[go: up one dir, main page]

JPS59152297A - Gas-phase crystal growth system - Google Patents

Gas-phase crystal growth system

Info

Publication number
JPS59152297A
JPS59152297A JP2393883A JP2393883A JPS59152297A JP S59152297 A JPS59152297 A JP S59152297A JP 2393883 A JP2393883 A JP 2393883A JP 2393883 A JP2393883 A JP 2393883A JP S59152297 A JPS59152297 A JP S59152297A
Authority
JP
Japan
Prior art keywords
gas
piping system
starting gases
vessel
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2393883A
Other languages
Japanese (ja)
Inventor
Hiroshi Terao
博 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP2393883A priority Critical patent/JPS59152297A/en
Publication of JPS59152297A publication Critical patent/JPS59152297A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:The whole of piping system is surrounded with an air-tight vessel and the vessel is filled with a high-purity gas inside so that only the high-purity gas is mixed in the pipings, even if there should be leaks in the piping system, thus preventing the contamination of the starting gases in the pipings with impurities. CONSTITUTION:The piping system for feeding the starting gases to the gas- phase crystal growth chamber is composed of inlets of starting gases 1, filteres 2, pressure controllers 3, flow rate controller 4, switching valves 5, joints 6 and the outlets of starting gases 8 and piping connecting them 7. The whole of the piping system is placed in the air-tight vessel 10. The vessel 10 is provided with the inlets and outlets of the starting gases as well as the inlet 11 and outlet 12, each of which is provided with a valve 13 and 14, on the wall. Thus, the vessel is filled with high-purity gas 15 and only high-purity gas is mixed in the starting gases, even if the piping system should have leaks, without contamination with impurities.

Description

【発明の詳細な説明】 本発明は気相成長装置に関゛し、特に原料ガスの汚染を
防止し、高純度に保つ気相成長装置に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vapor phase growth apparatus, and particularly to a vapor phase growth apparatus that prevents contamination of source gas and maintains high purity.

気相成長においては、反応領域へ送られる原料ガス中の
微量の不純物が成長層へ重大な影響を与えることは良く
知られている。従って、再現性良く高品質の気相成長を
行なうには原料ガス中への不純物混入を十分に少なくす
る必要がある。不純物となる物質の種類やその混入原因
は数多くあるが、重大な混入原因の一つと□して、原料
ガスの流量の調整、混合、切替を行なうための装置に含
まれる部品配管に存在する混合、切替を行うための装置
及び部品と、これらを接続する継手、配管に微細な漏れ
口があり、この漏れ口から大気中の不純物が侵入するこ
とが挙げられる。この場合、気相成長に特に重大な影響
を及ぼすのは酸素と水蒸気である。
In vapor phase growth, it is well known that trace amounts of impurities in the source gas sent to the reaction region have a significant effect on the grown layer. Therefore, in order to perform high-quality vapor phase growth with good reproducibility, it is necessary to sufficiently reduce the amount of impurities mixed into the source gas. There are many types of substances that become impurities and their causes of contamination, but one of the major causes of contamination is the mixture that exists in component piping included in equipment that adjusts, mixes, and switches the flow rate of raw gas. There are minute leaks in the devices and parts for switching, the joints and piping that connect them, and impurities in the atmosphere can enter through these leaks. In this case, oxygen and water vapor have particularly important effects on vapor phase growth.

代表的な■−■族化合物半導体であるGaAs及びGa
A′tAsの気相成長を例にとると、反応領域に含まれ
る酸素あるいは水蒸気の濃度が僅かo、xppm程度で
あっても、成長層のキャリア濃度が大きく変化すること
が知られている。また、GaAtAs成長層のフォト・
ルミネセンス強度(゛これは成長層の光学的品質を示す
ものでるる)永著しく弱くなってしまう。従って、反応
領域に含まれる酸素るるいは水蒸気の濃度は少なくとも
0.1pI)m以下、望ましくはo、otppm以下と
する必要がある。
GaAs and Ga are typical ■-■ group compound semiconductors.
Taking the vapor phase growth of A'tAs as an example, it is known that even if the concentration of oxygen or water vapor contained in the reaction region is only about 0,000 ppm, the carrier concentration of the grown layer changes greatly. In addition, the photo-resistance of the GaAtAs growth layer
The luminescence intensity (which indicates the optical quality of the grown layer) is significantly weakened. Therefore, the concentration of oxygen or water vapor contained in the reaction region needs to be at least 0.1 pI)m or less, preferably o, otppm or less.

一方、実際に気相成長に用いられる装置には、原料ガス
の流量の調整、混合、切替を行なうために数多くの部品
が使用されそおシ、これらの部品間を接続するだめの継
手の数も非常に多くなる。
On the other hand, in the equipment actually used for vapor phase growth, many parts are used to adjust, mix, and switch the flow rate of source gases, and the number of joints that connect these parts is also large. It becomes very large.

個々の部品について漏洩に十分注意しても、現実に入手
可能な部品ではある程度の漏洩は避けられない。特に気
相成長においては、圧力調整器、施蓋調節装置、切替弁
など多種多′様の部品を数多く使用し、さらに原料ガス
には腐食性ガスも含まれる。乙のため、いわゆる超高誓
空装置用のように漏洩を無くすことを第一に設計するこ
とができない。漏洩値は部品により異なるが、10””
 atrn・cc/sec程度であり、この値は超高真
空装置用部品での値10−’ atrn m cc /
sec以下の100倍位である。l Q” atm@c
c/secという漏洩量は1ケ所としては十分小さな値
であるが、実際の装置で使用される部品、継手は数百個
から一千個以上に及ぶため、合計の漏洩量はかなシ多く
なシ、結局、反応領域へ送られるガスに含まれる大気中
からの混入する酸素あるいは水蒸気の@度を0.1 p
I)m以下とすることは極めて困難であるという欠点が
あった。
Even if sufficient care is taken to prevent leakage from each individual component, some degree of leakage is unavoidable with actually available components. In particular, in vapor phase growth, a large number of various parts such as pressure regulators, lid adjustment devices, switching valves, etc. are used, and the raw material gas also contains corrosive gases. For this reason, it is not possible to design a device with the priority of eliminating leakage, as in the case of so-called ultra-high-performance devices. The leakage value varies depending on the parts, but is 10""
atrn.cc/sec, and this value is about 10-'atrn m cc/sec for parts for ultra-high vacuum equipment.
It is about 100 times smaller than sec. l Q” atm@c
The amount of leakage c/sec is a small enough value for one location, but since the number of parts and joints used in an actual device ranges from several hundred to more than 1,000, the total amount of leakage is ephemeral. After all, the amount of oxygen or water vapor mixed in from the atmosphere contained in the gas sent to the reaction region is reduced to 0.1 p.
There was a drawback that it was extremely difficult to make the value less than I)m.

本発明の目的は、上記欠点を除去し、気相成長室への原
料ガスの送気途中における大気中からの不純物の混入を
防ぎ、純度を維持する気相成長装置を提供するものであ
る。
An object of the present invention is to provide a vapor phase growth apparatus that eliminates the above-mentioned drawbacks, prevents contamination of impurities from the atmosphere during feeding of raw material gas to a vapor phase growth chamber, and maintains purity.

本発明によれば、気相成長室へ送る各種原料ガスの流量
、圧力の調整、ガス切替え、混合を行うための流量調整
装置、圧力調整装置、切替え弁、混合器、継手等の装置
及び部品と、前記装置及び部品を接続する配管と、原料
ガスの流入口と流出口とを有し前記装置、部品配管を収
納して前記流入口と流出口に接続せしめる気密容器と、
該気密容器内に充填される高純度ガスとを含むことを特
徴とする気相成長装置が得られる。
According to the present invention, devices and parts such as a flow rate adjustment device, a pressure adjustment device, a switching valve, a mixer, a joint, etc., for adjusting the flow rate and pressure of various raw material gases sent to the vapor growth chamber, switching gases, and mixing the gases. and an airtight container that has piping that connects the device and parts, and an inlet and an outlet for raw gas, and that houses the device and the component piping and connects it to the inlet and outlet;
A vapor phase growth apparatus characterized in that the airtight container is filled with a high purity gas is obtained.

次に、本発明の実施例について図面を用いて説明する。Next, embodiments of the present invention will be described using the drawings.

図は本発明の一実施例の配管系統図である。The figure is a piping system diagram of one embodiment of the present invention.

気相成長室へ原料ガスを送る配管系統は、原料ガスの流
入口1、フィルタ2、圧力調整装置3、流量調整装置4
、ガス切替弁5、継手6、原料ガス陣出口8.等が配管
7で接続されている。これらの配管系統全体を気密容器
10内に収納する。
The piping system for sending source gas to the vapor phase growth chamber includes a source gas inlet 1, a filter 2, a pressure regulator 3, and a flow rate regulator 4.
, gas switching valve 5, joint 6, source gas outlet 8. etc. are connected by piping 7. The entire piping system is housed in an airtight container 10.

気密容器10の壁には原料ガスの流入口1と流出口8と
が取付けられる。また、気密容器10内を高純度ガスで
充填するために、容器10の壁に高純度カス15の流入
口11、流出口12が弁13.14を介して設けられる
An inlet 1 and an outlet 8 for raw material gas are attached to the wall of the airtight container 10 . Further, in order to fill the airtight container 10 with high purity gas, an inlet 11 and an outlet 12 for the high purity waste 15 are provided on the wall of the container 10 via valves 13 and 14.

このように配管系統全体を気密容器で囲んで高純度ガス
を充填しておくと、たとえ配管系統に漏れ口があっても
原料ガスに混入してくるのは高純度ガスであって不純物
ではないから原料ガスは綬染されずに高純度に保たれる
If the entire piping system is surrounded by an airtight container and filled with high-purity gas in this way, even if there is a leak in the piping system, it will be high-purity gas and not impurities that will get mixed into the source gas. The raw material gas is kept at high purity without being dyed.

上記実施例における不純物混入量の測定例について説明
する。
An example of measuring the amount of impurities mixed in in the above embodiment will be explained.

流を調優装置が10台、配管の接続箇所が約1000個
ある配管系統の装置について、原料ガス 5− として酸素濃度o、oappmの高純度水素を流した。
High-purity hydrogen with an oxygen concentration of o, oappm was flowed as the raw material gas 5- in a piping system having 10 flow regulating devices and approximately 1000 piping connection points.

まず、気密容器10内を通常の大気で満たし、原料ガス
流入口1から上記の水素を流入させ、原料ガス流出口8
にて水素中の酸素濃度を測定した所0.4ppmK増加
していた。この増加は元の酸素濃度0.03 f)I)
mに対して10倍以上の増加であり、大気中からの酸素
が侵入できる漏れ口が配管系統中にかなりすることを示
す。
First, the inside of the airtight container 10 is filled with normal atmosphere, the above-mentioned hydrogen is introduced from the raw material gas inlet 1, and the raw material gas outlet 8
When the oxygen concentration in hydrogen was measured, it was found to have increased by 0.4 ppmK. This increase is the original oxygen concentration of 0.03 f)I)
This is a more than 10-fold increase over m, indicating that there are considerable leakages in the piping system through which oxygen from the atmosphere can enter.

次に、気密容器10内を乾燥した高純度窒素ガスで充填
した後、酸素濃度0.03 ppmの水素を流して流出
口8で測定した所、酸素濃度はo、oappmであシ、
大気中からの酸素の混入は全く認められなかった。
Next, after filling the inside of the airtight container 10 with dry high-purity nitrogen gas, hydrogen with an oxygen concentration of 0.03 ppm was flowed and measurement at the outlet 8 revealed that the oxygen concentration was o, oappm.
No oxygen contamination from the atmosphere was observed.

前述のように、個々の部品及び部品間の継手の漏れ口を
無くすことは至難のわざで不可能に近い。
As mentioned above, eliminating leaks in individual parts and joints between parts is extremely difficult and nearly impossible.

しかし、本発明のように、配管系統全体を気密容器で囲
み、配管系統の周囲の雰囲気を高純度のガスにするだけ
で不純物の混、人を防ぐことができる。
However, as in the present invention, by simply surrounding the entire piping system with an airtight container and making the atmosphere around the piping system a high-purity gas, contamination with impurities and people can be prevented.

そして本発明のよ、うに、配管系統全体を気密、容器内
に収納し、高純度ガスを充填することは極めて6− 容易である。気密容器にも漏れがあるから、気密容器内
の酸素、水蒸気濃度は、流入口11と流出口12とでは
異ってくる。それで本内部に収納した配管系統全体と比
べると接続箇所数は遥かに少なく、それだけ漏れ口も少
なくなっているので、高純度ガス中への酸素、水蒸気の
混入を0.1%以下にすることは容易であり、従って原
料ガス中への酸素、水蒸気の混入は全く無視できる程度
の量でおる。
As in the present invention, it is extremely easy to house the entire piping system in an airtight container and fill it with high-purity gas. Since the airtight container also leaks, the oxygen and water vapor concentrations in the airtight container differ between the inlet 11 and the outlet 12. Therefore, compared to the entire piping system housed inside the book, the number of connections is far fewer, and there are fewer leaks as well, so the mixing of oxygen and water vapor into the high-purity gas can be kept to 0.1% or less. is easy, and therefore the amount of oxygen and water vapor mixed into the raw material gas is completely negligible.

以上詳細に説明したように、本発明によれば、簡単な装
置の付加により気相成長室への原料ガスの送気途中にお
ける大気中からの不純物の混入を防ぎ、原料カスの純度
を維持する気相成長装置が得られるのでその効果は大き
い。
As explained in detail above, according to the present invention, by adding a simple device, it is possible to prevent contamination of impurities from the atmosphere during feeding of the raw material gas to the vapor growth chamber, and maintain the purity of the raw material dregs. Since a vapor phase growth apparatus can be obtained, the effect is great.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例の配管系統図である。 1・・・・・・原料ガス流入口、2・・・・・・フィル
タ、3・・・・・・圧力調整装置、4・・・・・・流量
調整装置、5・・・・・・カス切換弁、6・・・・・・
継手、7・・・・・・配管、8・・・・・・原料ガス流
出口、10・・・・・・気密容器、11・・・・・・高
純度ガス流入口、12・・・・・・高純度ガス流出口、
 13.14・・・・・・弁、15・・・・・・高純度
ガス。
The figure is a piping system diagram of one embodiment of the present invention. 1... Raw material gas inlet, 2... Filter, 3... Pressure regulator, 4... Flow rate regulator, 5... Waste switching valve, 6...
Joint, 7... Piping, 8... Raw gas outlet, 10... Airtight container, 11... High purity gas inlet, 12... ...High purity gas outlet,
13.14... Valve, 15... High purity gas.

Claims (1)

【特許請求の範囲】[Claims] 気相成長室へ送る各種原料ガスの流量、圧力の調整、ガ
ス切替え、混合を行うための流量調整装置、圧力調整装
置、切替え弁、混合器、継手等の装置及び部品と、前記
装置及び部品を接続する配管と、原料ガスの流入口と流
出口とを有し前記装置、部品配管を収納して前記流入口
と流出口に接続せしめる気密容器と、該気密容器内に充
填される高純度ガスとを含むことを特徴とする気相成長
装置。
Devices and parts such as flow rate adjustment devices, pressure adjustment devices, switching valves, mixers, joints, etc. for adjusting the flow rate and pressure of various raw material gases sent to the vapor growth chamber, gas switching, and mixing, and the devices and parts described above. an airtight container that has an inlet and an outlet for raw material gas, houses the equipment and component piping, and is connected to the inlet and outlet; and a high-purity container filled in the airtight container. A vapor phase growth apparatus characterized by containing a gas.
JP2393883A 1983-02-16 1983-02-16 Gas-phase crystal growth system Pending JPS59152297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2393883A JPS59152297A (en) 1983-02-16 1983-02-16 Gas-phase crystal growth system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2393883A JPS59152297A (en) 1983-02-16 1983-02-16 Gas-phase crystal growth system

Publications (1)

Publication Number Publication Date
JPS59152297A true JPS59152297A (en) 1984-08-30

Family

ID=12124465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2393883A Pending JPS59152297A (en) 1983-02-16 1983-02-16 Gas-phase crystal growth system

Country Status (1)

Country Link
JP (1) JPS59152297A (en)

Similar Documents

Publication Publication Date Title
US7325560B2 (en) In-situ gas blending and dilution system for delivery of dilute gas at a predetermined concentration
US4656865A (en) System for analyzing permeation of a gas or vapor through a film or membrane
US9666435B2 (en) Apparatus and process for integrated gas blending
US4911101A (en) Metal organic molecular beam epitaxy (MOMBE) apparatus
US6772781B2 (en) Apparatus and method for mixing gases
US3617371A (en) Method and means for producing semiconductor material
JP2008541093A (en) System for producing a primary standard gas mixture
US5476320A (en) Developer preparing apparatus and developer preparing method
JPS61290341A (en) Method and device for calibrating gas measuring device
JPH02284638A (en) Feeder of high-performance process gas
CA2080633C (en) Gas delivery panels
JPS59152297A (en) Gas-phase crystal growth system
EP0272861A3 (en) Analyzer for dissolved gas in liquids
CN209060912U (en) A kind of new-type fluorine gas and inert gas mixing arrangement
JPH0963965A (en) Metal-organic supply device and metal-organic vapor phase epitaxy device
US20060243207A1 (en) Fluid mixing and delivery system
JPS61242013A (en) Raw gas generating and feeding device
JPS59127644A (en) Apparatus for controlling generation of stock gas
JPS6246432Y2 (en)
KR100657169B1 (en) Reaction vessel for thin film deposition and thin film deposition system employing the same
JPH0263543A (en) Liquid vapor raw material supply device
JPS55163428A (en) Production of constant humidity gas
KR100553819B1 (en) Thin film deposition system with improved purge efficiency
JPS59172717A (en) Semiconductor vapor growth equipment
JPH10147871A (en) Vaporizer for vapor-phase epitaxial growth system