will increase. They have found that they can improve the electromagnetic barrier effect, do not cause uneven distribution in the molded product, and exhibit excellent electromagnetic barrier effects even when added in small amounts compared to metal fibers or metal flakes. The excellent effect is thought to be due to the high rigidity of the scaly nonmetallic inorganic powder serving as the base material.

しかしながら、かかる導電性処理はコストアップにつな
がり、また混線後、押出成形してシート状に成形した後
、さらに真空成形等の二次加工を行う際に、剛性が向上
するが故に成形性が低下するという問題点も残している
However, such conductive treatment increases costs, and after cross-wiring, extrusion molding to form a sheet, and further secondary processing such as vacuum forming, the rigidity is improved but formability is reduced. There remains the problem of doing so.

従来より、異種の添加剤を併用することにより、その相
乗効果によって優れた特性を発現させるハイブリット系
樹脂組成物は知られている。
BACKGROUND ART Hybrid resin compositions have been known that exhibit excellent properties due to the synergistic effect of using different types of additives together.

電磁じゃへい材の分野においても例外では無く例えば特
開昭54−56200号には導電性短繊維を10〜25
容積パーセントと導電性微粉粒体を2〜40容積パーセ
ント含有する電磁遮蔽材料が示されている。また、特開
昭57−65754号には金属繊維を0.2〜5容積パ
ーセントと金属粉末を1〜10容積パーセント含む電磁
波遮蔽用導電性プラスチック組成物が示されている。
The field of electromagnetic barrier materials is no exception; for example, in JP-A-54-56200, 10 to 25 conductive short fibers are
Electromagnetic shielding materials containing 2 to 40 volume percent conductive particulate matter are shown. Furthermore, JP-A-57-65754 discloses a conductive plastic composition for shielding electromagnetic waves containing 0.2 to 5 volume percent of metal fibers and 1 to 10 volume percent of metal powder.

しかし、かかるハイブリット系組成物はいずれも金属を
素材とするものであシ、形状の異なる2種の金属を混合
添加することにより、相互間の接触点の数を増大させて
導電性を増大せしめる効果は有しているが、樹脂と混練
し、成形する際に金属繊維や金属フレークは容易に変形
し、から捷ってノズル詰りを生じせしめ、成形性を低下
せしめる。また、混線時間が比較的長かつたり、混練時
の変形速度が大きい場合には容易に損傷、切断してしま
い、所定の電磁じゃへい効果が得られない場合もある。
However, all such hybrid compositions are made of metal, and by mixing and adding two types of metals with different shapes, the number of contact points between them is increased and the conductivity is increased. Although they are effective, metal fibers and metal flakes are easily deformed and shredded when kneaded with resin and molded, causing nozzle clogging and reducing moldability. Furthermore, if the mixing time is relatively long or the deformation speed during kneading is high, it may be easily damaged or cut, and the desired electromagnetic shielding effect may not be obtained.

かかる金属素材の曲げ弾性率は例えばアルミニウム合金
で2,6xto’kg/cI、銅合金で3.I X 1
 o5kg / ai テあって比較的低く、そのため
に容易に変形すると考えられるが、かかる性質は前述の
ハイブリット組成物にしても何ら改良されることは無い
The flexural modulus of such metal materials is, for example, 2.6xto'kg/cI for aluminum alloys and 3.6xto'kg/cI for copper alloys. IX1
o5kg/ai is relatively low and is therefore considered to be easily deformed, but such properties are not improved in any way by the above-mentioned hybrid composition.

以上の理由から、金属系導電性フィラー系ハイブリット
組成物は、例えば射出成形の場合には比較的低変形速度
で、ゲートの大きい大型の単純な形状の成形物にしか応
用することができなかった。一般に、剛性や形状の異な
る二種のフィラーを混合した場合は、剛性の低いフィラ
ーやアヌベクト比の大きい繊維状フィラーの損傷や変形
が檄しくなるといわれており、鱗片状非金属無機粉粒体
の表面が導電性物質で被覆されている導電性無機粉粒体
(以下、該鱗片状無機粉粒体と呼ぶことがある)と金属
繊維とのハイブリット系の場合にも金属繊維の変形や損
傷が激しくなることが予想される。しかしながら本発明
者らは、該鱗片状非金属無機粉粒体と金属繊維を樹脂に
配合したハイブリット系樹脂組成物を成形したところ、
意外にも、金属繊維の変形、損傷はほとんど認められず
、金属繊維単独を樹脂に配合したものに比べてもむしろ
大幅に改良されていることを見出し、本発明に到達した
のである。」 (2)明細書第6頁下から第2行の「・・・・・・ノ1
イブリット系樹脂組成物である。」のあとに、下記の文
章を加入する。
For the above reasons, metallic conductive filler-based hybrid compositions have a relatively low deformation rate when, for example, injection molding, and can only be applied to large, simple-shaped molded products with large gates. . In general, when two types of fillers with different rigidities and shapes are mixed, it is said that the filler with low rigidity or the fibrous filler with a high anubect ratio will be easily damaged or deformed. In the case of a hybrid system of conductive inorganic powder whose surface is coated with a conductive substance (hereinafter sometimes referred to as scaly inorganic powder) and metal fibers, the metal fibers may be deformed or damaged. It is expected that it will become more intense. However, when the present inventors molded a hybrid resin composition in which the scaly nonmetallic inorganic powder and granules and metal fibers were blended into a resin,
Surprisingly, it was discovered that almost no deformation or damage to the metal fibers was observed, and the present invention was achieved based on the discovery that the resin was significantly improved compared to a resin containing metal fibers alone. (2) "...No. 1" in the second line from the bottom of page 6 of the specification
It is an ibrit-based resin composition. '', add the following sentence.

[本発明の優れた効果を発現する機構についてはこれを
明確に説明することは困難であるが、本発明者らは次の
ように解釈している。
[Although it is difficult to clearly explain the mechanism by which the excellent effects of the present invention are expressed, the present inventors interpret it as follows.

本発明の特徴の1つは該鱗片状無機粉粒体の剛性、弾性
変形性と形状(鱗片状)にあり、従ってかかるフィラー
を添加した樹脂組成物を射出成形等で成形すると該鱗片
状無機粉粒体は容易に配向する。配向した該鱗片状無機
粉粒体はその接触抵抗を減少させて成形物の体積固有抵
抗を低減させ、″電磁しゃへい効果を増大させるのみな
らず、ハイブリット系樹脂組成物の場合には剛性が小さ
くかつ、塑性変形しやすい金属繊維を保護する作用があ
シ、組成物が混練される過程では金属繊維は該鱗片状無
機粉粒体の間にはさまれて流動するので変形、損傷が防
がれると考えられる。第1図はこれをモデル的に示した
樹脂成形物の断面図である。第1図において、1は鱗片
状導電性非金属無機粉粒体、2は導電性繊維状物、4は
樹脂である。まだ、金属繊維に代えて導電性微粒子を用
いた場合は、樹脂中で形成される連鎖状凝集状態が混線
、流動過程で保護されているため、変形、損傷が防がれ
、優れた電磁じゃへい効果を発現するものと考えられる
。第2図はこれをモデル的に示した樹脂成形物の断面図
である。3は導電性微粒子である。まだ、第3図は樹脂
に金属フレークおよび金属繊維番配合した組成物を成形
した従来のハイブリット系成形物の断面をモデル的に示
した図であるが、金属フレークおよび金属繊維が変形、
損傷して偏在し、満足な電磁じゃへい効果を示さず、剛
性、成形性にも劣っている。
One of the features of the present invention is the rigidity, elastic deformability, and shape (scaly) of the scale-like inorganic powder. Therefore, when a resin composition containing such a filler is molded by injection molding or the like, Powder is easily oriented. The oriented scale-like inorganic powder reduces the contact resistance and reduces the volume resistivity of the molded product, which not only increases the electromagnetic shielding effect, but also reduces rigidity in the case of hybrid resin compositions. In addition, it has the effect of protecting the metal fibers that are easily plastically deformed, and in the process of kneading the composition, the metal fibers are sandwiched between the scaly inorganic powder particles and flow, thereby preventing deformation and damage. Fig. 1 is a cross-sectional view of a resin molded product showing this as a model. In Fig. 1, 1 is a scale-like conductive nonmetallic inorganic powder, and 2 is a conductive fibrous material. , 4 is a resin.However, when conductive particles are used instead of metal fibers, the chain-like agglomerated state formed in the resin is protected from crosstalk and flow process, which prevents deformation and damage. It is thought that this material peels off and exhibits an excellent electromagnetic barrier effect. Figure 2 is a cross-sectional view of a resin molded product that shows this as a model. 3 is a conductive fine particle. is a cross-sectional model of a conventional hybrid molded product made from a composition containing resin mixed with metal flakes and metal fibers.
It is damaged and unevenly distributed, does not exhibit a satisfactory electromagnetic shielding effect, and has poor rigidity and formability.

5は金属フレークである。」 (3)明細書第11頁第4行の「様の役目をする。」の
あとに、下記の文章を加入する。
5 is a metal flake. ” (3) Add the following sentence after “Act as a servant.” on page 11, line 4 of the specification.

[本発明において使用される素材を特定化する物性値と
してしばしば体積固有抵抗値が用いられているのでこれ
について説明する。まず、該鱗片状非金属無機粉粒体の
表面を被覆すべき導電性物質の特性値として用いている
体積固有抵抗はその素材固有の性質であり、例えば金属
、合金または黒鉛等の基本的な特性値として表現するこ
とができる。その測定法は金属板や金属棒の導電性を評
価する通常の方法を採用することができる。一方、導電
性繊維状物および導電性微粒子の性質を特定化するため
に用いる体積固有抵抗とは、その素材固有の性質ではな
く、繊維状または微粒子の形態を有したものの値でなけ
ればならない。例えば金属繊維等ではその素材の基本的
な体積固有抵抗は10〜10Ω・α程度であっても、繊
維状に加工されたものの後述の測定法での値は10〜1
0Ω・α程度であり、さらに表面の酸化劣化管によって
1Ω・αを越える場合もある。一方、ガラス繊維は10
Ω・α以上の体積固有抵抗を持つ絶縁材料であるが、こ
れにアルミニウムを表面被覆した繊維は10Ω・α程度
の値を示し、本発明において使用しうる範囲にある。繊
維状物または微粒子の体積固有抵抗の測定法に関しては
特に規定は無い様の4探針法で測定することが可能であ
る。しかし、この場合は導電性繊維状物または導電性微
粒子間の接触抵抗を測定することとなシ、詰める圧力に
よってその値は変動する。厳密には容器内での試料の容
積分率が同一の場合の測定値を比較すべきであるが、一
般に体積固有抵抗が1Ω・1以下の導電性の場合には詰
め方による変動はわずかになり、通常は50 g / 
cl程度の荷電下で測定すれば導電性を評価することが
できる。」 (4)明細書第20頁下から第10行の「、該」を削除
する。
[The volume resistivity value is often used as a physical property value to specify the material used in the present invention, so this will be explained below. First, the volume resistivity, which is used as a characteristic value of the conductive material to be coated on the surface of the scale-like nonmetallic inorganic powder, is a property specific to the material. It can be expressed as a characteristic value. As the measurement method, a conventional method for evaluating the conductivity of metal plates or metal rods can be adopted. On the other hand, the volume resistivity used to specify the properties of conductive fibrous materials and conductive fine particles must be the value of those in the form of fibers or fine particles, rather than the properties inherent to the materials. For example, in the case of metal fibers, even though the basic volume resistivity of the material is about 10 to 10 Ω・α, the value when processed into a fiber shape using the measurement method described below is 10 to 1.
It is approximately 0 Ω·α, and may even exceed 1 Ω·α due to oxidized and degraded tubes on the surface. On the other hand, glass fiber has 10
Although it is an insulating material with a volume resistivity of Ω·α or more, the fiber whose surface is coated with aluminum shows a value of about 10Ω·α, which is within the range that can be used in the present invention. Regarding the method for measuring the volume resistivity of fibrous materials or fine particles, it is possible to measure by the four-probe method, which does not seem to have any particular regulations. However, in this case, the contact resistance between the conductive fibrous materials or conductive fine particles is not measured, and the value varies depending on the packing pressure. Strictly speaking, the measured values should be compared when the volume fraction of the sample in the container is the same, but in general, in the case of conductivity with a volume resistivity of 1Ω・1 or less, there is only slight variation due to the packing method. Usually 50g/
Conductivity can be evaluated by measuring under a charge of about Cl. (4) Delete "," in line 10 from the bottom of page 20 of the specification.

入する。Enter.

「実施例V餅省3例7,8 平均直径220μm、平均アスペクト比60の金雲母粉
粒体(カナダ産、■クラレ製スゾライトマイカ)の表面
に、無電解メッキ法によってニッケルを析出させた。こ
の金属被覆雲母のニッケル含有量は約20重量%であり
、絶縁性円筒状容器に充填し、5Ωg/rrtの荷重下
で4探針法にて測定した体積固有抵抗は5.6 X 1
0Ω・−であった。同様に測定した平均直径60μm、
長さ3膿の黄銅繊維の体積固有抵抗は2.5×10Ω・
Gであった。つぎにマトリックス樹脂としてABS樹脂
を用い、AB8樹脂60重量部に該ニッケル被覆雲母3
0重量部と黄銅繊維10重量部を混合に1軸押出機にて
2408Cで溶融混合後、ストランド状にWYて切断し
、ベレットを得た。続いて得られたベレットから射出成
形によって試験片を、また押出成形によって厚さ3朋の
シート状物を得た(実施例4)。
``Example V Mochi Ministry 3 Examples 7 and 8 Nickel was deposited on the surface of phlogopite powder (produced in Canada, ■Kuraray Susolite Mica) with an average diameter of 220 μm and an average aspect ratio of 60 by an electroless plating method. The nickel content of this metal-coated mica is about 20% by weight, and the volume resistivity measured by the four-probe method under a load of 5 Ωg/rrt when filled in an insulating cylindrical container is 5.6 × 1.
It was 0Ω.-. Similarly measured average diameter 60 μm,
The volume resistivity of a brass fiber with a length of 3 mm is 2.5 x 10Ω・
It was G. Next, using ABS resin as a matrix resin, 60 parts by weight of AB8 resin was added with 3 parts of the nickel-coated mica.
After melt-mixing 0 parts by weight of brass fibers and 10 parts by weight of brass fibers at 2408C in a single-screw extruder, the mixture was cut into strands by WY to obtain pellets. Subsequently, a test piece was obtained from the obtained pellet by injection molding, and a sheet-like product having a thickness of 3 mm was obtained by extrusion molding (Example 4).

このニッケル被覆雲母に代えて平均直径I X11m 
s平均J4−サ30μmのアルミニウムフレーク(体積
固有抵抗7.4 X 10Ω・cm)を30重量部配合
した組成物(比較例7)と平均直径3μmのニッケルパ
ウダー(体積固有抵抗7×10Ω・cm)を30重量部
配合した組成物(比較例8)を実施例4と同様に成形加
工しようとしたところ、アルミニウムフレーク添加組成
物(比較例7)は押出成形時にノズル詰シが生じ成形が
できなかった。従って比較例7は東洋精機■製プフスト
ミルにて混線後、熱プレスにて所定の形状に成形し、試
験片を得た。これらの組成物から得られた成形物の熱変
形温度は実施例4.比較例7.8の順に115°C19
3°C194°Cであシ、曲げ弾性率は夫々9.8 X
 10 ky/d、 3.3 X 10’kg/aN、
 3.OX 10 kg/ctlであった。また厚さ3
朋の板状物の100メガヘルツの周波数の電磁波に対す
るじゃへい効果は夫々40デンベp135デシベル、1
0デシベpであった。以上の結果から本発明によるハイ
ブリット系樹脂組成物は優れた剛性、耐熱性および電磁
じゃへい性を有していることは明らかであり、本発明の
構成要素の一つである導電性無機粉粒体の代シに鱗片状
導電性金属片を用いた比較例7においては極端に成形性
が悪化し、その結果金属片や金属繊維の変形が生じて成
形物中に偏在し、優れた電磁じゃへい効果を得ることは
できなかった。
In place of this nickel-coated mica, the average diameter I
A composition containing 30 parts by weight of aluminum flakes (volume resistivity 7.4 x 10 Ω cm) with an average diameter of 3 μm (comparative example 7) and nickel powder with an average diameter of 3 μm (volume resistivity 7 x 10 Ω cm) ) (Comparative Example 8) was tried to be molded in the same manner as in Example 4, but the aluminum flake-added composition (Comparative Example 7) caused nozzle clogging during extrusion molding and could not be molded. There wasn't. Therefore, in Comparative Example 7, a test piece was obtained by cross-wiring using a Pufst Mill manufactured by Toyo Seiki ■ and then molding into a predetermined shape using a hot press. The heat distortion temperatures of molded products obtained from these compositions were as shown in Example 4. 115°C19 in the order of Comparative Example 7.8
The temperature was 3°C and 194°C, and the flexural modulus was 9.8
10 ky/d, 3.3 x 10'kg/aN,
3. OX was 10 kg/ctl. Also thickness 3
The blocking effect of my plate against electromagnetic waves with a frequency of 100 MHz is 40 decibels, 135 decibels, and 1, respectively.
It was 0 decibep. From the above results, it is clear that the hybrid resin composition according to the present invention has excellent rigidity, heat resistance, and electromagnetic resistance. In Comparative Example 7, in which a scale-like conductive metal piece was used as a substitute for the body, the formability was extremely deteriorated, and as a result, the metal pieces and metal fibers were deformed and unevenly distributed in the molded product, resulting in poor electromagnetic performance. It was not possible to obtain any positive effect.

また、鱗片状でない金属粒子を使用した比較例8の場合
にも若干金属繊維の変形が生じ、優れた電磁じゃへい効
果を得ることはできなかった。
Further, in the case of Comparative Example 8 in which non-scaly metal particles were used, the metal fibers were slightly deformed, and an excellent electromagnetic shielding effect could not be obtained.

実施例4、比較例7および比較例8によって得られた成
形物中の導電性粉粒体や金属繊維の状態の違いは第3図
、゛第4図および第5図に示す光学顕微鏡写真(各々倍
率14倍)を比較することによって明らかである。
The differences in the state of the conductive powder and metal fibers in the molded products obtained in Example 4, Comparative Example 7, and Comparative Example 8 are shown in the optical micrographs shown in Figures 3, 4, and 5. This is clear by comparing the magnification of 14 times, respectively.

ABS樹脂60重量部に、実施例4で得られたニッケル
被覆雲母38重量部と導電性カーポンプフックである平
均直径0.1μmのケッチェン・ブラック(体積固有抵
抗lXl01Ω・cm ) 2重量部を配合し、実施例
4と同様に成形加工して試験片を得た(実施例5)。A
BS樹脂97重量部とケッチェン・ブラック3重量部の
みを配合した組成物(比較例9)およびABS樹脂60
重量部と比較例7で用いたものと同じアルミニウム・フ
レーク38重量部およびケッチェン・ブラック2重量部
とを配合した組成物(比較例10)についても実施例5
と同様の成形加工を行おうとしたが、アルミニウム・フ
レーク添加組成物(比較例10)は押出成形が困難で比
較例7と同様の熱ブレヌ法にて成形物を得た。これらの
組成物から得られた成形物の熱変形温度は実施例5、比
較例9、比較例10の順に1139C193℃、95℃
であり、曲げ弾性率は夫々12.5X1okg/d、 
 2.8 ×1o’ky/al、  3.4 xtok
g/cJであった。また厚さ3叫の板状物の100メガ
ヘルツの周波数の電磁波に対するじゃへい効果は夫々4
5デシベル、2〜3デシベル、36デシベルであった。
To 60 parts by weight of ABS resin, 38 parts by weight of nickel-coated mica obtained in Example 4 and 2 parts by weight of Ketjen Black (volume resistivity lXl01 Ω cm ) having an average diameter of 0.1 μm, which is a conductive car pump hook, were blended. Then, a test piece was obtained by molding in the same manner as in Example 4 (Example 5). A
A composition containing only 97 parts by weight of BS resin and 3 parts by weight of Ketjen Black (Comparative Example 9) and ABS resin 60
Example 5 was also applied to a composition (Comparative Example 10) containing 38 parts by weight of the same aluminum flakes and 2 parts by weight of Ketjen Black as used in Comparative Example 7.
However, it was difficult to extrude the aluminum flake-added composition (Comparative Example 10), so a molded product was obtained using the same hot bleine method as in Comparative Example 7. The heat distortion temperatures of molded products obtained from these compositions were 1139C, 193°C, and 95°C in the order of Example 5, Comparative Example 9, and Comparative Example 10.
and the bending elastic modulus is 12.5×1okg/d, respectively.
2.8 ×1 o'ky/al, 3.4 xtok
g/cJ. In addition, the blocking effect of a plate with a thickness of 3 mm against electromagnetic waves at a frequency of 100 MHz is 4 mm, respectively.
They were 5 decibels, 2-3 decibels, and 36 decibels.

以上の結果から本発明によるハイブリット系樹脂組成物
は優れた剛性、耐熱性および電磁じゃへい性を有してい
ることは明らかである。比較例90組成物はケッチェン
・ブラックを実施例5とほぼ同じ割合いで配合したもの
であるが、その成形物は電磁じゃへい効果はほとんど無
く、本発明の構成要素の一つである導電性無機粉粒体と
共に配合され、成形されてはじめて優れた電磁じゃへい
効果を発現できることがわかる。
From the above results, it is clear that the hybrid resin composition according to the present invention has excellent rigidity, heat resistance, and electromagnetic resistance. Comparative Example 90 composition was one in which Ketjen Black was blended in almost the same proportion as in Example 5, but the molded product had almost no electromagnetic interference effect and did not contain the conductive inorganic material, which is one of the constituent elements of the present invention. It can be seen that an excellent electromagnetic barrier effect can only be achieved when it is blended with powder and granules and molded.

比較例10の組成物は比較例7の組成物よりもさらに成
形性は悪く、かつ金属片の偏在が激しくて非常に脆いも
のであった。」 (6)明細書の1発明の詳細な説明」の欄の次に「4、
図面の簡単な説明」の欄を設け、この欄に下記の文章を
記載する。
The composition of Comparative Example 10 had worse moldability than the composition of Comparative Example 7, and was extremely brittle with severe uneven distribution of metal pieces. ” (6) Next to the column “1. Detailed explanation of the invention in the specification”, write “4.
Provide a column for ``Brief explanation of the drawing'' and enter the following text in this column.

「第1図は本発明の導電性無機粉粒体、導電性繊維状物
および樹脂からなるハイブリット系樹脂組成物より得ら
れた成形物断面の模式図である。
"FIG. 1 is a schematic diagram of a cross section of a molded product obtained from a hybrid resin composition comprising a conductive inorganic powder, a conductive fibrous material, and a resin according to the present invention.

第2図は本発明の導電性無機粉粒体、導電性微粒子およ
び樹脂からなるハイブリット系樹脂組成物より得られた
成形物断面の模式図である。
FIG. 2 is a schematic diagram of a cross section of a molded product obtained from a hybrid resin composition comprising conductive inorganic powder, conductive fine particles, and resin of the present invention.

第3図は従来の導電性繊維状物、金属フレークおよび樹
脂からなるハイブリット系樹脂組成物より得られた成形
物断面の模式図である。
FIG. 3 is a schematic diagram of a cross section of a molded product obtained from a conventional hybrid resin composition consisting of conductive fibrous material, metal flakes, and resin.

(倍率14倍)であシ、第5図および第6図は鏡写真(
倍率14倍)である。
(14x magnification) Figures 5 and 6 are mirror photographs (
(14x magnification).

1・・・・・・導電性無機粉粒体 2・・・・・・導電性繊維状物 3・・・・・・導電性微粒子 4・・・・・・樹脂 5・・・・・・金属フレーク  」 (7)図面を別紙のとおシ補正する。1... Conductive inorganic powder 2... Conductive fibrous material 3... Conductive fine particles 4...Resin 5...Metal flakes" (7) Revise the drawings on separate sheets.

第 1 図 第2 図 第3 図 第4図 第5図 第6図Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 (1)  (5)鱗片状非金属無機粉粒体の表面が体積
固有抵抗1Ω・m以下の導電性物質で被覆されてなる導
電性無機粉粒体10〜50重量部と、(ハ)体積固有抵
抗が1Ω・m以下の導電性繊維状物および/または導電
性微粒子1〜20重量部と、0樹脂30〜80重量部と
からなる電磁じやへい性、剛性、および成形性に優れた
ハイブリット系樹脂組成物。 (2)該鱗片状非金属無機粉粒体は、その表面が該鱗片
状非金績粉粒体の115〜IJk量倍量の導電性物質で
被覆されている粉粒体である特許請求の範囲第(1)項
に記載の樹脂組成物。 (8)該鱗片状非金属無機粉粒体が平均アスペクト比(
直径の厚さに対する比)10以上の粉粒体である特許請
求の範囲第(1)項または第(2)項に一1= 記載の樹脂組成物。 (4)該鱗片状非金属無機粉粒体が雲母族、脆雲母族ま
たは緑泥石族に属する天然または人工の鉱物である%計
請求の範囲第(1)項、第(2)項または第(8)項に
記載の樹脂組成物。 (6ン  該導電性物質が銀、アルミニウム、銅、ニッ
ケル、クロム、チタン、スズ、アンチモン、亜鉛、金、
白金、鉄から選ばれた少なくとも1種の金属単独または
これを含む合金iたは黒鉛である特許請求の範囲第(1
)項、第(2)項、第(8)項または第(4)項に記載
の樹脂組成物。 (6)咳導電性繊維状物が平均アスペクト比10以上の
繊維状物である特許請求の範囲第(1)項、第(2)項
、第(8)項、第(4)項または第(6)項に記載の樹
脂組成物。 (7)  該導を性繊維状物が金属繊維、金属で被覆さ
れた有機または無機繊維、炭素繊維、黒鉛繊維、金属微
粒子または炭素微粒子が混在する有機繊維のいずれか、
もしくはその2種以上の混合物である特許請求の範囲第
(1)項、第(2)項、第(8)項、第(4)2− 項、第(5)項または第(6)項に記載の樹脂組成物。 (8)該導電性微粒子が、銀、アルミニウム、銅、ニッ
ケル、クロム、チタン、スズ、アンチモン、亜鉛、金、
白金、鉄から選ばれた少なくとも1種の金属単独または
これを含む合金または黒鉛の微粒子である特許請求の範
囲第(1)項、第(2)項、第(8)項、第(4)項、
第(5)項、第(6)項または第(7)項に記載の樹脂
組成物。
[Scope of Claims] (1) (5) 10 to 50 parts by weight of a conductive inorganic powder or granule obtained by coating the surface of a scaly nonmetallic inorganic powder with a conductive substance having a volume resistivity of 1 Ω·m or less and (c) electromagnetic, fragility, and rigidity consisting of 1 to 20 parts by weight of conductive fibrous material and/or conductive fine particles having a volume resistivity of 1 Ω m or less, and 30 to 80 parts by weight of zero resin. and a hybrid resin composition with excellent moldability. (2) The scale-like non-metallic inorganic powder is a powder whose surface is coated with a conductive material in an amount of 115 to IJk times that of the scale-like non-metallic powder. The resin composition according to scope item (1). (8) The scale-like nonmetallic inorganic powder has an average aspect ratio (
The resin composition according to claim 1 or 2, which is a granular material having a diameter to thickness ratio of 10 or more. (4) The scale-like nonmetallic inorganic powder is a natural or artificial mineral belonging to the mica group, brittle mica group, or chlorite group. The resin composition according to item (8). (6) The conductive substance is silver, aluminum, copper, nickel, chromium, titanium, tin, antimony, zinc, gold,
Claim No. 1, which is at least one metal selected from platinum and iron alone or an alloy containing the same, or graphite
), (2), (8), or (4). (6) Claims (1), (2), (8), (4), or the like, wherein the cough conductive fibrous material is a fibrous material with an average aspect ratio of 10 or more. The resin composition according to item (6). (7) The conductive fibrous material is any of metal fibers, organic or inorganic fibers coated with metal, carbon fibers, graphite fibers, organic fibers mixed with metal fine particles or carbon fine particles,
or a mixture of two or more thereof, Claims (1), (2), (8), (4)2-, (5), or (6). The resin composition described in . (8) The conductive fine particles include silver, aluminum, copper, nickel, chromium, titanium, tin, antimony, zinc, gold,
Claims (1), (2), (8), and (4) are fine particles of at least one metal selected from platinum and iron, an alloy containing the same, or graphite. section,
The resin composition according to item (5), item (6) or item (7).
JP2834683A 1983-02-21 1983-02-21 Hybrid resin composition with excellent electromagnetic resistance and rigidity Granted JPS59152936A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2834683A JPS59152936A (en) 1983-02-21 1983-02-21 Hybrid resin composition with excellent electromagnetic resistance and rigidity
EP84301088A EP0117700A1 (en) 1983-02-21 1984-02-20 Rigid resin composition having electromagnetic shielding properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2834683A JPS59152936A (en) 1983-02-21 1983-02-21 Hybrid resin composition with excellent electromagnetic resistance and rigidity

Publications (2)

Publication Number Publication Date
JPS59152936A true JPS59152936A (en) 1984-08-31
JPH038389B2 JPH038389B2 (en) 1991-02-05

Family

ID=12246037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2834683A Granted JPS59152936A (en) 1983-02-21 1983-02-21 Hybrid resin composition with excellent electromagnetic resistance and rigidity

Country Status (2)

Country Link
EP (1) EP0117700A1 (en)
JP (1) JPS59152936A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6116942A (en) * 1984-07-04 1986-01-24 Sumitomo Bakelite Co Ltd Electromagnetic wave shielding material
JPS6116957A (en) * 1984-07-04 1986-01-24 Sumitomo Bakelite Co Ltd Material for shielding electromagnetic interference
JPS6174205A (en) * 1984-09-17 1986-04-16 ダイソー株式会社 Anisotropically electroconductive composition
JPS61141753A (en) * 1984-12-05 1986-06-28 ヘキスト・セラニーズ・コーポレーション Permanent antistatic thermoplastic molding material
JPS62212450A (en) * 1986-03-12 1987-09-18 Denki Kagaku Kogyo Kk Antistatic and electromagnetic wave shielding resin composition
JPH01153752A (en) * 1987-12-11 1989-06-15 Mitsubishi Metal Corp Electrically conductive resin composition
JPH0931940A (en) * 1995-07-25 1997-02-04 Kunimine Kogyo Kk Impervious material and impervious method
JP2001192499A (en) * 2000-01-14 2001-07-17 Otsuka Chem Co Ltd Electroconductive resin composition
JP2003335967A (en) * 2002-05-20 2003-11-28 Shin Etsu Chem Co Ltd Electroconductive composition
JP2004189938A (en) * 2002-12-12 2004-07-08 Nippon Sheet Glass Co Ltd Conductive molded resin part
JP2005510009A (en) * 2001-11-13 2005-04-14 ダウ グローバル テクノロジーズ インコーポレーテッド Conductive thermoplastic polymer composition
JP2006206869A (en) * 2004-12-28 2006-08-10 Kansai Paint Co Ltd Cationic electrodeposition paint
JP2007023108A (en) * 2005-07-13 2007-02-01 Kansai Paint Co Ltd Cationic electrodeposition coating material
JP3903791B2 (en) * 2000-05-10 2007-04-11 Nok株式会社 Conductive resin composition
KR100837307B1 (en) 2007-11-30 2008-06-12 이춘구 Floor covering with harmful wave blocking function and its manufacturing method
JP2017105671A (en) * 2015-12-09 2017-06-15 Dowaエレクトロニクス株式会社 Silver coated graphite particle, silver coated graphite mixed powder and manufacturing method therefor and conductive paste
JP2017226784A (en) * 2016-06-23 2017-12-28 旭化成株式会社 Polyacetal resin composition and molding
JPWO2017077980A1 (en) * 2015-11-02 2018-08-23 セントラル硝子株式会社 Electromagnetic shielding metal-coated glass fiber filler, method for producing electromagnetic shielding metal-coated glass fiber filler, and electromagnetic shielding resin article
JP2020149863A (en) * 2019-03-13 2020-09-17 株式会社東芝 Conductive resin and superconducting coil using it
CN119350768A (en) * 2024-12-25 2025-01-24 日丰企业(天津)有限公司 Antistatic high-voltage resistant PPR material and preparation method thereof

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3447391A1 (en) * 1984-12-27 1986-07-03 Otsuka Kagaku K.K., Osaka ELECTRICALLY CONDUCTIVE ALKALINE METAL TITANATE COMPOSITION AND MOLDED PARTS THEREOF
JPS6245659A (en) * 1985-08-23 1987-02-27 Eng Plast Kk Electrically conductive molding material
SE462099B (en) * 1985-11-15 1990-05-07 Dow Chemical Co EMI SHIELD COMPOSITION MATERIAL
US4816184A (en) * 1987-02-20 1989-03-28 General Electric Company Electrically conductive material for molding
JPS63199809U (en) * 1987-06-13 1988-12-22
US5083275A (en) * 1988-04-08 1992-01-21 Nissan Motor Company, Limited Height control system for automotive suspension system with vehicle driving condition dependent variable target height
GB2218422A (en) * 1988-05-11 1989-11-15 Alcan Int Ltd Fillers
WO2002022740A1 (en) * 2000-09-13 2002-03-21 Kaneka Corporation Polyimide resin composition and, polyimide product formed into film and intermediate transfer belt comprising the same
US6940468B2 (en) * 2001-02-15 2005-09-06 Integral Technologies, Inc. Transformers or inductors (“transductors”) and antennas manufactured from conductive loaded resin-based materials
US6947005B2 (en) 2001-02-15 2005-09-20 Integral Technologies, Inc. Low cost antennas and electromagnetic (EMF) absorption in electronic circuit packages or transceivers using conductive loaded resin-based materials
KR20040073999A (en) * 2003-02-14 2004-08-21 인테그럴 테크놀로지스 인코포레이티드 Low cost antennas and electromagnetic(EMF) absorption in electronic circuit packages or transceivers using conductive loaded resin-based materials
WO2005120798A2 (en) * 2004-06-08 2005-12-22 Integral Technologies, Inc. Low cost housings for vehicle mechanical devices and systems manufactured from conductive loaded resin-based materials
WO2006017289A1 (en) * 2004-07-12 2006-02-16 Integral Technologies, Inc. Low cost vehicle air intake and exhaust handling devices manufactured from conductive loaded resin-based materials
DE102008022355A1 (en) 2008-05-06 2009-11-19 Axel Wittek Rotor-stator system for producing dispersions
TWI722136B (en) * 2016-03-29 2021-03-21 拓自達電線股份有限公司 Conductive paint and manufacturing method of shielding package body using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161205A (en) * 1982-02-08 1983-09-24 ポツタ−ズ・インダストリ−ズ・インコ−ポレイテツド Conductive element, fluid conductive composition and method of producing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4419279A (en) * 1980-09-15 1983-12-06 Potters Industries, Inc. Conductive paste, electroconductive body and fabrication of same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161205A (en) * 1982-02-08 1983-09-24 ポツタ−ズ・インダストリ−ズ・インコ−ポレイテツド Conductive element, fluid conductive composition and method of producing same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6116942A (en) * 1984-07-04 1986-01-24 Sumitomo Bakelite Co Ltd Electromagnetic wave shielding material
JPS6116957A (en) * 1984-07-04 1986-01-24 Sumitomo Bakelite Co Ltd Material for shielding electromagnetic interference
JPS6174205A (en) * 1984-09-17 1986-04-16 ダイソー株式会社 Anisotropically electroconductive composition
JPH0345842B2 (en) * 1984-09-17 1991-07-12 Daisow Co Ltd
JPS61141753A (en) * 1984-12-05 1986-06-28 ヘキスト・セラニーズ・コーポレーション Permanent antistatic thermoplastic molding material
JPH0554866B2 (en) * 1984-12-05 1993-08-13 Hoechst Celanese Corp
JPS62212450A (en) * 1986-03-12 1987-09-18 Denki Kagaku Kogyo Kk Antistatic and electromagnetic wave shielding resin composition
JPH01153752A (en) * 1987-12-11 1989-06-15 Mitsubishi Metal Corp Electrically conductive resin composition
JPH0931940A (en) * 1995-07-25 1997-02-04 Kunimine Kogyo Kk Impervious material and impervious method
JP2001192499A (en) * 2000-01-14 2001-07-17 Otsuka Chem Co Ltd Electroconductive resin composition
JP3903791B2 (en) * 2000-05-10 2007-04-11 Nok株式会社 Conductive resin composition
JP2005510009A (en) * 2001-11-13 2005-04-14 ダウ グローバル テクノロジーズ インコーポレーテッド Conductive thermoplastic polymer composition
JP2003335967A (en) * 2002-05-20 2003-11-28 Shin Etsu Chem Co Ltd Electroconductive composition
JP2004189938A (en) * 2002-12-12 2004-07-08 Nippon Sheet Glass Co Ltd Conductive molded resin part
JP2006206869A (en) * 2004-12-28 2006-08-10 Kansai Paint Co Ltd Cationic electrodeposition paint
JP2007023108A (en) * 2005-07-13 2007-02-01 Kansai Paint Co Ltd Cationic electrodeposition coating material
KR100837307B1 (en) 2007-11-30 2008-06-12 이춘구 Floor covering with harmful wave blocking function and its manufacturing method
JPWO2017077980A1 (en) * 2015-11-02 2018-08-23 セントラル硝子株式会社 Electromagnetic shielding metal-coated glass fiber filler, method for producing electromagnetic shielding metal-coated glass fiber filler, and electromagnetic shielding resin article
JP2017105671A (en) * 2015-12-09 2017-06-15 Dowaエレクトロニクス株式会社 Silver coated graphite particle, silver coated graphite mixed powder and manufacturing method therefor and conductive paste
JP2017226784A (en) * 2016-06-23 2017-12-28 旭化成株式会社 Polyacetal resin composition and molding
JP2020149863A (en) * 2019-03-13 2020-09-17 株式会社東芝 Conductive resin and superconducting coil using it
CN119350768A (en) * 2024-12-25 2025-01-24 日丰企业(天津)有限公司 Antistatic high-voltage resistant PPR material and preparation method thereof

Also Published As

Publication number Publication date
JPH038389B2 (en) 1991-02-05
EP0117700A1 (en) 1984-09-05

Similar Documents

Publication Publication Date Title
JPS59152936A (en) Hybrid resin composition with excellent electromagnetic resistance and rigidity
US5399295A (en) EMI shielding composites
CN108192315A (en) A kind of vehicle instrument instrument housing electromagnetic shielding composite material and preparation method thereof
WO1993022774A1 (en) Electromagnetic shielding materials
JP2010155993A (en) Resin composition
KR20010102079A (en) Electrically Conductive Flexible Composition, Methods of Making Same
JPS5814457B2 (en) Conductive plastic composition for shielding electromagnetic waves
GB2198734A (en) Emi shielding composites
JPH0416500B2 (en)
JPS58127743A (en) Thermoplastic resin composition
JP2004224829A (en) Conductive composition, conductive molded product, and conductive coating
JPS6312198A (en) Electric wave absorbing electromagnetic shielding member
JP2732986B2 (en) Resin composition for shielding electromagnetic waves
JPS5986638A (en) Resin composition with excellent electromagnetic resistance and rigidity
JPS5986637A (en) Electrically conductive inorganic powder
JPS6013516A (en) Manufacture of multilayer injection molded product with electromagnetic shielding property
JP2000252679A (en) Resin molded product superior in electromagnetic wave absorbing characteristic and its manufacture
NL193417C (en) EMI shielding layers.
JPS6268854A (en) Electrically conductive resin composition
JPS6076542A (en) Electrically conductive resin
JPS59210957A (en) Electrically conductive plastic film or sheet
JPS5996148A (en) Ethylene copolymer composition
JPS6053546A (en) Electrically conductive plastic composition
JP2004027097A (en) Thermoplastic resin composition
KR900008733B1 (en) Method of manufacturing resin composition for electromagnetic wave shielding